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Oxidative stress refers to an imbalance between reactive oxygen species (ROS) generation and body’s capability to detoxify the
reactive mediators or to fix the relating damage. MicroRNAs are considered to be important mediators that play essential roles
in the regulation of diverse aspects of carcinogenesis. Growing studies have demonstrated that the ROS can regulate microRNA
biogenesis and expression mainly through modulating biogenesis course, transcription factors, and epigenetic changes. On the
other hand, microRNAs may in turn modulate the redox signaling pathways, altering their integrity, stability, and functionality,
thus contributing to the pathogenesis of multiple diseases. Both ROS and microRNAs have been identified to be important
regulators and potential therapeutic targets in cancers. However, the information about the interplay between oxidative stress
and microRNA regulation is still limited. The present review is aimed at summarizing the current understanding of molecular
crosstalk between microRNAs and the generation of ROS in the pathogenesis of cancer.

1. Introduction

Reactive oxygen species (ROS), mainly including hydroxyl
radicals (HO·), superoxide (O2

·-), and hydrogen peroxide
(H2O2), are usually generated under physiological conditions
and have essential functions in living organisms [1–3]. Usu-
ally, a moderate increase level of ROS can promote cell differ-
entiation and proliferation, whereas overproduction of ROS
may result in oxidative damage to lipids, DNA, and proteins
[4]. Therefore, maintaining ROS homeostasis has a crucial
role for normal cell growth and survival. Generally, the cellu-
lar levels of ROS are cautiously monitored by the natural
antioxidant defense network so that the redox homeostasis
could be maintained. Disruption of normal redox state (a
condition termed as oxidative stress), either because of exces-
sive amounts of ROS or dysfunction of antioxidant defense
system, would result in toxic damages through the production
of free radicals and peroxides, thus give rise to pathophysi-
ological situation that lead to multiple diseases, including
cancer [3, 5].

Compared to normal cells, cancer cells usually have ele-
vated levels of ROS, reflecting a disturbance in redox hemo-
stasis. This may attribute to enhanced metabolic activity
and disrupted cellular signaling [1, 6, 7]. It is believed that
ROS changes in cancer cells are very complicated due to the
multiple factors that modulate the ROS hemostasis and stress
response [1, 8, 9]. Under persistent oxidative stress circum-
stances, cancer cells may evolve a particular set of adaptive
mechanisms, which not only enhance ROS scavenging sys-
tems to deal with the stress but also suppress cell apoptosis.
On the other hand, cancer cells with increased ROS level
are more likely to be susceptible to damage due to excessive
amounts of exogenous agents [10, 11]. Several studies have
indicated that, to efficiently kill cancer cells and reduce drug
resistance related to oxidative damage, it is pivotal to under-
stand the complicated ROS alternations in cancer cells and
the underlying regulation mechanisms [12].

MicroRNAs are small noncoding RNA molecules with
a length of 19 to 25 nt that play an essential role in post-
transcriptional regulation by binding to the 3′-untranslated
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regions (UTRs) of target gene and regulating various cellular
processes, such as cell proliferation, apoptosis, and stress
response [13, 14]. Previous studies have found that the regu-
lation of microRNAs was cell type- and tissue-specific. A sin-
gle microRNA may target various mRNAs, meanwhile a
single mRNA could be modulated by multiple microRNAs.
Therefore, microRNAs can regulate different groups of
mRNAs involved in diverse pathological conditions and the
pathogenesis of various human diseases, such as immune
system disorders and malignancies [15]. On the other hand,
the relative stability of microRNA made it has the possibility
to be novel diagnostic biomarkers and potential therapeutic
targets for various types of cancers [16].

Mounting evidence from previous studies has implied
that the expression of microRNA altered in response to
ROS accumulation [17]. Besides the ROS-mediated tumor
progression, it is believed that ROS production also plays a
vital role in the microRNA-related mechanisms of cancer
development. It is principal to understand the interplay
between ROS production and microRNAs in carcinogenesis,
since both of them have been demonstrated to be dysregu-
lated and have great potential to be novel therapeutic targets
in cancer. The present review focused on the comprehensive
summarization of the current understanding of molecular
crosstalk between ROS production and microRNAs in the
pathogenesis of cancer.

2. MicroRNAs Modulate ROS
Production through Targeting Multiple
Signaling Pathways

Several studies have revealed that ROS production could be
modulated by microRNAs through regulating several redox
signaling pathways. By targeting the Nrf2/Keap1 pathway,
SOD/catalase signaling pathway, mitochondrial regulatory
pathway, and several essential enzymes, microRNAs could
regulate intracellular redox hemostasis and affect the carci-
nogenic processes (Table 1).

