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Abstract: Diterpenoid alkaloids are extracted from plants. These compounds have broad biological
activities, including effects on the cardiovascular system, anti-inflammatory and analgesic actions,
and anti-tumor activity. The anti-inflammatory activity was determined by carrageenan-induced rat
paw edema and experimental trauma in rats. The number of studies focused on the determination,
quantitation and pharmacological properties of these alkaloids has increased dramatically during
the past few years. In this work we built a dataset composed of 15 diterpenoid alkaloid compounds
with diverse structures, of which 11 compounds were included in the training set and the
remaining compounds were included in the test set. The quantitative chemistry parameters of
the 15 diterpenoid alkaloids compound were calculated using the HyperChem software, and
the quantitative structure-activity relationship (QSAR) of these diterpenoid alkaloid compounds
were assessed in an anti-inflammation model based on half maximal effective concentration
(ECsp) measurements obtained from rat paw edema data. The QSAR prediction model is as
follows: log(ECsp) = —0.0260 x SAA + 0.0086 x SAG + 0.0011 x VOL — 0.0641 x HE — 0.2628 x
LogP — 0.5594 x REF — 0.2211 x POL — 0.1964 x MASS + 0.088 x BE + 0.1398 x HF (R? = 0.981,
Q? = 0.92). The validated consensus ECsq for the QSAR model, developed from the rat paw
edema anti-inflammation model used in this study, indicate that this model was capable of effective
prediction and can be used as a reliable computational predictor of diterpenoid alkaloid activity.

Keywords: diterpenoid alkaloids; anti-inflammatory; quantitative structure-activity relationship (QSAR)

1. Introduction

The diterpenoid alkaloids are found in many traditional herbal medicines (TCM), such as
Consolida, Aconitum, and Delphinium. Pharmacological studies have indicated that many diterpenoid
alkaloids are important chemical constituents of this herbal remedies with analgesic, anti-cancer,
anti-inflammatory, and anti-arrhythmic activities [1]. The anti-inflammatory activity was the first
confirmed important pharmacological activity of the diterpenoid alkaloids, and is stronger than that of
many active anti-inflammatory drugs [2].

Most of the diterpenoid alkaloids are isolated from Aconitum, Consolida and Delphinium species,
which have been widely used in medicine with excellent clinical efficacy for thousands of years.
There are three categories of diterpenoid alkaloids containing 18, 19 and 20 carbon atoms, respectively,
which are classified as the C18-, C19-, and C20-diterpenoid alkaloids [3]. Different types of diterpenoid
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alkaloids show diverse biological activities, for example, C18-, C19-diterpenoid alkaloids exhibit
anti-inflammatory and analgesic activities [4], while C20-diterpenoid alkaloids possess potent
inhibitory activity on tumor cells [5].

The two main types of analgesic and anti-inflammatory drugs are non-steroidal anti-inflammatory
drugs (NSAIDS) and opioids. However, NSAIDS might cause gastrointestinal tract damage, while
opioids are harmful to the nervous system and have a strong potential for causing addiction [6,7]. This
makes it necessary to develop new types of analgesic and anti-inflammatory drug with lower toxicity
and higher anti-inflammatory activity. Although diterpenoid alkaloids are toxic, they have significant
pharmacological activities. Diterpenoid alkaloids interact with receptors in the neurotransmitter
systems and have electrophysiological properties, therefore are the good candidates to develop drugs
with anti-inflammatory activity [2]. The relationship between the structure and activity is determined
by the structure-activity relationship, in order to modify the structure of the compounds and enhance
the anti-inflammatory activity [2], hence we studied the relationship between the activity and structure
of the diterpenoid alkaloids.

Recent studies have proved that some diterpenoid alkaloids have strong anti-inflammatory
activities [8]. They significantly inhibited rat paw edema caused by a variety of inflammatory
agents, such as egg white, carrageenan, histamine and 5-HT; the xylene-induced mouse ear
edema; the histamine, 5-HT-induced capillary permeability increase; and reduced the inflammatory
exudates [9-11]. In this paper, the anti-inflammatory activity of the diterpenoid alkaloids in the rat
paw edema inflammation model was investigated.

Quantitative structure activity relationship (QSAR) has been demonstrated as a useful tool for
investigating the bioactivities of various classes of compounds. The purpose is to find the relation
between the composition or structure of a compound and its chemical activity [12-14]. It can be
further used to guide chemical synthesis when new chemical entities are developed. Projections to
latent structures represent a regression technique for modeling the relationship between projections of
dependent factors and independent responses [15]. Partial least squares (PLS) regression, a multivariate
regression modeling method, can be applied to conditions in which the number of independent
variables is greater than the number of observations [16]. The observation can be projected from a
high-dimensional space to a low-dimensional space to reduce the number of model input variables [17].
The PLS approach is a statistical modeling technique with data analysis features linking a block
(or a column) of response variables to a block of explanatory variables [18]. It leads to stable, correct
and highly predictive models even for correlated descriptors [19]. The PLS method is widely used in
measuring chemical information and biological information, as well as in other fields. It has recently
been applied to study QSTR of toxic compounds and yielded good results [20]. In this paper, a QSAR
study was conducted on 15 diterpenoid alkaloids, analyzed by Hyperchem, to obtain the molecular
structure parameters and establish a predictive model of EC5yp measurement in rat paw edema using
the PLS method.

