CRYO-EM STRUCTURES OF AMYLOID-β FILAMENTS WITH THE ARCTIC MUTATION (E22G) FROM HUMAN AND MOUSE BRAINS

Yang Yang¹, Wenjuan Zhang^{1±}, Alexey G. Murzin¹, Manuel Schweighauser¹, Melissa Huang^{1X}, Sofia Lövestam¹, Sew Y. Peak-Chew¹, Takashi Saito²⁺, Takaomi C. Saido², Jennifer Macdonald¹, Isabelle Lavenir¹, Bernardino Ghetti³, Caroline Graff^{4,5}, Amit Kumar⁴, Agneta Nordberg^{4,5}, Michel Goedert^{1*}, Sjors H.W. Scheres^{1*}

¹Medical Research Council Laboratory of Molecular Biology, Cambridge, UK

²RIKEN Brain Science Institute, Saitama, Japan

³Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA

⁴Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden ⁵Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden

 $^{^{\}pm}$ Present address: Medical Research Council Prion Unit and Institute of Prion Diseases, University College London, London, UK

^x Present address: Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK

⁺ Present address: Department of Neurocognitive Science, Nagoya City University, Nagoya, Japan

^{*}Corresponding authors: mg@mrc-lmb.cam.ac.uk and scheres@mrc-lmb.cam.ac.uk

SUPPLEMENTARY TABLE

Table S1. Cryo-EM data acquisition and structure determination.

	Human Arctic		Mouse App ^{NL-G-F}
	Tetramer	Dimer	
	(EMD-16023, PDB 8BG0)	(EMD-16022, PDB 8BFZ)	(EMD-16027, PDB 8BG9)
Data acquisition			
Electron gun	XFEG		XFEG
Detector	K3		K3
Energy filter slit (eV)	20		20
Magnification	105,000		105,000
Voltage (kV)	300		300
Electron dose (e ⁻ /Å ²)	40		40
Defocus range (µm)	0.8 to 2.4		1.0 to 2.6
Pixel size (Å)	0.653		0.86
Map refinement			
Symmetry imposed	C2	C2	C1
Initial particle images (no.)	279,809		238,564
Final particle images (no.)	115,228	34,191	39,823
Map resolution (Å)	2.0	2.8	3.5
FSC threshold	0.143	0.143	0.143
Helical twist (°)	-3.0	-2.9	179.3
Helical rise (Å)	4.7	4.8	2.46
Model refinement			
Model resolution (Å)	2.0	2.8	3.5
FSC threshold	0.5	0.5	0.5
Map sharpening B factor (\mathring{A}^2)	-39	-56	-82
Model composition			
Non-hydrogen atoms	6496	1326	1692
Protein residues	896	186	222
Ligands	0	0	0
B factors (\mathring{A}^2)			
Protein	49	55	86
R.m.s. deviations			
Bond lengths (Å)	0.009	0.009	0.007
Bond angles (°)	1.5	1.5	1.5
Validation			
MolProbity score	1.4	2.2	3.1
Clashscore	1.1	3.3	12.1
Poor rotamers (%)	1.2	6.8	12.5
Ramachandran plot			
Favored (%)	92.3	93.1	82.9
Allowed (%)	7.7	6.9	17.1
Disallowed (%)	0	0	0

SUPPLEMENTARY FIGURES

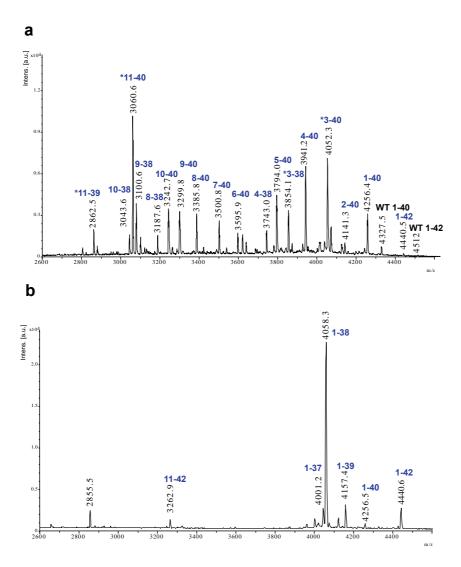


Figure S1 Mass spectrometric analysis.