2.1. Nrf2/Keap1 Signaling Pathway. It has been characterized
that the transcription factor nuclear factor erythroid-derived
2-like 2 (Nrf2) and its inhibitor Kelch-like ECH-associated
protein 1 (Keap1) are crucial regulators in body’s response to
oxidative stress [18, 19]. Under oxidative stress, Nrf2/Keap1
complexes degenerate and Nrf2 is transferred to the nucleus.
This alternation enhances the expression and activity of sev-
eral antioxidant genes that inhibit cell apoptosis, at the same
time promote cancer cell survival and tumorigenesis [20, 21].
Previous studies have revealed that the Nrf2 signaling path-
ways were targeted by multiple microRNAs, including
miR-144, miR-28, miR-200a, and miR-93. Karihtala and col-
leagues observed that upregulation of miR-93 in pancreatic
cancer was negatively associated with Nrf2 expression and
predicted better cell differentiation [22]. On the other hand,
Singh et al. found that in breast cancer, miR-93 could
decrease multiple carcinogenic processes in an Nrf2-
dependent manner. Silencing of miR-93 could promote cell
apoptosis and inhibit colony formation, mammosphere for-
mation, and cell migration [23]. Another example of the

Nrf2/Keap1 pathway-targeted microRNA is miR-200a. Eades
et al. and Yang et al. reported the miR-200a and miR-28
could regulate Nrf2 expression via directly targeting Keap1
mRNA in breast cancer cells [24, 25].

Moreover, Gu and colleagues reported that the upregula-
tion of miR-155 in lung cancer cells could promote tumor
cell colony formation and migration, as well as repressing cell
death. This was mediated by upregulating the Nrf2/Keap1
signaling pathway. Downregulation of miR-155 would signif-
icantly decrease the cellular levels of Nrf2, NAD(P)H qui-
none oxidoreductase 1, and heme oxygenase-1 (HO-1),
thus suppressing cancer cell survival and migration and facil-
itating cell apoptosis [26]. Another important Nrf2 regulat-
ing microRNA is miR-125b. Chen and colleagues reported
that miR-125b was the upregulator of peroxiredoxin-like
2A (PRXL2A), an antioxidant molecule that protects cells
from oxidative damage. The Nrf2 was then identified to be
a downstream effector of the miR-125b-PRXL2A axis [27]
(Table 1).

2.2. Mitochondrial Signaling Pathway.Mitochondria are con-
sidered to be one of the primary sources of ROS [28, 29]. To
maintain normal cellular processes, mitochondria undergo
fission and fusion continually and generate a proper level of
ROS in response to alterations in the surrounding circum-
stances. However, oxidative stress may lead to abnormal
mitochondrial dynamics and dysfunction of related signal
pathways [29]. MicroRNAs could regulate the activity and
expression of several mitochondrial proteins, which involved
in the maintaining of redox homeostasis. For instance, it has
been revealed that upregulated miR-210 could increase the
ROS level in cancer cells by suppressing the iron-sulfur clus-
ter recruiting proteins ISCU1/2 [30, 31]. Mitochondrial dys-
function induced by miR-210 would upregulate the glycolysis
rate and make tumor cells more susceptible to glycolysis
inhibitors [30]. Overexpression of miR-210 could also induce
ROS generation under hypoxic condition, indicating worse
prognosis in colorectal cancer [31]. Additionally, Tagscherer
and colleagues reported that miR-210 could induce cancer
cell apoptosis via promoting ROS generation [32]. Another
microRNA, miR-34a, has been found to repress ROS genera-
tion by downregulating the genes that code for ROS-related
enzymes and mitochondrial complexes, resulting in apopto-
sis resistance. Restoration of miR-34a could sensitize the
tumor cell in response to oxidative stress [33].

Muys and colleagues reported that miR-450a could act as
a tumor suppressor by inhibiting glycolysis and glutaminoly-
sis via targeting a set of mitochondrial related genes, such as
ACO2, TIMMDC1, ATP5B, and MT-ND2. Overexpression
of miR-450a decreased mitochondrial membrane potential
but increased glucose uptake and viability, featured of less
invasive cancer cell lines [34, 35]. Kao and colleagues
observed that miR-31 could target SIRT3 to suppress mito-
chondrial activity and enhance oxidative stress in oral cancer
[36]. Fan et al. revealed the mitochondrial microRNAs (mito-
miR) mitomiR-2392 regulated chemoresistance in tongue
squamous cell carcinoma by downregulating oxidative phos-
phorylation and upregulating the glycolysis [37]. Xu and
colleagues reported miR-17-3p could repress three major
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Table 1: MicroRNA targets multiple ROS signaling pathways in cancer.