2. Results and Discussion

2.1. Modeling

In this study, the PLS method was applied to build the QSAR model between the quantitative
3D structural parameters of various diterpenoid alkaloid compounds and the rat paw edema
anti-inflammation model activities, due to the fact that diterpenoid alkaloids are natural ingredients
isolated from TCM, and we had only a small number of compounds. The activity of several diterpenoid
alkaloids was predicted using the model, which showed good correlation and predictive ability.
The relationship between Log(ECsp) and 10 variables modeled by PLS was as follows:

log(ECsp) = —0.0260 x SAA + 0.0086 x SAG + 0.0011 x VOL — 0.0641 x HE
—0.2628 x LogP — 0.5594 x REF — 0.2211 x POL — 0.1964 x MASS 1)
+0.088 x BE 4 0.1398 x HF
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where SAA is surface area approx., SAG is surface area grid, VOL is volume, HE is hydration
energy, REF is refractivity, POL is polarizability, BE is binding energy, and HF is heat of formation.
The regression coefficient diagram is presented in Figure 1 to intuitively explain the activity values of
the diterpenoid compounds.
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Figure 1. The regression coefficient diagram of descriptors in the QSAR model.

From the regression coefficient diagram (Figure 1), we conclude that the value of ECsj increased
when the variables including surface area grid, volume, hydration energy, heat of formation and
binding energy increased, and the value of ECsy decreased when the variables including surface area
approx., LogP, mass, polarizability and refractivity increased. Greater value of ECsj indicates lower
activity of the compound. Thus, surface area approx., LogP, mass, polarizability and refractivity were
positively related to the activity of diterpenoid alkaloid compounds, while surface area grid, volume,
hydration energy, heat of formation and binding energy were negatively correlated with diterpenoid
alkaloid compounds. The loading plot of PLS-weight (the PLS analysis results in model coefficients
of the latent variables) vectors for the first two primary components is shown in Figure 2, which is
the scalar product of responders and descriptors. The weights for the descriptors, denoted by “W”,
indicate the importance of these variables and how much they “in a relative sense” participate in the
modeling of the responder. The weights for the responders, denoted by “C”, indicate which responder
is modeled in the respective PLS model dimensions (Table S1 in the Supplementary Material section).
Therefore, the farther a point (i.e., variable) locates away from the origin, the more it contributes to
PLS model prediction.
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Figure 2. The loading plot of PLS-weight vectors for the first two primary components in the QSAR
model (W*C).
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Based on the regression coefficient diagram (Figure 1), the contributions in the decreasing order,
for PLS model prediction among descriptors in QASR, is ReF, LogP, POL, MASS, HEF, BE, HE, SAA,
SAG, and VOL, consistent with the conclusion drawn based on the regression coefficient diagram of
descriptors in the QSAR model (Figure 1). Furthermore, the curve fitting graph for the predicted and
observed values of the activities of the diterpenoid alkaloids is shown as Figure 3, indicating a good

fitting result.
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Figure 3. The curve fitting graph for the training dataset. YPred[3](y) and YVar(y) are respectively the
predicted and observed values for the training set.

The predictive ability of the model was tested using four other diterpenoid alkaloids (compound
IDs 4, 9, 12, 13) as a forecasting dataset (Table 1 and Figure 4). The prediction correlation coefficient
was Rzpn,d =0.8320 > 0.5 (Table 1), which reflected the statistical significance of the model. In addition,
Q? was greater than 0.5, indicating good predictive ability of the PLS model.
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Figure 4. The comparison between the predicted and observed values (compound ID 4, 9, 12, 13 as the
test set, and others as the training set).

Table 1. Predicted and experimental values of four diterpenoid alkaloids.

Compound ID Name Logarithm of ECs Predicted Value Rzpm{
4 Benzoylmesaconine 1.6989 0.9903 0.8320
9 Benzoyldeoxyaconine 0 —0.7386
12 Benzoylaconine 0 0.2778

13 Aconine 1.6989 2.6849
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The applicability domain (AD) of the QSAR model was characterized by the Williams plot as
Figure 5 [14,21,22].
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Figure 5. Williams Plot: standardized residuals versus leverages, horizontal dash lines indicate +3 SD
unites, vertical dash line indicates the threshold value h* = 2.2).

The leverage values for all compounds were lower than critical value, and the prediction errors
for all compounds were between 3 SD unites. Thus, all compounds studied belong to the AD of the
QSAR model.

2.2. Experimental Verification for Model Accuracy

In order to verify the prediction accuracy of the PLS model introduced in Section 2.1, model
accuracy verification was carried out. The anti-inflammatory activities for three diterpenoid alkaloids
including delsoline, fuziline and songorine have been predicted by the PLS QSAR model (Equation (1)).
The model-predicted Log(ECs) for songorine was 0.301, and were 4.0517 and 3.8805 for delsoline and
fuziline, which do not indicate activities for fuziline and delsoline since Greater value of ECsg indicates
lower activity of the compound. (Table S2 in the Supplementary Materials).

To determine whether they have potential anti-inflammatory activities, the effects of three
unknown compounds on the release of nitric oxide (NO) were determined using microglial cell
line (N9) activated by lipopolysaccharide (LPS). Minocycline, a known anti-inflammatory compound,
was used as the positive control. The results are shown in Table 2 and Figure 6.

Table 2. Inhibition rate (%) of 4 compounds at different concentrations on NO production by
LPS-activated N9 cells (Mean 4+ SEM).

