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Abstract

Background: Bipolar disorder (BPD) is a common mood disorder that is often goes misdiagnosed or undiagnosed.
Recently, machine learning techniques have been combined with neuroimaging methods to aid in the diagnosis of
BPD. However, most studies have focused on the construction of classifiers based on single-modality MRI. Hence, in

aid in the accurate identification of BPD in the clinic.

this study, we aimed to construct a support vector machine (SVM) model using a combination of structural and
functional MRI, which could be used to accurately identify patients with BPD.

Methods: In total, 44 patients with BPD and 36 healthy controls were enrolled in the study. Clinical evaluation and MR
scans were performed for each subject. Next, image pre-processing, VBM and ReHo analyses were performed. The ReHo
values of each subject in the clusters showing significant differences were extracted. Further, LASSO approach was recruited
to screen features. Based on selected features, the SYM model was established, and discriminant analysis was performed.

Results: After using the two-sample t-test with multiple comparisons, a total of 8 clusters were extracted from the data
(VBM = 6; ReHo = 2). Next, we used both VBM and ReHo data to construct the new SYM classifier, which could effectively
identify patients with BPD at an accuracy of 87.5% (959%Cl: 72.5-95.3%), sensitivity of 86.4% (959%Cl: 64.0-964%), and
specificity of 88.9% (95%Cl: 63.9-980%) in the test data (p = 0.0022).

Conclusions: A combination of structural and functional MRI can be of added value in the construction of SYM classifiers to
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Background

Bipolar disorder (BPD) is a chronic and disabling mood dis-
order found in up to 2.5% of the population. It is character-
ized by extreme fluctuations in mood, functionality, and
energy, in addition to recurrent depressive and manic/
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hypomanic episodes. Due to the early onset of the disease,
high rates of self-inflicted injury and hospitalization, and the
negative stigma of BPD, the disease causes significant social
and economic burden [1, 2]. It was previously reported that
the risk of suicide was 20-times higher in patients with BPD
than the more general population [3-6]. In addition, the
clinical symptoms of BPD overlap with those of many other
mood disorders, including major depressive disorder
(MDD), schizophrenia, and attention deficit and hyperactiv-
ity disorder (ADHD) [7]. Due to the similar symptom pro-
files, BPD often goes undiagnosed or misdiagnosed for
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extended periods. In some cases, it may take up to 10 years
after initially seeking treatment to be correctly diagnosed
with BPD [8]. This further aggravates the effective treatment
of BPD and results in increased disease burden. Hence, re-
searchers are seeking new potential biomarkers to assist the
diagnosis and therapeutic monitoring of BPD. Among the
new biomarkers, neuroimaging biomarkers have shown ex-
cellent potential.

Magnetic resonance imaging (MRI) is a non-invasive
neuroimaging technique used to assess the internal anat-
omy of the brain. In recent years, MRI has been extensively
utilized in neuroimaging studies as a potential biomarker.
For structural MRI, voxel-based morphometry (VBM) is
one of the most common techniques used to assess focal
differences in brain anatomy. The MRI scans of individuals
are normalized to a standard template, and voxel-by-voxel
comparisons are used to investigate localized abnormalities
in gray matter density or volume [9]. For functional MRI,
regional homogeneity (ReHo) is a data-driven and highly
established approach to evaluate local activity in the brain
while at rest. In practice, ReHO represents the temporal
homogeneity of the regional blood oxygen level-dependent
(BOLD) signal by using Kendall's coefficient of concord-
ance (KCC), which is a number from 0 to 1 that indicates
interrater agreement [10]. Fluctuations in ReHo are indica-
tive of local abnormalities in brain activity [11]. Through
both VBM and ReHo studies, BPD has been identified as a
disorder with several morphological and functional brain
abnormalities. However, there have been some inconsisten-
cies between the studies. In terms of VBM studies, abnor-
malities have been detected extensively throughout the
brain, including the frontal lobe, temporal lobe, parietal
lobe, cingulate cortex, and the cerebellum. In addition,
some of these findings have contradicted each other. For
example, some studies shown increased gray matter vol-
umes in the ventral prefrontal cortex (PFC) [12], inferior
frontal gyrus [13, 14], middle temporal gyri and left tem-
poral pole [15], cingulate gyrus [12, 16], putamen [17, 18],
and cerebellum [18], while other studies found reduced
gray matter volumes in the same areas [19-27]. A similar
situation exists with the ReHo analysis. Some studies found
increased ReHo values in the frontal lobe, cingulate cortex,
and parahippocampal gyrus, while others found reduced
ReHo values in the same areas [28—32]. As most of the
studies mentioned above were performed at the group level,
it is challenging to apply these findings to the individual
identification of BPD.