MicroRNAs Targets Mechanism Relevant cancer Ref.

miR-28
Nrf2/Keap1
pathway

Nrf2 downregulation; colony formation Breast cancer [24]

miR-200a
Nrf2/Keap1
pathway

Keap1 downregulation; Nrf2 activation
Breast cancer;
hepatocellular
carcinoma

[25, 101, 102]

miR-144
Nrf2/Keap1
pathway

Regulate the cisplatin resistance of lung cancer cells via Nrf2 Lung cancer [103]

miR-93
Nrf2/Keap1
pathway

Downregulating Nrf2 and Nrf2-related genes Breast cancer [23]

miR-155
Nrf2/Keap1
pathway

Bach1 downregulation; upregulation of HO-1; enhance resistance
to oxidative stress

Renal cancer; lung
cancer

[26, 104, 105]

miR-125b
Nrf2/Keap1
pathway

Targeting the anti-oxidative gene PRXL2A
Oral squamous cell

carcinoma
[27]

miR-29
Mitochondrial

pathway
Promoting apoptosis through a mitochondrial pathway that

involves Mcl-1 and Bcl-2
Hepatocellular
carcinoma

[106]

miR-34a
Mitochondrial

pathway
Inhibiting tumor growth and inducing apoptosis Multiple myeloma [33]

miR-30a
Mitochondrial

pathway
Downregulating Beclin 1 and ATG5 expression; inhibiting

autophagy
Chronic myeloid

leukemia
[107]

miR-122
Mitochondrial

pathway
Targeting mitochondrial metabolic genes

Hepatocellular
carcinoma

[108]

miR-375
Mitochondrial

pathway
Reducing expression of ATG7; inhibiting autophagy

Hepatocellular
carcinoma

[109]

miR-450a
Mitochondrial

pathway

Suppressing multiple genes involved in the EMT; targeting
glutaminolysis related genes; reducing tumor migration and

invasion
Ovarian cancer [34]

miR-27b
Mitochondrial

pathway
Suppressing PDHX; reducing mitochondrial oxidation and

promoting extracellular acidification; promoting cell proliferation
Breast cancer [110]

miR-31
Mitochondrial

pathway
Inhibiting SIRT3; promoting tumor migration and invasion Oral carcinoma [36]

mitomiR-2392
Mitochondrial

pathway

Reprogramming metabolism by downregulation of oxidative
phosphorylation and upregulation of glycolysis; regulating

chemoresistance

Tongue squamous
cell carcinoma

[37]

miR-17-3p
Mitochondrial

pathway
Inhibiting Mn-SOD, Gpx2, and TrxR2; enhancing

radiosensitivity
Prostate cancer [38]

miR-128a
Mitochondrial

pathway
Bmi-1 downregulation; maintain mitochondrial function and

reduce ROS generation
Cancer [111]

miR-210
Mitochondrial

pathway

ISCU downregulation; leading to upregulation of mitochondrial
complex I activity and upregulation of mitochondrial ROS

production
Cancer [30, 112]

miR-663
Mitochondrial

pathway
Targeting BBC3 and BTG2; regulating apoptosis by controlling

MOMP
Lung cancer [113]

miR-3174
Mitochondrial

pathway
Targeting ARHGAP10; inhibiting mitochondria-dependent

apoptosis and autophagy
Gastric cancer [114]

miR-148a-3p
Mitochondrial

pathway

Promoting mitochondrial fission and decreasing AKAP1
expression; sensitizing cisplatin treatment; suppressing RAB12

expression and mTOR1 activation
Gastric cancer [115]

miR-485-3p,
miR-485-5p

Mitochondrial
pathway

Targeting and inhibiting the expression of PPARGC1A Breast cancer [116]

miR-195
Mitochondrial

pathway

Targeting ACACA, FASN, HMGCR, and CYP27B1; inhibiting
proliferation, invasion and migration; decreasing mesenchymal

markers expression and enhancing epithelial markers
Breast cancer [117]

miR-21
SOD/catalase
pathway

Inhibiting T-AOC, PDCD4, SOD, and catalase Gastric cancer [118]
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mitochondrial antioxidant enzymes (manganese superoxide
dismutase (Mn-SOD), glutathione peroxidase 2 (Gpx2),
and thioredoxin reductase 2 (TrxR2)) and enhance the radio-
sensitivity of prostate cancer cells [38]. These studies pose a
profound impact on the regulatory role of microRNAs on
the function and protein synthesis of the mitochondrial reg-
ulatory pathway (Table 1).

2.3. SOD/Catalase Signaling Pathway. Superoxide dismutases
(SOD), including Fe/Mn-SOD, Cu/Zn-SOD, and Ni-SOD
family members, are metal ion cofactor-requiring enzymes
that catalyze the dismutation of O2

·- into O2 and H2O2. Dif-
ferent from the Nrf2/Keap1 system, SOD/catalase system
acts out their antioxidant functions by promoting specific
biochemical reactions to remove accumulated ROS [39]. It
has been reported that increased expression of Mn-SOD
could be detected in gastric cancer and esophageal squamous
cell carcinoma [39–41]. Colorectal malignancy is also corre-
lated with enhanced Mn-SOD activity and expression. On
the other hand, Cu/Zn-SOD is downregulated in cancer tis-
sues than that in normal tissues [42]. Most of the SODs could
be targeted by microRNAs as a regulating mechanism under-
lying their antioxidant functions.