Compounds 1uM 10 uM 30 uM 100 uM
Delsoline 118.06 = 5.91 117.42 +1.29 112.26 +1.12 97.42 + 3.10
Fuziling 117.42 4+ 3.42 103.23 4+ 3.24 127.74 + 3.55 110.32 4+ 3.52
Songorine 110.97 4+ 3.96 93.55 4+ 6.35 70.97 £ 341 58.71 + 0.65

Minocycline ? 91.67 +4.27 88.73 £ 3.22 73.04 £ 2.45 40.20 + 3.07

2 Minocycline was used as the positive control.
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As shown in Figure 5, songorine inhibited the production of NO in LPS-activated N9 cells in
a dose-dependent manner without obvious cytotoxicities, suggesting that it might be a potential
inflammatory inhibitor, consistent with the model prediction (Log(ECsp) = 0.301). However, fuziline
and delsoline didn’t exhibit inhibitory effects at the tested concentrations, consistent with the model

predicted value.

HCon MLPS HLPS+ipM ELPS+iOpM M LPS+30uM  HLPS+100pM

NO(%o of LPS comtrol)
8 siEw: B
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o
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Fuziline delsoline Songorine Mino

Figure 6. Anti-inflammatory activity assay of the compounds (Fuziline, delsoline, Songorine and
Mino) in N9 microglial cells. Each bar represents the mean & SE of three independent experiments.
One-way ANOVA adjusted by Dunnett’s test was used for statistical analysis (SPSS 15.0 software, SPSS).
### p < 0.001 compared with control group, ** p < 0.01 and *** p < 0.001 compared with LPS group.

2.3. Molecular Docking

In order to clarify the anti-inflammatory activity of delsoline, fuziline and songorine, molecular
docking study was conducted to measure the relative binding energies and localize binding sites in
iNOS, shown in Figure 7. Binding free energy evaluations were used to find the best conformation
binding mode of ligand position in AutoDock 4.0. The final binding free energy is based on
intermolecular energy, internal energy of ligand, and torsional free energy [23]. The potential
energy was minimized for the best ranked docking pose. For the top ranked poses, the calculated
binding energy of iNOS complexed with delsoline, fuziline and songorine were —6.48, —7.08 and
—9.82 kcal/mol, respectively.

Figure 7. Interaction modes of delsoline, fuziline and songorine within iNOS binding pocket.
(a) H-bonds between delsoline and iNOS pocket; (b) H-bonds between fuziline and iNOS pocket;
(c) H-bonds between songorine and iNOS pocket.
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The bright green dashed lines represent the typical hydrogen bond. The binding mode
between compounds delsoline, fuziline, songorine and iNOS was compared at Val-346, Trp-366,
GIn-257 and Glu-371. The more typical hydrogen bonds, the better binding affinity between the
compound and iNOS. The binding affinity for delsoline-receptor interaction was the best, followed by
songorine-receptor interaction and fuziline-receptor interaction (Figure 7). From a thermodynamic
point of view, a negative free energy (AG < 0) indicates a favorable stable system [24]. High affinity
between iNOS and songorine was observed, consistent with high affinity between iNOS and its classic
substrate fuziline, suggesting that songorine most likely has anti-inflammatory activity. The estimated
values in the molecular docking study were almost equal to the model prediction results.

In recent years, natural products have attracted a lot of attention. Many compounds
have been isolated from natural products and confirmed to possess excellent pharmacological
efficacies. Various pharmacological activities of the diterpenoid alkaloids, including analgesic,
anti-inflammatory, antimicrobial, antitumor, cardiotonic and anti-arrhythmic activities have been
discovered. Inflammation is a defense reaction of the body. The traditional anti-inflammatory drugs
sometimes cannot be applied to disease treatment because of their side effects. We have to find new
anti-inflammatory compounds and there is a need to discover new analysis methods to study the
relationships between activity and structure. QSAR is a useful tool to analyze relationships between
anti-inflammatory activities and structure using PLS. The reliable model should help us with the
prediction of biological activities for newly designed compounds.

3. Materials and Methods

3.1. Data Description

The activity values of 15 diterpenoid alkaloids (structures shown in Figure 8 and Table 1) from
the rat paw edema inflammation model were obtained from published literatures [25,26] (Table 3). 3D
structure parameters of 15 compounds were determined using Hyperchem software, including surface
area approx. (SAA), surface area grid (SAG), volume (VOL), polarizability (POL), hydration energy
(HE), mass, LogP, refractivity (REF), heat of formation (HF) and binding energy (BE). A conformational
analysis of the molecules was performed using “optimal search method” prior to the calculation
of 3D descriptors. The chemical structures of 15 kinds of diterpenoid alkaloids compounds were
entered into hyperchem program software and were optimized using geometry optimizing by their
gradient which was less than 0.10, and were imaged by three dimensional formations. Then all kinds
of quantitative three dimensional parameters of diterpenoid alkaloids compounds were calculated
using semiempirical formula method [27]. What is also worth considering is that HF was obtained
using PM3 quantum chemical calculations and other parameters were obtained using AM1 quantum
chemical calculations. A model was established with these parameters as independent variables using
11 compounds as a training set for modeling. The PLS method was used to establish the QSAR model
between the activity and structure of these compounds [28].

HO OCHj H yChe

U )
il WQuinH

H;CO ignavine

Figure 8. The chemical structures of 15 diterpenoid alkaloids.
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Table 3. The chemical structures of 15 diterpenoid alkaloids and Log(ECsg) values.