- a. MALDI mass spectra for $A\beta$ from the sarkosyl-insoluble fractions used for cryo-EM of human E22G $A\beta$. Mutant $A\beta$ (blue), wild-type $A\beta$ (black). Starred blue peptides are pyroglutamate-modified.
- b. MALDI mass spectra for $A\beta$ from the sarkosyl-insoluble fractions used for cryo-EM of $App^{NL\text{-G-F}}$ mouse brains. Mutant $A\beta$ in blue.

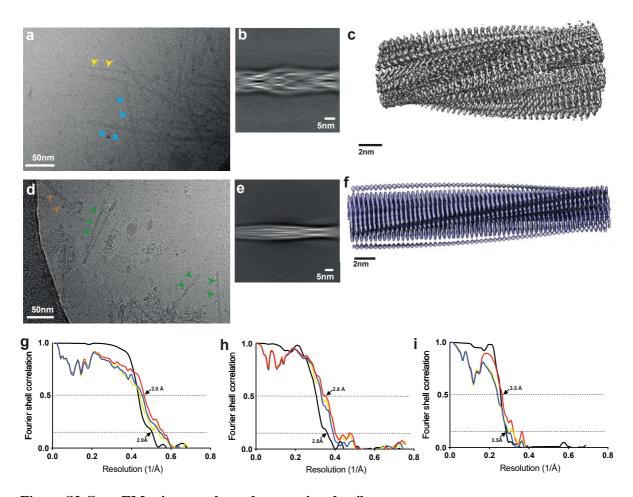


Figure S2 Cryo-EM micrographs and processing details.

a,d. Cryo-EM micrographs of E22G A β filaments from temporal cortex of case $A\beta PParc1$ (a) and E22G A β filaments from App^{NL-G-F} mouse brains (d). In (a), human Arctic tetrameric filaments are indicated with cyan arrows, dimeric type II A β 42 filaments are indicated with orange arrows. In (d), dimeric filaments with the murine Arctic fold are indicated with green arrows and tetrameric filaments with the murine Arctic fold are indicated with brown arrows. Scale bar, 50 nm.

b,e. 2D class averages of E22G A β filaments from human brain (b) and E22G A β filaments from $App^{\text{NL-G-F}}$ mouse brains (e).

c,f. 3D reconstructions of E22G A β filaments from human brain (c) and E22G A β filaments from $App^{\text{NL-G-F}}$ mouse brains (f). Scale bar, 2 nm.

g,h,i. Fourier shell correlation (FSC) curves for cryo-EM maps and structures of human Arctic tetrameric filaments (g), human Arctic dimeric filaments (h) and mouse $App^{\text{NL-G-F}}$ Arctic dimeric filaments (i). FSC curves for two independently refined cryo-EM half maps are shown in black; for

the final refined atomic model against the final cryo-EM map in red; for the atomic model refined in the first half map against that half map in blue; and for the refined atomic model in the first half map against the other half map in yellow.

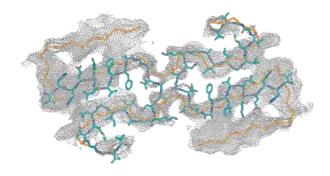


Figure S3 Comparison of an Arctic fold-based model of symmetrical A β 40 doublet filaments with the structure of A β 40 filaments from the meninges of Alzheimer's disease

The model of filaments comprising two identical protofilaments of Arctic fold A was built by taking one of the two A:B doublets shown in Figure 1b and replacing fold B with fold A, overlaid on the substructure common to both folds. This model, which was fitted into the 4.4 Å resolution density map of A β 40 filaments from meninges (EMD:10204; grey mesh), is shown in full-atom representation (Arctic protofilament folds A in cyan). The structure that corresponds to this map is shown in orange (PDB:6SHS).