Recently, machine learning approaches have introduced
to address the dilemma of inconsistencies. In machine
learning, the nature of the “diagnosis” is a classification
problem. Among them, Support Vector Machines (SVM)
have been developed from the theory of limited samples
Statistical Learning Theory by Vapnik et al, which was
originally designed for binary classification [33]. It is
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constructed based on the simplicity of structural risk
minimization instead of empirical risk minimization. This
enables SVM an optimal generalization ability in difficult
situations [34, 35]. For these reasons, it has been widely
used in the detection of mental disorders. For structural
MRI, SVM has been used to accurately identify Alzhei-
mer’s disease, autism spectrum disorders MDD, obsessive-
compulsive disorder, and schizophrenia [36—40]. SVM has
also been used to accurately identify different mental
disorders in functional MRI studies [41-43]. In terms of
BPD, Redlich and colleagues previously used an SVM al-
gorithm based on the whole-brain gray matter to distin-
guish between BPD and unipolar depression with an
accuracy of almost 76% [44]. In another study, SVM was
used in combination with thalamic seed-based connectiv-
ity to differentiate between BPD and healthy controls
(HC) with an accuracy of 61.7% [45].

However, the majority of previous studies have used
single-modality MRI, either structural or functional MRIL
However, a single imaging modality only provides a lim-
ited snapshot of the brain in terms of structure or func-
tion, while the combined structure-function analysis may
provide a more comprehensive perspective of the brain. In
recent years, multimodality MRI has been applied to SVM
for the classification of schizophrenia and ASD, and the
findings have verified that multimodality imaging is sig-
nificantly more accurate than single modality imaging [46,
47]. Hence, in this study, we have constructed an SVM
model, with VBM and ReHo measurement in gray matter
volumes as features, to differentiate between patients with
BPD from the HCs. We evaluated the classification cap-
abilities of the model and identified the brain areas critical
for discriminating between BPD and the HCs. To the best
of our knowledge, this is the first study to distinguish be-
tween patients with BPD and HCs using an SVM classifier
based on the combination of ReHo and VBM analyses.

Methods

Participants

Between January 2012 and December 2015, 44 patients
with BPD and 36 age- and sex-matched HCs were recruited
from the Affiliated Brain Hospital of Guangzhou Medical
University (Guangzhou Huiai Hospital, Guangdong, China)
and surrounding communities, respectively. The patients
were preliminarily diagnosed as having BPD by one or
more of our senior psychiatrists, based on the criteria out-
lined by the Diagnostic and Statistical Manual of Mental
Disorders 4th Edition (DSM-IV) and the structured clinical
interview for DSM-IV (SCID) for further confirmation. The
HCs were also screened with SCID to ensure they had a fit
mental status. All participants were from the Han popula-
tion, right-handed, and had intelligence quotient scores
above 75. The exclusion criteria for the BPD and HC
groups were as follows: (1) comorbid Axis I or Axis II
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disease; (2) history of other psychiatric or neurological ill-
ness or severe physical illness; (3) active substance abuse or
addiction; (4) unable to complete MRI session due to phys-
ical or mental limitations; (5) organic brain lesions detect-
ing by MRIL The study was approved by institutional review
boards of Guangzhou Huiai Hospital, and written informed
consent was obtained from each participant or their legal
guardians before the study.

Collection of demographic and clinical information
General demographic information, such as age, sex, and
years of education, were collected using a pre-designed
standardized form. Clinical data, including duration of
illness, recurrence, medication, and clinical symptom
ratings, were obtained from patients in the BPD group.
The Young Mania Rating Scale (YMRS), Positive and
Negative Syndrome Scale (PANSS), Hamilton Depres-
sion Rating Scale (HAMD), Hamilton Anxiety Table
(HAMA), and Global Assessment Function (GAF) were
applied to evaluate each subject.