NO. Compounds R1 R2 R3 R4 R5 R6 Log(ECs)
1 Deoxyaconitine CH3;CH, CH3COO H Ce¢H5COO OH —0.699
2 Hypaconitine CHj OH H C¢Hs5COO OH —0.301
3 Aconitine CH3CH, CH3COO OH CgH5;COO OH —0.301

4% Benzoylmesaconine CHj; OH OH Ce¢H5COO OH 1.699
5 Mesaconitine CHj CH3COO OH C¢HsCOO OH —0.301
6 Benzoylhypaconine CHj OH H Ce¢H5COO OH 2
7 3-Acetylaconitine CH3;CH, CH3COO CH3COO Ce¢H5COO OH -1
8 Bulleyaconitine CH3;CH, CH3COO H OOCC¢H,OCH3; OH —0.699

9 Benzoyldeoxyaconine CH3CH, OH H CgH5COO OH 0
10 Yunaconitine CH3;CH, CH3COO OH OOCCzH,OCH;3 H 1.301
11 Ignavine 2

12* Benzoylaconine CH;CH, OH OH C¢H5COO OH 0

13* Aconine CH3CH, OH OH OH OH 1.699
14 Lappaconine NHCOCH; 0.778
15 N-Deacetyllappaconitine NH;, 1.176

*NO. 4,9, 12, 13 were used as a forecasting dataset.

The QSAR model was built based on the PLS method using the SIMCA-P software [29]. Briefly
the number of PLS component extraction was selected and determined based on the change of the
parameters. The number of components was selected as 1, 2, 3 and 4, respectively. The parameter R?
for the explanatory ability of the model and the cross validation parameter Q? calculated with different
PLS extraction components are shown in Figure 9.

B R2Y(cum)
N Q2(cum)
1:0
0.8
0.6
0.4
0.2
0.0 = e = =
= Q, @ =
o o Q. (=%
£ £ £ £
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Figure 9. R? and Q? parameters compared with 1-4 components extracted.

A logarithm transformation was used to process the EC5, values since the values showed wide
variations, and the value of hydration energy was reduced by 100-fold for the same reason.

When four PLS components were extracted, the values of R? and Q? increased gradually (Figure 9).
Three components were exacted because R? that represents the explanatory ability of the model
was close to 1 and the cross validation parameter Q was greater than 0.5, with the coefficient of
determination was R? = 0.981 and the leave-one-out cross validation was Q% = 0.925. R? and Q? had no
significant changes when four components were extracted. When the statistical parameters R? > 0.600
and Q2 > 0.500, the model is effective [30-33]. Therefore, we extracted three components to build the
model, and drew the residual scatter and score plot (Figures 10 and 11).
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Figure 10. PLS-QSAR residual scatter.
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Figure 11. PLS-QSAR score plot.

As shown in Figure 10, residuals can be treated as normally distributed since all points lied closely
to a straight line. As shown in Figure 11, sample points were distributed within the ellipse, indicating
no singular points and good model.

The predictive ability of the model was examined through prediction correlation coefficient
Rzpred [34], which is calculated according to the following equation:

D (Ypred(test) - Y(ifest))2 )
- 2
) (Y(test) - thining)

Rzpred =1-

where Ypeq(testy and Y ges) is the predicted and observed ECs values of the test set, respectively; and
training is the mean ECsg value of the training set. The value of Rzp,ed should be greater than 0.5.
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The application domain (AD) of the model was validated by the Williams plot of standardized
residuals versus leverage values (1') compared with a critical value (i*) [21], which is calculated
according to the following equation:

hi = xiT(XTX) _1X,' (3)

W =3(k+1)/n )

where x; is the descriptor vector of the compounds, X is matrix of descriptors, k is the number of
descriptors and 7 is the number of objects used to calculate the model. When the absolute standardized
residual for a compound exceed three standard deviation units, the compound is outside the AD of
the model; if the leverage value of a compound is greater than the critical value, molecular structure
could influence model, so the model is not reliable [14,21,22].

3.2. Experiments Methods

3.2.1. Cell Culture

The murine microglial cell line N9 cells [35-40] were cultured in DMEM supplemented with
10% FBS, 2 mM glutamine, 100 U/mL penicillin, and 100 pg/mL streptomycin at 37 °C in humidified
5% COs,.

3.2.2. Sample Preparation

Fuziline, delsoline and songorine were purchased from Chengdu Must Bio-technology Company
(Chengdu, China) with purity assayed by HPLC at 98.00%, 98.00% and 99.91% respectively.
These compounds in powder form were dissolved in DMSO at 100 mM and stored at —20 °C. Stock
solution was diluted to 100 uM, 30 uM, 10 uM, and 1 pM using IMDM for the experiment.

3.2.3. Measurement of Cell Viability

Before nitrite assay, cell viability was measured with MTT assay [37-42]. N9 cells were seeded
into 96-well plates, incubated with the tested compounds at 100 utM,30 uM , 10 uM and 1 uM in the
presence of LPS (100 ng/mL) for 24 h, then treated with 0.25 mg/mL MTT at 37 °C for 4 h. After the
supernatant was removed, the formazan crystals produced by MTT reduction were dissolved by
adding DMSO (100 uL). Then the proportion of viable cells was determined by colorimetric assay in a
plate reader (Bio-Tek, Winooski, VT, USA) at 490 nm.