miR-21 has been proved to play an essential role in sev-
eral aspects of tumorigenesis. It has been indicated that
miR-21 could promote carcinogenesis through suppression
of SOD2 or SOD3 by targeting TNF-α generation, thus sup-
pressing the dismutation of superoxide to the less damaging

molecule of H2O2 [43–46]. Wang et al. observed that miR-
146a could regulate the catalase mRNA to degeneration.
Silencing of miR-146a has been reported to improve the
antioxidant ability in cisplatin-treated lung cancer cells
through increasing catalase level, which was the main rea-
son leading to drug resistance [47]. Patel and colleagues
reported that exosome-delivered miR-155 could increase
the level of SOD2 and catalase through inhibiting a gemci-
tabine metabolizing enzyme, DCK, causing chemoresistance
in pancreatic cancer cells [48]. Besides, Meng and col-
leagues investigated that miR-212 could directly target and
downregulate Mn-SOD mRNA expression, thereby sup-
pressing Mn-SOD-induced colorectal cancer metastasis [49]
(Table 1).

3. ROS Regulates the Expression and
Biogenesis of MicroRNAs

Emerging evidence indicated that ROS regulated several
facets of microRNA transcription, maturation, and function.
ROS could directly modulate the activity of vital proteins that
control posttranscriptional events in the biogenesis of micro-
RNAs. On the other hand, a certain group of transcription
factors was upregulated under oxidative stress and directly
activated the transcription of a subset of microRNAs. Also,
ROS has been directly implicated in epigenetic alternations
such as DNA methylation and histone modifications that
control specific microRNA transcription [50]. Together,

Table 1: Continued.

MicroRNAs Targets Mechanism Relevant cancer Ref.

miR-146a
SOD/catalase
pathway

Downregulating SOD2 and enhancing ROS generation;
increasing apoptosis, inhibiting cell proliferation

Ovarian cancer;
lung cancer

[47, 119]

miR-155
SOD/catalase
pathway

Increasing the level of SOD2 and catalase through inhibiting
DCK; causing chemoresistance

Pancreatic cancer [48]

miR-212
SOD/catalase
pathway

Targeting Mn-SOD; suppressing of Mn-SOD-induced metastasis Colorectal cancer [49]

miR-592 HIF-1α pathway miR-592/WSB1/HIF-1α axis inhibiting glycolytic metabolism
Hepatocellular
carcinoma

[120]

miR-199a-5p
HIF-1α/COX-2

pathway
Regulating tumor growth and angiogenesis Cancer [121]

miR-135b HIF-1α pathway
Promoting cancer cell proliferation, colony formation, survival,

and angiogenesis through activation of HIF-1α

Head and neck
squamous cell
carcinoma

[122]

miR-138 HIF-1α pathway
Suppressing cancer cell invasion and metastasis by targeting

SOX4 and HIF-1α
Ovarian cancer [123]

miR-186 HIF-1α pathway Inhibiting aerobic glycolysis Gastric cancer [124]

miR-206
14-3-

3ζ/STAT3/HIF-
1α/VEGF pathway

Decreasing the angiogenesis by targeting 14-3-3ζ and inhibiting
the STAT3/HIF-1α/VEGF pathway

Lung cancer [125]

Nrf2: nuclear factor E2-related factor 2; Keap1: Kelch-like ECH-associated protein 1; HO-1: heme oxygenase-1; PRXL2A: peroxiredoxin-like 2A; ATG-5:
autophagy-related 5; PDHX: pyruvate dehydrogenase complex component X; Mn-SOD: manganese superoxide dismutase; Gpx2: glutathione peroxidase
2; TrxR2: thioredoxin reductase 2; ISCU: iron-sulfur cluster assembly enzyme; BBC3: BCL2-binding component 3; BTG2: BTG antiproliferation factor
2; MOMP: mitochondrial outer membrane permeabilization; ARHGAP10: Rho GTPase-activating protein 10; AKAP1: A-kinase anchoring protein 1;
PPARGC1A: PPARG coactivator 1 alpha; ACACA: acetyl-CoA carboxylase alpha; FASN: fatty acid synthase; HMGCR: 3-hydroxy-3-methylglutaryl-CoA
reductase; CYP27B1: cytochrome P450 family 27 subfamily B member 1; T-AOC: total antioxidation competence; SOD: superoxide dismutase; CAT:
catalase; PDCD4: programmed cell death 4 protein; DCK: deoxycytidine kinase; WSB1: WD repeat and SOCS box containing 1; STAT3: signal transducer
and activator of transcription 3; VEGF: vascular endothelial growth factor.
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these findings indicated ROS as an important proximal regu-
lator of microRNA biogenesis and function (Table 2).