MRI acquisition

MRI scans were obtained for all of the subjects by a skilled
medical imaging technician on the Philips Achieva 3.0 T
X-series MRI scanner with 8-channel phased array coils at
Guangzhou Huiai Hospital. Conventional T1, T2, and
blood oxygenation level-dependent (BOLD) images were
acquired for each subject. First, 3D T1-weighted volumet-
ric structural images were acquired using a turbo field
echo 3D T1 sequence with the following parameters: repe-
tition time (TR)=8.2msec, echo time (TE)=3.8 msec,
matrix size = 256 x 256, field of view (FOV) =250 x 250
mm?, number of slices = 188, slice thickness = 1 mm, and
inter-slice gap = 0 mm.

Blood oxygenation level-dependent (BOLD) functional
images were acquired using a fast field echo (FFE) echo-
planar images (EPI) sequence with the following param-
eters: TR =2000msec, TE=30msec, flip angle =30°,
slice numbers = 33, matrix size = 64 x 64, FOV =220 x
220 x 150 mm?, inter-slice gap = 0.6 mm, and voxel size =
3.44 x 3.44 x 4 mm. During the fMRI scan time of 523,
240 volumes were obtained. Before the scan, the subjects
were instructed to “remain still, relaxed, and close eyes
but not fall asleep. Try not to think actively.” After the
scan, the subjects were asked to confirm that they
remained awake during the scanning session.

Pre-processing and analysis of the structural and
functional images

For the structural images, we used the CAT 12 toolbox
(http://dbm.neuro.uni-jena.de/cat/) based on the statistic
parametric mapping software package (SPM12, http://
www fil.ion.ucl.ac.uk/spm/) in the MATLAB environ-
ment (MATLAB 2018b, MathWorks, Natick, MA, USA)
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to accomplish the data pre-processing and analysis. First,
a customized template based on our subjects was created
with the segment function in CAT12 and Diffeomorphic
Anatomical Registration using Exponentiated Lie (DART
EL) algebra function in SPM 12 [48]. Next, the custom-
ized template was used to normalize each subject with a
1.5x 1.5 x 1.5 mm® voxel size. The normalized images
were sent through the standard segmentation and
modulation procedure using the default settings in CAT
12 toolbox. Lastly, an 8-mm full-width-half maximum
(FWHM) Gaussian smoothing was performed to im-
prove the signal-to-noise ratio. All images were checked
for potential image defects or abnormalities.

For the functional images, we used the DPABI_v4.4
(http://www.rfmri.org/dpabi), and SPM12 toolboxes run-
ning on MATLAB 2018b were applied to pre-process
functional images [49]. First, the first 10 time points were
discarded to maintain a steady signal. A total of 230 im-
ages for each subject were obtained and corrected for slice
timing. Next, using the realign function in DPABI, we cor-
rected the head motion, and anyone with head motions
that exceeded 1.5mm or rotations over 1.5° were ex-
cluded. Subsequently, several spurious covariates, includ-
ing the linear trend of data, white matter, cerebrospinal
fluid, and the Friston-24 parameters of head motion, were
removed to reduce the effects of scanning time, breathing,
and heart beats [50]. Next, the images were normalized to
standard Montreal Neurological Institute (MNI) space, re-
sampling to 3 x 3 x 3 mm?, based on the previous custom-
ized DARTEL template. In the last step of pre-processing,
temporal band-pass filtering (0.01-0.08 Hz) was per-
formed to minizine the effects of low-frequency drift and
high-frequency physiological noise.

We also used the DPABI toolbox to conduct an H3
ReHo analysis. First, the ReHo map was obtained by cal-
culating Kendall’s correlation coefficient (KCC) for each
voxel and the 26 adjacent voxels. Next, the ReHo map
was normalized by dividing the averaged KCC of the en-
tire brain. Lastly, a 6-mm FWHM Gaussian smoothing
was performed in the normalized ReHo map.