3.2.4. Nitrite Assay

The level of nitrite (NO?7) in the supernatant of cultured cells was determined by Griess
assay [35-39]. N9 cells in 96-well plates were treated with the tested compounds at 100 uM, 30 uM,
10 uM and 1 uM in the presence of LPS (100 ng/mL) for 24 h. 50 uL supernatant was then added to
50 pL Griess reagent and incubated for 15 min at room temperature. Finally, the absorbance of the
tested samples was determined with a plate reader (Bio-Tek) at 540 nm.

3.2.5. Anti-Inflammatory Assay in N9 Microglial Cells

The activation of microglia plays an important role in the development of chronic
inflammation-mediated neurodegenerative diseases. Inhibiting the activity of microglia may become a
new target for drug discovery. The microglia cells are activated by LPS and release NO, inflammatory
cytokines and ROS. In this study, an in vitro screening model was established using the LPS-induced
abnormal activation of N9 microglia cells and NO release as an indicator
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o Griess assay inhibitory effects of compounds using N9 microglial cells

N9 microglia cells in the logarithmic phase were cultured for 24 h and then incubated with the
compounds at 100 pM, 30 uM, 10 uM, and 1 uM respectively, with the combined action of LPS at
1000 ng/mL. For blank control group, cells didn’t receive any compound or LPS treatment. Cells were
cultured for another 24 h. Cell culture media was collected and the Griess colorimetry was used to
detect NO content in the media.

e Measurement of cell viability

Cell viability was examined by the MTT reduction assay. N9 cells were seeded into 96-well plates
were incubated with 20 uL./well MTT solution for 4 h at 37 °C. Culture media was collected, 150 uL.
DMSO was added, and the optical density OD value was measured. The average of OD values of each
sample was used to calculate the cell survival rate (CV %) according to the following formula:

Cell survival rate % = average OD value of sample/average OD value of blank control group x 100%  (5)

3.2.6. Molecular Docking

Molecular docking is a powerful tool in structural molecular biology and computer-assisted
drug design. Computer programs dedicated to docking small molecules into protein binding pockets
are currently a focus of attention for many research groups [23,40,41]. Inducible arginine oxidation
and subsequent NO production by correspondent synthase (iNOS) are important cellular answers to
pro-inflammatory signals, and selective iNOS inhibitors may be useful as anti-inflammatory drugs [42].

In this study, AutoDock4.0 was used for molecular docking study. The crystal structure of
iNOS in complex with a nanomolar imidazopyridine inhibitor (PDB code 3NW2) [43] was used.
The co-crystal ligand was extracted to define active site, and polar hydrogen atoms were added to
protein geometrically. The docking area was assigned around the active site with AutoDock Tools
(ADT) [43]. A grid of 30 A x 30 A x 30 A with 0.175 A spacing was calculated around the docking
area for ligand atom types using AutoGrid. Nine three docking calculations were performed for
both delsoline, fuziline and resveratrol, as each docking calculation consisted of 25 million energy
evaluations using Lamarckian genetic algorithm local search method, with a population size of 200,
and 3000 rounds of Solis and Wets local search. The docking results from each of the nine calculations
were clustered on the basis of root-mean-square deviation (rmsd) and were ranked on the basis of free
binding energy. The top-ranked compounds were visually inspected with Accelrys Discovery Studio
Visualizer [35].

4. Conclusions

The activity of a chemical can be related directly to its structure. Activity prediction has
incomparable advantages in terms of throughput, cost, and expandability for compounds in TCM [44].
Currently, attempts have been made to link computational activity prediction of TCM with modern
QSAR methods [45]. In our study, multiple linear regression methods cannot be used to build
the model since the number of variables is 10, and the number of independent variables of the
11 samples, especially for natural active ingredients, is less than 15. The PLS method contains
further information for the maximum correlation between the dependent variable and extracted
components and is suitable for small sample analysis. Thus, the PLS method was applied to build the
QSAR model in our study of the diterpenoid alkaloid compounds based on their anti-inflammatory
activities. The PLS-QSAR model displayed a good fit with the experimental data, with R? = 0.981 and
Q? =0.925. The prediction ability of the model was tested by four others as a forecasting dataset which
showed good predictive power (Rzpred = 0.8320). Applicability domain of the model covers all of the
compounds. Moreover, anti-inflammatory activities of three unknown compounds (i.e., delsoline,
fuziline, and songorine) were correctly predicted using the QSAR model. The prediction conclusion



Molecules 2017, 22, 363 12 of 14

based on the model was consistent with the experiment results and the molecular docking results.
In summary, our results indicate that QSAR based on the PLS method can improve quality control
and risk assessment of TCM products. The activity of the diterpenoid alkaloids was closely related to
the structure, and the model was capable of predicting the activity. These findings provide important
information for further structure modification and discovery of new potential diterpenoid alkaloids
with anti-inflammatory activities.

Supplementary Materials: Supplementary materials are available online.

Acknowledgments: This work was financially supported by National Natural Science Foundation of China
(No. 81303315, No. 81274182, 81673323, U1403102, J1210029), Natural Science Foundation of Liaoning Province
(No. 2015020732), Research Project for Key laboratory of Liaoning Educational Committee (No. LZ2015067) and
Fund for long-term training of young teachers in Shenyang Pharmaceutical University (ZQN2015002).