3.1. DGCR8 and Dicer. Elevating ROS level by increased oxi-
dative stress has been shown to induce abnormal expression
of a particular set of microRNAs [51]. For example, the
exposure of exogenous H2O2 could result in the upexpres-
sion of miR-21, as well as downregulated miR-27, miR-
29b, and miR-328, indicating these microRNAs are redox-
sensitive and functional relating to ROS hemostasis [8, 17].
Moreover, ROS generation also participates in the process-
ing of pre-microRNA transcripts to mature microRNAs.
The RNA-binding protein DiGeorge critical region-8
(DGCR8) is a key regulator of maturation of canonical
microRNAs. The deletion of DGCR8 would lead to a defi-
ciency in producing all canonical microRNAs [52]. Several
studies have revealed that intracellular redox hemostasis
could directly modulate DGCR8 activity, therefore regulat-
ing microRNA biogenesis [52–54].

Dicer, another pivotal protein of the microRNA biogene-
sis machinery that is responsible for the synthesis of mature
microRNAs, has been identified to be suppressed by oxida-
tive stress through modulating the Nrf2/Keap1/ARE path-
way [55, 56]. Increased activity of Nrf2 could upregulate
the expression of Dicer protein. Cheng and colleagues dem-
onstrated an ARE consensus sequence in the 5′ flanking
region of the Dicer genes, indicating the Nrf2/Keap1/ARE
pathway might be an essential regulator of microRNA syn-
thesis [57]. Moreover, the let-7 microRNA family has been
found to overexpress under oxidative stress environment.
Since let-7 microRNA family could directly suppress Dicer
genes, it has been considered as a potential regulating mech-
anism accounting for decreased Dicer expression and subse-
quent microRNA-related redox imbalance [58].

3.2. Transcription Factors. It is of note that the expression of
microRNAs is regulated by several transcription factors, such
as nuclear factor κB (NF-κB), c-Myc, and HIF-1α (Table 2).
A growing number of studies have proved that some of these
transcription factors were ROS-sensitive, suggesting aberrant
microRNA expression in tumorigenesis was closely related to
oxidative stress. Some microRNAs such as miR-19a, miR-29,
miR-31, and miR-155 have been demonstrated to be regu-
lated by NF-κB, which could be activated or inactivated by
ROS [8, 59]. TGFβ1-mediated ROS production could facili-
tate the NF-κB nuclear translocation and subsequently
upregulate miR-146a and miR-21 in the development of lung
cancer, AML, and colorectal cancer [60–62]. On the other
hand, TNFα-induced oxidative stress could suppress NF-κB
activity and the expression of its target miR-19a and miR-
155 [63, 64]. Additionally, Cheleschi and colleagues reported
that miR-34a and miR-181a could mediate cell apoptosis and
oxidative stress via targeting NF-κB pathway [59]. These
studies indicated a comprehensive ROS-NF-κB-microRNA
transcription regulatory system.

It has been reported that HIF-1α, an important ROS-
responsive transcription factor, could activate the transcrip-
tion of miR-210 by directly binding to its promoter region,
resulting in cell differentiation [65]. Moreover, a set of micro-

RNAs (such as miR-135, miR-421, miR-382, and miR-687),
which were abnormally expressed during tumor growth
and metastasis, have also been reported to be regulated by
HIF-1α [66–68]. Additionally, C-Myc, which is also ROS-
sensitive, could either upregulate the expression of oncogenic
microRNAs such as miR-17, or suppressing the expression of
some tumor suppressor microRNAs such as miR-34a, miR-
137, and miR-15a, therefore promoting cancer development
[69, 70]. Sun and colleagues observed the regulating status
of the C-Myc-miR-137-EZH2 pathway in ovarian cancer.
Activated C-Myc-miR-137-EZH2 axis was observed in che-
moresistant ovarian cancer cells and was sustained by ele-
vated ROS production [71]. Li and colleagues investigated
that by regulating miR-17-92, MYC could maintain a neo-
plastic state through suppressing a certain set of chromatin
regulatory genes, such as Hbp1, Sin3b, and Btg1, as well as
the apoptosis regulator gene Bim, thereby regulating the cell
survival, proliferation, and apoptosis [72]. The emerging
concept of the TF-ROS-microRNA regulatory network pro-
vided important perspectives on the complexity of micro-
RNA function and regulation during carcinogenesis.