Feature selection and construction of the Support Vector
Machine (SVM)

To obtain more sensitive features and improve the stabil-
ity and efficiency of the classification in the SVM, a two-
sample ¢-test with multiple comparisons was used in the
VBM and ReHo statistical analyses [51]. In the VBM ana-
lysis, we applied age, sex, education level, and total intra-
cranial volume as nuisance covariates, and the t-map was
corrected for multiple comparisons using the Gaussian
random field (GRF) theory (voxel-level p<0.001, cluster-
level p<0.05). The grey matter volumes of the clusters
showing significant differences were obtained from each
subject using the DPABI toolbox. In the ReHo analysis,
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age, sex, and education level were regarded as nuisance
covariates, and the t-map was corrected using the GRF ap-
proach (voxel-level p<0.01, cluster-level p<0.05). The
ReHo values of each subject in the clusters showing sig-
nificant differences were also extracted using the DPABI
toolbox. Further, between these regions showed by VBM/
Reho analyses, we used LASSO (the least absolute shrink-
age selector operator) approach to identify the most in-
formative regions and also reduce the dimensionality of
the feature space to avoid over-fitting. Grey matter vol-
umes and ReHo values in each cluster were selected as
feature vectors for discrimination and inputted into the
SVM to construct the final classification model.

The classification model, which is based on the support
vector machine (SVM), was constructed using the LIBSVM
soft package in MATLAB environment. All subjects were
randomly divided into the training data and test data, where
training data were used to learn the difference between
groups and build the classification model, and test data
were used to evaluate the classification power of the new
model. In this process, leave-one-out cross-validation
(LOOCYV) and grid search methods were applied to ensure
the stability and reliability of the model. Next, the accuracy,
specificity, sensitivity, and AUC were assessed to compre-
hensively evaluate the classification model using a permuta-
tion test of 5000 times. Also, we compared the
performance of the classification model with grey matter
volumes alone and ReHo value alone, and with the combin-
ation of both grey matter volumes and ReHo.

Results

Demographic and clinical information of subjects

In this study, 44 patients diagnosed with BPD and age-
and sex-matched 36 healthy controls were recruited. All
subjects went through the SCID, and their images were
assessed for quality control. None of the subjects were ex-
cluded for mental abnormalities, other than BPD, or other
defects found in the scans. Demographic and clinical char-
acteristics are summarized in Table 1. In terms of demo-
graphics, no significant differences were found in age or
gender between the BPD and HC groups (p > 0.05), while
the length of education was shorter in the BPD group as
compared with the HC group. In the BPD group, the age
at first onset of the disease was 21.0 + 5.85, with a disease
course of 2.82 + 1.86 years and recurrence of 1.73 +1.19
times. In addition, significant differences in the GAF,
HAMA, HAMD, and PANSS scores were found between
the BPD group and HC group (p < 0.05).

Feature selection

For the VBM and Reho analysis, a total of 14 clusters
showed significant differences between the groups and
were extracted. 12 clusters from VBM analyses covered
the bilateral inferior frontal gyrus, precentral gyrus,
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Table 1 Demographic and clinical characteristics of subjects in
the BPD and HC groups

BPD HC t/ x P

Age 2311+5.15 22.78+245 03589 0.720
Sex(M/F) 18/26 22/14 3.2323 0.072
Education (years) 12.59+£294 1519+£162 —47485 <0001
Subtype (I /1I) 40/4 - - -
Mood status

depressive 4(9.1%) - - -

manic 4 (9.1%) - - -

remission 36 (81.8%) - - -
Onset-year 21.3+585 - - -
Course of disease ~ 2.82+1.86 - - -
Recurrence 1.73+1.19 - - -
GAF 7595+1436  9886+288 —-9410 <0.001
HAMA 3.64 +3.69 042 +0.65 5.170 <0.001
HAMD 291£3.85 039+0.80 3.860 <0.001
PANSS 41071187  3047+£1.09 5335 <0.001
YOUNG 3.84+7.10 0.03+0.17 3218 0.002
Medications

antipsychotics 35 (79.5%) - - -

lithium 18 (41.0%) - - -

valproate 22 (44.7%) - - -

antidepressants 8 (18.2%) - - -

BPD bipolar disorder, HC healthy controls, GAF Global Assessment Function,
HAMA Hamilton Anxiety Scale, HAMD Hamilton Depression Rating Scale, PANSS
Positive and Negative Syndrome Scale, YMRS Young Mania Rating Scale