Author Contributions: X.L. and Z.L. were the primary contributors to this manuscript. N.L., Z.S. and K.B. were
responsible for preparing the first draft of the manuscript and performed most of the experimentation and analysis
while also being involved heavily in data acquisition and interpretation. All authors read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Faridi, B; Zello, A.; Touati, D.; Alaoui, K.; Cherrah, Y. Toxicite aigue et activite anti-inflammatoire des grains
de Delphinium staphysagria. Phytotherapie 2014, 12, 175-180. [CrossRef]

2. Xu, TE; Liu, S.; Meng, L.L.; Pi, Z.E; Liu, Z.Q. Bioactive heterocyclic alkaloids with diterpene structure
isolated from traditional Chinese medicines. J. Chromatogr. B 2016, 1026, 56-66. [CrossRef] [PubMed]

3. Wang, ]J.L,; Shen, X.L.; Chen, Q.H.; Wang, W.; Wang, EP. Structure-nalgesic Activity Relationship Studies on
the C18-and C19-Diterpenoid Alkaloids. Chem. Pharm. Bull. 2009, 57, 801-807. [CrossRef] [PubMed]

4. Liu, F; Yang, C.H,; Liang, J.Y; Liu, ].H. Advances in the studies on the pharmacological activities and
toxicities of C19 diterpenoid alkaloids. Strait Pharm. J. 2012, 24, 1-5. [CrossRef]

5. Wu, ZJ.; Yang, C.H.; Ye, W.C,; Liu, J.H. Advances in the studies on the pharmacological activities and
toxicities of C20 diterpenoid alkaloids. Prog. Pharm. Sci. 2011, 35, 241-249.

6. Seema, B.; Mumtaz, A.; Abdul, L.; Waqar, A.; Sultan, A.; Muhammad, N.; Muhammad, Z.; Hassan, KM.T,;
Farzana, S.; Manzoor, A. A Pharmacologically Active C-19 Diterpenoid Alkaloids from the Aerial parts of
Aconitum leave Royle. Rec. Nat. Prod. 2014, 8, 83-92.

7. Hao, D.; Gu, X.J.; Xiao, P,; Xu, L. Recent advances in the chemical and biological studies of Acontium
pharmaceutical resources. J. Chin. Pharm. Sci. 2013, 22, 209-221. [CrossRef]

8. Yu, T; Lee, YJ.; Jang, H.J. Anti-inflammatory activity of Sorbus commixta water extract and its molecular
inhibitory mechanism. J. Ethnopharmacol. 2011, 134, 493-500. [CrossRef] [PubMed]

9. Zhou, G.H,; Tang, L.Y,; Zhou, X.D.; Wang, T.; Kou, Z.Z.; Wang, Z.J. A review on phytochemistry and
pharmacological activities of the processed lateral root of Aconitum carmichaelli Debeaux. |. Ethnopharmacol.
2015, 160, 173-193. [CrossRef] [PubMed]

10. Ghasemi, G.; Nirouei, M.; Shariati, S.; Parviz, A.; Zinab, R. A quantitative structure-activity relationship
study on HIV-1 integrase inhibitors using genetic algorithm, artificial neural networks and different statistical
methods. Arab. J. Chem. 2016, 9, 185-190. [CrossRef]

11.  Zhou, H.; Wong, Y.F. Suppressive Effects of JCICM-6, the Extract of an Anti-arthritic Herbal Formula, on
the Experimental In-flammatory and Nociceptive Models in Rodents. Biol. Pharm. Bull. 2006, 29, 253-360.
[CrossRef] [PubMed]

12.  Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inf. 2010, 29,
476-488. [CrossRef] [PubMed]

13. Turabekova, M.A.; Rasulev, B.F. A QSAR Toxicity Study of a Series of Alkaloids with the Lycoctonine
Skeleton. Molecules 2004, 9, 1194-1207. [CrossRef] [PubMed]

14. Tropsha, A.; Gramatica, P.; Gombar, V.K. The importance of being earnest: Validation is the absolute essential
for successful application and interpretation of QSPR models. QSAR Comb. Sci. 2003, 22, 69-77. [CrossRef]

15.  Abdi, H. Partial least squares regression and projection on latent structure regression (PLS Regression).
Wiley Interdiscip Rev. 2010, 2, 97-106. [CrossRef]


http://dx.doi.org/10.1007/s10298-014-0859-1
http://dx.doi.org/10.1016/j.jchromb.2015.09.023
http://www.ncbi.nlm.nih.gov/pubmed/26456661
http://dx.doi.org/10.1248/cpb.57.801
http://www.ncbi.nlm.nih.gov/pubmed/19652403
http://dx.doi.org/10.1254/jphs.11226FP
http://dx.doi.org/10.5246/jcps.2013.02.030
http://dx.doi.org/10.1016/j.jep.2010.12.032
http://www.ncbi.nlm.nih.gov/pubmed/21195756
http://dx.doi.org/10.1016/j.jep.2014.11.043
http://www.ncbi.nlm.nih.gov/pubmed/25479152
http://dx.doi.org/10.1016/j.arabjc.2011.03.006
http://dx.doi.org/10.1248/bpb.29.253
http://www.ncbi.nlm.nih.gov/pubmed/16462027
http://dx.doi.org/10.1002/minf.201000061
http://www.ncbi.nlm.nih.gov/pubmed/27463326
http://dx.doi.org/10.3390/91201194
http://www.ncbi.nlm.nih.gov/pubmed/18007512
http://dx.doi.org/10.1002/qsar.200390007
http://dx.doi.org/10.1002/wics.51