3.3. Epigenetic Alternations. Another important regulating
mechanism that needs to be emphasized is epigenetic alter-
ations. There is no doubt that either DNA methylation or
histone modifications are closely related to various environ-
mental stresses, especially oxidative stress. DNA methyl-
transferases (DNMTs) and histone deacetylases (HDACs)
are two major enzyme families that play essential roles in
the epigenetic regulation of gene transcription, including
microRNAs. The expressions and activities of DNMTs and
HDACs can be regulated by oxidative stress and therefore
represents a crucial regulating mechanism by which ROS
can control microRNA expression and biogenesis (Table 2).
For example, HDAC4 could be overexpressed in cancer cells
under oxidative stress, which allows for miR-1 and miR-206
promoter deacetylation and lower gene expression, leading to
lung cancer progression [73]. SAHA, a histone deacetylase
inhibitor, could induce apoptosis in lung cancer cells via
upregulating miR-129-5p [74]. Zhang and colleagues
observed the epigenetic regulation of miR-29 by targeting
HDAC3, MYC, and EZH2 in lymphomas. They found that
MYC suppressed miR-29 expression via forming a corepres-
sor complex with HDAC3 and EZH2. By inhibiting miR-26a
expression, MYC contributes to EZH2 upregulation. On the
other hand, EZH2 could induce MYC expression through
downregulating miR-494, thus forming a positive feedback.
Suppression of HDAC3 and EZH2 cooperatively inhibited
the MYC-EZH2-miR-29 axis, leading to reexpression of
miR-29, therefore downregulating miR-29-targeted genes
and inhibiting lymphoma progression [75].

4. The Crosstalk between ROS and
MicroRNAs in Carcinogenesis

Previous studies have shown that ROS can directly regulate
microRNA expression and biogenesis. On the other hand,
microRNAs may in turn modulate the redox signaling path-
ways, altering their integrity, stability, and functionality,
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Table 2: Summary of microRNAs regulated by the transcription factors and proteins under oxidative stress in carcinogenesis.

Transcription
factors/proteins

Target microRNAs Mechanism Relevant cancer Ref.

NF-κB miR-19a Suppressing cell proliferation; regulating apoptosis Colorectal cancer [63, 126]

NF-κB miR-21
Promoting cell proliferation and cancer metastasis;

suppressing cell apoptosis

Lung cancer;
colorectal cancer;

myeloma
[60, 127–130]

NF-κB
miR-148a and miR-

152
Modulating tumor angiogenesis and cancer progression Breast cancer [131]

NF-κB miR-155 Promoting cell proliferation Breast cancer [129]

NF-κB miR-489
KRAS/NF-κB/YY1/miR-489 axis regulating tumor

migration and metastasis
Pancreatic cancer [132]

NF-κB miR-29
NF-κB/YY1/miR-29 axis regulating tumor growth and cell

differentiation
Rhabdomyosarcoma [133]

NF-κB miR-29c
Regulating MMP-9 expression, secretion and activation;

inhibiting tumor invasiveness
Pancreatic cancer [134]

NF-κB miR-425 Regulating apoptosis via miR-425/PTEN axis Breast cancer [135]

HIF-1α miR-210
HIF-1α/miR-210/HIF-3α inhibiting TIMP2; promoting

metastasis
Hepatocellular
carcinoma

[136]

HIF-1α miR-212 Promoting progression Pancreatic cancer [137]

HIF-1α miR-26 and miR-29 Regulating tumor metastasis
Hepatocellular
carcinoma

[138]

HIF-1α
miR-23a∼27a∼24

cluster
Promoting cancer progression via reprogramming

metabolism
Colorectal cancer [139, 140]

HIF-1α miR-200b Modulating the EMT Colorectal cancer [141]

HIF-1α miR-382
Promoting angiogenesis and acting as an angiogenic

oncogene by repressing PTEN
Gastric cancer [68]

HIF-1α miR-646
HIF-1α/miR-646/MIIP axis contributing to tumor

progression
Pancreatic cancer [142]

HIF-1α miR-224
Promoting cell growth, migration and invasion by targeting

RASSF8
Gastric cancer [143]

HIF-1α miR-145 Regulating apoptosis Bladder cancer [144]

HIF1α/HDAC1 miR-548an
Inhibiting miR-548an expression, resulting in the

upregulation of vimentin that facilitates the tumorigenesis
Pancreatic cancer [145]

HIF-1α/HIF-2α miR-210 Regulating tumor progression
Cholangiocarcinoma;

bladder cancer
[146, 147]

C-Myc miR-137 Regulating c-Myc-EZH2 axis; regulating cisplatin resistance Ovarian cancer [71]

C-Myc miR-17-92
Maintaining a neoplastic state by suppressing specific

target genes
Cancer [72]

Myc/EZH2/
HDAC3

miR-29, miR-494 Regulating lymphoma growth Lymphoma [75]

HDAC4 miR-1, miR-206 Promoting cancer progression Lung cancer [73]

HDACs
miR-15a, miR-16,
and miR-29b

Silencing miR-15a, miR-16, and miR-29b
Chronic lymphocytic

leukemia
[148]