postcentral gyrus, middle occipital gyrus, fusiform and
right middle frontal gyrus, cingulate gyrus, anterior cingu-
late, hippocampus, superior temporal gyrus, lingual gyrus
and left limbic lobe, inferior temporal gyrus, and precu-
neus (GRF-corrected, voxel-level p <0.001, cluster-level
p <0.05, Fig. 1). The specific grey matter volumes of these
clusters were extracted and shown in Table S1 (Supple-
mentary Materials). Two clusters from Reho analyses cov-
ered the right medial frontal gyrus, anterior cingulate, left
lentiform nucleus, and putamen (GRF-corrected, voxel-
level p<0.01, cluster-level p<0.05, Fig. 2). The ReHo
values of the two clusters were extracted and shown in
Table S2 (Supplementary Materials). And at last, 8 clus-
ters, 6 from VBM analyses and 2 from Reho analyses, sur-
vived from LASSO selection (Table 2).

SVM analysis

Based on a combination of grey matter volume differences
and ReHo values, the trained SVM classifier could cor-
rectly identify BPD with an accuracy of 87.5% (95%Cl:
72.5-95.3%), sensitivity of 86.4% (95%CL: 64.0-96.4%),
and specificity of 88.9% (95%CI: 63.9-98.0%) in the test
data (p=0.0022). The specific classification results from
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Fig. 1 Clusters showing significant differences in between the BPD and HC groups in gray matter volume

.

Reho

Fig. 2 Clusters showing significant differences between the BPD and HC groups in the ReHo values
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Table 2 Clusters survived from LASSO selection
Cluster Brain regions Peak MNI coordinate Voxel T
number x y 2 sizes
VBM analyses
1 Right superior temporal gyrus 45 -20 -14 891 =515
Right hippocampus
Right fusiform
2 Right lingual gyrus 15 -89 -14 123 -3.96
3 Left inferior frontal gyrus 21 35 0 269 —423
4 Left Precentral Gyrus - 54 -15 28 851 —434
Left Postcentral Gyrus
5 Right Middle occipital gyrus 35 - 66 29 381 -4.16
6 Left Precuneus =15 =59 36 489 —4.71
Left Middle occipital gyrus
Reho analyses
1 Left Lentiform Nucleus =27 6 27 631 4.34
Left Putamen
2 Right Medial Frontal Gyrus 9 —48 45 648 —4.94

Right Anterior Cingulate

MNI Montreal Neurological Institute

the test data are shown in Fig. 3. Based on grey matter vol-
umes alone, the accuracy was reduced to 75% (95%CIL:
59.8-85.8%), with a sensitivity of 72.7% (95%CIL: 49.6—
88.4%) and a specificity of 77.8% (95%ClL: 51.9-92.6%), (p =
0.0122). Similarly, when based on ReHo values alone, the
accuracy was reduced to 77.5% (95%CI: 61.1-88.6%), with
increased sensitivity of 77.2% (95%CI: 54.2-91.3%) and
specificity of 77.8% (95%CL: 51.9-92.6%), (p =0.0022). As
shown in Fig. 4, the area under the receiver operating char-
acteristic (ROC) curves (AUC) of three SVM classifiers
were 0.939 (95%CL: 0.865-1.000), 0.795 (95%CIL: 0.652—
0.939), and 0.793 (95%Cl: 0.648—0.938), respectively.

Discussion

To the best of our knowledge, this is the first study to
demonstrate the detection of individual patients with BPD
using SVM classifiers based on a combination of ReHo
values and grey matter volumes. We constructed the SVM
classifier, which could classify BPD with an AUC of 0.949.
Our findings showed that the SVM classifier based on a
combination of the two performed better than the SVM
classifiers based on gray matter volumes alone and ReHo
values alone. This result supports our previous hypothesis
that the combination of structural and functional MRI
could improve the recognition of BPD using an SVM clas-
sifier. Similar findings have been detected by other re-
search groups. Using multimodality MRI, several studies
have constructed SVM classifiers for the identification of
ASD, Alzheimer’s Disease, and schizophrenia [46, 52, 53].
Beyond this, some researchers have combined multimod-
ality MRI with other characteristics of these diseases, such
as cerebral spinal fluid, electroencephalography, and eye-
tracking [54, 55]. However, markers selection requires

careful consideration, as it has been shown that too much
data may not improve the power of the SWM classifier in
some instances [56]. The finding may be due to the
process of over-fitting in machine learning, which may re-
duce the generalization of the classifier.