Molecules 2017, 22, 363 13 of 14

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Bertrand, M.; Duflo, E.; Mullainathan, S. How much should we trust differences-in-differences estimates.
Q. ]. Econ. 2004, 119, 249-275. [CrossRef]

Agrawal, R.; Gehrke, ]J.; Gunopulos, D. Automatic subspace clustering of high dimensional data for data
mining applications. ACM SIGMOD Rec. 1998, 27, 94-105. [CrossRef]

Wold, S.; Sjostrom, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. Syst.
2001, 58, 109-130. [CrossRef]

Khlebnikov, A.L; Schepetkin, I.A.; Domina, N. Improved quantitative structure-activity relationship models
to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg. Med. Chem.
2007, 15, 1749-1770. [CrossRef] [PubMed]

Devillers, J.; Chezeau, A.; Thybaud, E. PLS-QSAR of the adult and developmental toxicity of chemicals to
Hydra attenuate. SAR QSAR Environ. Res. 2002, 13, 705-712. [CrossRef] [PubMed]

Gramatica, P. Principles of QSAR models validation: Internal and external. QSAR Comb. Sci. 2007, 26,
694-701. [CrossRef]

Jagiello, K.; Sosnowska, A.; Walker, S.; Haranczyk, M.; Gajewicz, A.; Kawai, T.; Suzuki, N.; Leszezynski, J.;
Puzyn, T. Direct QSPR: The most efficient way of predicting organic carbon/water partition coefficient
(log Koc) for polyhalogenated POPs. Struct. Chem. 2014, 25, 997-1004. [CrossRef]

Lu, S.Y;; Jiang, Y.J.; Lv, J.; Wu, T.X;; Yu, Q.S.; Zhu, W.L. Molecular docking and molecular dynamics simulation
studies of GPR40 receptor-agonist interactions. . Mol. Graph. Model. 2010, 28, 766-774. [CrossRef] [PubMed]
Sun, M.; Wu, C.; Fu, Q.; Di, D.; Kuang, X.; Wang, C.; He, Z.; Wang, ].; Sun, ]. Solvent-shift strategy to identify
suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid
dispersions. Int. ]. Pharm. 2016, 503, 238-246. [CrossRef] [PubMed]

Lin, L.Y.; Chen, Q.H.; Wang, EP. Advances in pharmacological activities of norditerpenoid alkaloids.
West China J. Pharm. Sci. 2004, 19, 200-205.

Hikino, H.; Konno, C.; Takata, H.; Yamada, Y.; Ohizuni, Y.; Sugio, K.; Fujimura, H. Anti-inflammatory
principles of Aconitum roots. J. Pharmacobioldyn. 1980, 3, 514-525. [CrossRef]

Jagiello, K.; Sosnowska, A.; Kar, S.; Demkowicz, S.; Dasko, M.; Leszczynski, J.; Rachon, J.; Puzyn, T.
Geometry optimization of steroid sulfatase inhibitors-the influence on the free binding energy with STS.
Struct. Chem. 2017. [CrossRef]

Li, Z.].; Sun, Y.Z.; Yan, X.L.; Meng, EH. Study on QSTR of benzoic acid compounds with MCL. Int. ]. Mol. Sci.
2010, 11, 1228-1235. [CrossRef] [PubMed]

Kar, S.; Harding, A.P.; Roy, K. QSAR with quantum topological molecular similarity indices: Toxicity of
aromatic aldehydes to Tetrahymena pyriformis. SAR QSAR Environ. Res. 2010, 21, 149-168. [CrossRef]
[PubMed]

Yi, Z.S.; Zhang, A.Q. A QSAR Study of Environmental Estrogens Based on a Novel Variable Selection Method.
Molecules 2012, 17, 6126—6145.

Eriksson, L.; Jaworska, J.; Worth, A.P.; Cronin, M.T.D.; McDowell, R.M.; Gramatica, P. Methods for reliability
and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs.
Environ. Health Perspect. 2003, 111, 1361-1375.

Dearden, J.C.; Cronin, M.T.; Kaiser, K.L. How not to develop a quantitative structure-activity or
structure-property relationship (QSAR/QSPR). SAR QSAR Environ. Res. 2009, 20, 241-266. [CrossRef]
[PubMed]

Consonni, V,; Ballabio, D.; Todeschini, R. Comments on the definition of the Q2 parameter for QSAR
validation. . Chem. Inf. Comput. Sci. 2009, 49, 1669-1678. [CrossRef] [PubMed]

Mitra, I.; Roy, PP; Kar, S.; Ojha, PK,; Roy, K. On further application of R2 m as a metric for validation of
QSAR model. |. Chemometr. 2010, 24, 22-33. [CrossRef]

Li, N.; Wang, Y.; Li, X.Z.; Zhang, H.; Zhou, D.; Wang, W.L.; Zhang, X.G.; Li, X.Y.; Hou, Y.; Meng, D.L.
Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge.
Bioorg. Med. Chem. 2016, 26, 5018-5023.