SAHA miR-129-5p Inducing cancer cell apoptosis Lung cancer [74]

p53 miR-19a
Promoting myeloma cells invasion by upregulating

miR19a/CXCR5
Multiple myeloma [149]

p53 miR-34a, miR-16 Targeting Bcl2 to induce apoptosis Lung cancer [150]

p53 miR-605
Targeting and repressing PSMD10 expression, inhibiting

cancer progression
Cholangiocarcinoma [151]

p53
miR-192-5p, miR-

215
Promoting apoptosis by activating the p53-miR-192-
5p/215-XIAP pathway; inducing cell cycle arrest

Lung cancer [152, 153]

p53 miR-107 Inhibiting HIF-1 and tumor angiogenesis Colorectal cancer [154]

p53 miR-16-2 Inducing cell cycle arrest and apoptosis
Hepatocellular
carcinoma

[155]
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thereby contributing to the pathogenesis of diverse disease
processes, especially cancers. These comprehensive regula-
tory networks have been observed in several important
hallmarks during carcinogenesis, such as cell growth, pro-
liferation, apoptosis, EMT process, and metastasis.

4.1. Cell Growth and Proliferation. Both ROS and micro-
RNAs have been identified to regulate cell growth and prolif-
eration. The Nrf2/Keap1 pathway was shown to be the
crucial regulators of endothelial glycolysis and cell prolifera-
tion with miR-93 and mediate the effects of oxidized phos-
pholipids on endothelial activation [76]. Activation of
KRAS could induce upregulation of miR-155 in pancreatic
cancer cells. By inhibiting FOXO3a, overexpressed miR-155
could decrease major antioxidants including SOD2 and cata-
lase and stimulate cell proliferation [77]. He and Jiang
revealed that upregulation of miR-200a and miR-141 could
modulate ROS production under oxidative stress by targeting
p38a and promote cell growth and proliferation [17].
Another example involved miR-192-5p, which could be
upregulated by H2O2 exposure in a p53-dependent manner.
Downregulated miR-192-5p could affect multiple cellular
processes, including cell cycle, DNA repair, and stress
response. Hence, overexpression of miR-192-5p significantly
reduced endothelial cell proliferation and cell death [78].
Moreover, Degli Esposti and colleagues found that miR-
500a-5p could directly regulate several oxidative stress-
related genes. Exposure to H2O2 induced overexpression of
miR-500a-5p and decreased the transcription of oxidative
stress-related genes NFE2L2 and TXNRD1. Overexpression
of TXNRD1 was found to be associated with ER+breast can-
cer prognosis. Thus, their study identified miR-500a-5p as an
oxidative stress response microRNA whose expression might
be closely related to cancer progression and survival [79].

4.2. Cell Death and Apoptosis. Programmed cell death, or
apoptosis, is usually featured by distinct morphological fea-
tures and energy-dependent biochemical mechanisms. Apo-
ptosis is believed to be a crucial part of multiple cellular
processes including cell turnover, atrophy, and necroptosis
[80, 81]. ROS plays an essential role in the regulation of
numerous cell death-related signaling pathways, such as the

RAS/MAPK and/or JNK signaling pathways [82, 83]. Wu
et al. found that ginsenoside Rh4 (RH4) could induce cell
apoptosis and autophagy via activating the ROS/JNK/p53
pathway in colorectal cancer cells, indicating the Rh4 has
great potential to be an anticancer agent [84]. Mohammad
and colleagues demonstrated that JNK signaling could acti-
vate the Nrf2/Keap1 pathway and at the same time contrib-
ute to piperlongumine-induced cell death in pancreatic
cancer cells [85].

Moreover, Yan and colleagues found miR-762 partici-
pated in the regulation of mitochondrial function by target-
ing NADH dehydrogenase subunit 2, thereby regulating cell
apoptosis [86]. Also, downregulation of miR-101-3p caused
elevated Bim expression, which would activate the intrinsic
pathway of apoptosis via interacting with Bcl-2, thereby
decreasing mitochondrial membrane potential, ROS produc-
tion, and caspase activation [87]. Pant and colleagues
reported that butyrate, one of the short-chain fatty acids gen-
erated by the gut microbiota during anaerobic fermentation
of dietary fibers, could induce ROS-mediated apoptosis by
regulating the miR-22/SIRT-1 pathway in hepatocellular
carcinoma [88]. These studies implied that microRNAs
could regulate programmed cell death or apoptosis through
targeting multiple signaling pathways that related to ROS
production.

Ferroptosis, an iron-dependent modulated form of
necrosis, was recently recognized as a critical regulating
mechanism of cell death driven by ROS accumulation [89].
Iron and iron-catalyzed oxidative stress have caused much
interest due to their complex regulation of cellular signaling
related to cell death and apoptosis [90]. Luo and colleagues
showed that miR-137 negatively regulated ferroptosis by
directly targeting glutamine transporter SLC1A5 in mela-
noma [91]. Xiao and colleagues observed that overexpression
of miR-17-92 significantly decreased erastin-induced growth
inhibition and ROS production in endothelial cells. Further
studies indicated that erastin-induced ferroptosis was corre-
lated with GPX4 downregulation and ACSL4 overexpression.
miR-17-92 could directly target the A20-ACSL4 axis, thus
protecting endothelial cells from ferroptosis [92]. Addition-
ally, Zhang and colleagues reported that upregulation of
miR-9 inhibited glutamic-oxaloacetic transaminase GOT1

Table 2: Continued.