In this present study, gray matter volumes and ReHo
values were chosen to build the classifiers. Both VBM and
ReHo analyses reflect local abnormalities of the brain, in
terms of structure and function dimensions independently.
In addition, the two approaches are data-driven measure-
ments, which are independent from preconceived assump-
tions and could make the findings more objective. In the
VBM analyses, reduced grey matter volumes were con-
firmed in multiple cerebral areas, including the frontal
lobe, the temporal lobe, the parietal lobe, the limbic sys-
tem, and the hippocampus. This finding did not go beyond
the scope of regions reported by previous literatures. Many
researchers have found gray matter shrinkage across ex-
tensive frontal regions of inferior frontal gyrus (Stanfield
et al.,, 2009; Lyoo et al., 2014; Wang et al., 2011;), middle
frontal gyrus (Li et al,, 2011; Brown et al.,, 2011) and pre-
central gyrus (Lyoo et al., 2014; Brown et al., 2011) [14, 21,
25, 57, 58]. Inferior and middle frontal gyrus is the primary
component of the prefrontal cortex and is involved in as-
pects of emotional regulatory processes and emotional
processing. Abnormal in prefrontal cortex could result in
dysfunction in regulating emotion, which is recognized as
one of the most fundamental pathophysiology of BPD [59,
60]. Deficits in the gray matter of postcentral gyrus have
also been reported in previous studies [61, 62]. Precentral
and postcentral gyrus formed the sensorimotor network
(SMN). SMN plays a role in the process of emotion regula-
tion, which involves the recognition and feedback of
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Accuracy = 87.5% (95%CI: 72.5-95.3%)
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external emotional stimuli [63, 64]. Besides, psychomotor
symptoms in patients with BPD are thought to be related
with sensorimotor networks [65, 66]. As for the cingulate,
anterior cingulate, limbic cortex, and hippocampus, these
areas constituted the main body of limbic system. There
have been many proofs that show the limbic system involv-
ing emotional processing, memory, and executive function-
ing, as well as its decreases of gray matter in patients with
bipolar disorder [19, 23, 67-71]. Besides, we identified de-
creased gray matter volume in the superior temporal gyrus
and inferior temporal gyrus; this finding was consistent
with most previous structural MRI studies in BPD [26, 72—
74]. Temporal lobe is the brain region related to hearing
and vision and thought to play a crucial role in emotional
processing, working memory, and social cognition [75, 76]..
Several functional MRI studies that found dysfunction of
superior temporal gyrus in BD patients with emotional pro-
cessing impairment provide further support to this deduc-
tion. However, the exact mechanism of these abnormalities
is still unclear, which be related to auditory processing and
involved in superior temporal gyrus [76]. The inferior tem-
poral lobe is a part of the ventral visual pathway related to
visual presentation and object recognition. A growing body
of evidence suggests that visual impairment may be in-
volved in abnormal pathophysiological processes of bipolar
disorder. Researchers have found reduced background ef-
fects in visual contrast perception [77]; an autopsy report
also revealed lower brain cholesterol levels and a reduction
of synapses in the visual cortex [78]; fMRI study further
showed dysfunction of visual cortex in patients with bipolar
disorder, suggesting that patients have difficulty diverting
attention from emotional faces [79]. More ever, some re-
searchers made comparisons between different subtypes of
BPD patients. They found that BPD I patients had a de-
creased superior temporal gyrus gray matter volume than
BPD II [74]. Two previous meta-analyses also confirmed
decreased gray matter volume in the superior temporal
gyrus only in BPD I patients [73, 80]. It can be speculated
that deficit in superior temporal gyrus is unique to BPD
type I. While most of our patients were diagnosed with
BPD type L. This deduction is supported by our findings.
However, a large-scale study of cortical abnormalities in
BPD patients failed to detect difference between BPD sub-
types [81]. More extensive studies are needed to address
this inconsistence. The fusiform gyrus and the lingual
gyrus, as the same as the inferior temporal lobe, are also in-
volved in visual processing. Gray matter volume reductions
in these two regions have been reported in both this
present research and previous studies [13, 82—85]. And the
precuneus is a part of the parietal lobe, which involves a
variety of complex functions, including recollection and
memory, integration of information relating to the percep-
tion of the environment, episodic memory retrieval, and
affective responses pain. Previous studies have reported
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function deficits of these processes in BPD patients [86, 87].
Our study identified diminished gray matter volume of pre-
cuneus in BPD patients; this finding is consistent with func-
tional impairment in BPD patients and a previous meta-
analysis of gray matter abnormalities on BPD patients [88].
Besides, contrast to most previous studies, we failed to find
any abnormalities in insular in BPD patients. Insular has
been regarded as a potential state-related region recently
[80]; researchers found that deficits in insular grey matter
volume were consistent in all patients with bipolar disorder,
except for patients in the euthymic phase [80]. Most of the
patients were in remission, which can explain our failure to
find any abnormalities in insular in our study. In the ReHo
analyses, decreased ReHo value of medial frontal gyrus and
anterior cingulate gyrus was found in our study and also
have been founded in previous studies [30, 31]. While in-
creases in ReHo were detected in the left putamen and
lentiform nucleus in the current study. To our knowledge,
this change was first observed in the ReHo analysis of pa-
tients with BPD. However, a series of other types of studies
implicated this finding. Researchers have found increased
gray matter volume and cerebral blood flow in the basal
ganglia. Some fMRI studies revealed increased resting-state
functional connectivity between basal ganglia and other re-
gions, including the prefrontal cortex, precuneus, and insula
[89, 90]. Further, they found that hyperactivity of basal gan-
glia in bipolar depression patients was positively associated
with depressive episode’s duration [89]. This may be ex-
plained by biased memory caused by caudate and putamen
activity in cognitive models of depression [91]. In general,
most of the findings from the VBM and ReHo analyses in
the present study have been found in previous studies.
These areas cover a wide range of cortical regions and are
thoughted to be associated with various aspects of the
pathophysiological process of bipolar disorder. However,
due to some opposition from other studies [15, 16, 27, 31,
92], direct identification of these abnormalities as bio-
markers may be preliminary. Thus, we constructed an
SVM classifier with excellent performance in the identifica-
tion of individual patients with BPD patients with an accur-
acy of approximately 87.5%. Besides, using the combination
of grey matter volumes and ReHo values to construct the
SVM classifier, the design performed better than using ei-
ther gray matter volumes or ReHo values individually.
These results support our hypothesis that the combination
of structural and functional MRI with an SVM classifier
may aid in the detection of BPD in the clinic.