Hou, Y,; Li, N.; Xie, G.B.; Wang, J.; Yuan, Q.; Jia, C.C,; Liu, X,; Li, G.X,; Tang, Y.Z.; Wang, B. Pterostilbene
exerts anti-neuro inflammatory effect on lipopolysaccharide-activated microglia via inhibition of MAPK
signalling pathways. J. Funct. Foods 2015, 19, 676-687.


http://dx.doi.org/10.1162/003355304772839588
http://dx.doi.org/10.1145/276305.276314
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/j.bmc.2006.11.037
http://www.ncbi.nlm.nih.gov/pubmed/17166721
http://dx.doi.org/10.1080/1062936021000043445
http://www.ncbi.nlm.nih.gov/pubmed/12570047
http://dx.doi.org/10.1002/qsar.200610151
http://dx.doi.org/10.1007/s11224-014-0419-1
http://dx.doi.org/10.1016/j.jmgm.2010.02.001
http://www.ncbi.nlm.nih.gov/pubmed/20227312
http://dx.doi.org/10.1016/j.ijpharm.2016.01.062
http://www.ncbi.nlm.nih.gov/pubmed/26869398
http://dx.doi.org/10.1248/bpb1978.3.514
http://dx.doi.org/10.1007/s11224-016-0903-x
http://dx.doi.org/10.3390/ijms11041228
http://www.ncbi.nlm.nih.gov/pubmed/20480017
http://dx.doi.org/10.1080/10629360903568697
http://www.ncbi.nlm.nih.gov/pubmed/20373218
http://dx.doi.org/10.1080/10629360902949567
http://www.ncbi.nlm.nih.gov/pubmed/19544191
http://dx.doi.org/10.1021/ci900115y
http://www.ncbi.nlm.nih.gov/pubmed/19527034
http://dx.doi.org/10.1002/cem.1268

Molecules 2017, 22, 363 14 of 14

37.

38.

39.

40.

41.

42.

43.

44.

45.

Li, N.; Meng, D; Pan, Y;; Cui, Q.L; Li, G.X;; Ni, H; Sun, Y,; Qing, D.G,; Jia, X.G.; Pan, Y.N.; Hou, Y.
Anti-neuroinflammatory and NQO1 inducing activity of natural phytochemicals from Coreopsis tinctoria.
J. Funct. Foods 2015, 17, 837-846.

Zhou, D.; Li, N,; Zhang, YH.; Yan, C.Y,; Jiao, K; Sun, Y., Lin, B.; Hou, Y. Biotransformation of
neuro-inflammation inhibitor Kellerin by Angelica sinensis (Oliv.) Diels callus. RSC Adv. 2016, 6, 97302-97312.
[CrossRef]

Li, N.; Ma, Z].; Li, M.J.; Xing, Y.C.; Hou, Y. Natural potential therapeutic agents of neurodegenerative
diseases from the traditional herbal medicine Chinese Dragon’s Blood. J. Ethnopharmacol. 2014, 152, 508-521.
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring
function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455-461. [CrossRef]
[PubMed]

Santos-Martins, D.; Forli, S.; Ramos, M.].; Olson, A.J]. AutoDock 4 (Zn): An improved AutoDock force field
for small-molecule docking to zinc metalloproteins. J. Chem. Inf. Model. 2014, 54, 2371-2379. [CrossRef]
[PubMed]

Graedler, U.; Fuchss, T.; Ulrich, W.R; Boer, R.; Strub, A.; Hesslinger, C.; Anezo, C.; Diederichs, K.; Zaliani, A.
Novel nanomolar imidazo[4,5-b]pyridines as selective nitric oxide synthase (iNOS) inhibitors: SAR and
structural insights. Bioorg. Med. Chem. Lett. 2011, 21, 4228-4232. [CrossRef] [PubMed]

Dehghanian, F.; Kay, M.; Kahrizi, D. A novel recombinant AzrC protein proposed by molecular docking and
in silico analyses to improve azo dye’s binding affinity. Gene 2015, 569, 233-238. [CrossRef] [PubMed]
Queiroz, A.C.; Lira, D.P; Dias, T.L. The antinociceptive and anti-inflammatory activities of
Piptadenia stipulacea Benth. (Fabaceae). J. Ethnopharmacol. 2010, 128, 377-383. [CrossRef] [PubMed]

Sun, H.; Xia, M.; Austin, C.P. Paradigm shift in toxicity testing and modeling. AAPS ]. 2012, 14, 473-480.
[CrossRef] [PubMed]

Sample Availability: Not available.

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1039/C6RA22502K
http://dx.doi.org/10.1002/jcc.21334
http://www.ncbi.nlm.nih.gov/pubmed/19499576
http://dx.doi.org/10.1021/ci500209e
http://www.ncbi.nlm.nih.gov/pubmed/24931227
http://dx.doi.org/10.1016/j.bmcl.2011.05.073
http://www.ncbi.nlm.nih.gov/pubmed/21684157
http://dx.doi.org/10.1016/j.gene.2015.05.063
http://www.ncbi.nlm.nih.gov/pubmed/26026905
http://dx.doi.org/10.1016/j.jep.2010.01.041
http://www.ncbi.nlm.nih.gov/pubmed/20097281
http://dx.doi.org/10.1208/s12248-012-9358-1
http://www.ncbi.nlm.nih.gov/pubmed/22528508
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Modeling 
	Experimental Verification for Model Accuracy 
	Molecular Docking 

	Materials and Methods 
	Data Description 
	Experiments Methods 
	Cell Culture 
	Sample Preparation 
	Measurement of Cell Viability 
	Nitrite Assay 
	Anti-Inflammatory Assay in N9 Microglial Cells 
	Molecular Docking 


	Conclusions 