Transcription
factors/proteins

Target microRNAs Mechanism Relevant cancer Ref.

Ferroportin miR-17-5p
Promotes cell proliferation by modulating the Nrf2-miR-17-

5p axis
Multiple myeloma [156]

Kallistatin miR-21, miR-34a
inhibiting TGFβ-induced endothelial-mesenchymal

transition by differential regulation of microRNA-21 and
eNOS expression

Breast cancer [157, 158]

Curcumin
miR-27a, miR-20a,
and miR-17-5p

Inhibiting cell growth and inducing apoptosis via inducing
ROS; decreasing specificity protein transcription factors by

targeting microRNAs
Colon cancer [159]

NF-κB: nuclear factor kappa-B; YY1: YY1 transcription factor; MMP9: matrix metallopeptidase 9; HIF-1α: hypoxia-inducible factor 1, alpha subunit; TIMP2:
TIMP metallopeptidase inhibitor 2; PTEN: phosphatase and tensin homolog; MIIP: migration and invasion inhibitory protein; SAHA: suberoylanilide
hydroxamic acid; RASSF8: Ras association domain family member 8; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; CXCR5: C-X-C
motif chemokine receptor 5; PSMD10: proteasome 26S subunit, non-ATPase 10; eNOS: endothelial nitric oxide synthase; XIAP: X-linked inhibitor of apoptosis.
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by directly binding to its 3′-UTR, which subsequently
decreased erastin-and RSL3-induced ferroptosis [93].

4.3. Epithelial-Mesenchymal Transition, Tumor Invasion, and
Metastasis. Epithelial-mesenchymal transition (EMT), a pro-
cess in which epithelial cells acquire mesenchymal features,
has been identified in multiple pathophysiological condi-
tions, including organ fibrosis and cancer invasion and
metastasis [94, 95]. Dysregulation of ROS and microRNAs
is involved in the EMT process, thus affecting the tumor
invasion and metastasis. Several microRNAs (such as miR-
200 family) can directly regulate the EMT process in either
normal cells or tumor cells. miR-200 family (miR-200a,
miR-200b, miR-200c) andmiR-205 were obviously downreg-
ulated in cells that underwent EMT following TGFβ treat-
ment. Further studies revealed that these microRNAs could
control E-cadherin expression via targeting SIP1 and ZEB1.
Inhibition of these microRNAs was sufficient to induce
EMT process in breast and prostate cancer cells [96, 97]. Xiao
and colleagues reported that the expression of miR-200 fam-
ily could be significantly enhanced by H2O2 treatment. The
upregulation of miR-200-3p in turn modulated the H2O2-
mediated oxidative stress response by targeting p38a
[98]. Chen and colleagues investigated the miR-373 could
promote EMT and tumor invasion in breast cancer by sup-
pressing the expression of thioredoxin-interacting protein
(TXNIP). Mechanistically, miR-373 activated the HIF1α-
TWIST axis via activating TXNIP signaling. TWIST could
induce miR-373 expression by binding to the promoter of
the miR-371-373 cluster. Their study implied that miR-373
could induce tumor cell EMT and metastasis via miR-373-
TXNIP-HIF1α-TWIST signaling axis in breast cancer [99].
Besides, Martello and colleagues identified miR-103/107
family, which attenuated microRNA biosynthesis by target-
ing Dicer, were closely related to breast cancer metastasis.
Functionally, miR-103/107 confer migratory capacities and
empower metastatic through regulating EMT process. Inhi-
bition of miR-103/107 family could suppress cancer cell
migration and metastasis [100]. These findings indicated
the critical role of ROS-microRNA network in the regulation
of tumor invasion and metastasis.

5. Conclusions

Collectively, growing studies have demonstrated microRNAs
and oxidative stress interacted synergistically or antagonisti-
cally in the occurrence and progression of cancer. Under
oxidative stress, ROS could regulate the biogenesis and
expression of several microRNAs. At the same time, abnor-
mally expressed microRNAs in turn inhibit or enhance the
ROS generation by targeting multiple signaling pathways.
Although the information on the interplay between oxidative
stress and microRNA regulation is minimal, the complex
crosstalk still provides both challenges and opportunities
for the development of novel anticancer treatment. An ideal
strategy for clinical application requires not only potent
efficiency and specificity but also functional safety and bio-
activity, as well as less toxicity. Further study on the
microRNAs-oxidative stress network has a great possibility

to develop novel anticancer therapeutic strategies, as micro-
RNAs can be employed to regulate ROS-related cell prolifer-
ation and apoptosis or reduce ROS-mediated oxidative stress.
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