There are some limitations to the present study. It is a
small and non-prospective study. Besides, we tested this
SVM classifier in the one sample, instead of another inde-
pendent dataset. These two defects may cause a poor
generalization and low confidence of this classifier. Con-
sider this, we performed the leave-one-out cross-
validation to improve the reliability and stability of the
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classifier. In addition, the theoretical basis of the SVM is
structural risk minimization instead of empirical risk
minimization, which can effectively work with some de-
gree of error and does not require a large sample size. An-
other key limitation of the current study is potential drug-
bias. Due to ethical reasons, all patients in this study were
receiving medications. Previous studies have reported in-
creased gray matter in paracentral gyrus and superior par-
ietal gyrus caused by lithium and reduced gray matter in
visual cortex caused by antiepileptics [81]. In our study,
approximately 80% of BPD patients were prescribed with
mood stabilizers, and more than half of them were pre-
scribed with valproate. Deficits in ventral visual pathway
also were found in present study. Hence, it can be difficult
to distinguish whether these deficits are medication-
induced or abnormalities detected in the disease itself. A
further distinction may be needed using unmedicated pa-
tients with long-term follow-ups. In addition, illness dur-
ation is also an important confounder. Hibar et al. (2017)
have reported that long duration of illness could lead to
reduced gray matter in pericalcarine gyrus, anterior cingu-
late gyrus, cuneus and increased gray matter in entorhinal
gyrus. However, the illness duration of BPD patients in a
previous study was much longer than that in our study,
more than 10 years and less than 3 years, respectively.
Thus, the effect of illness duration in our study was rela-
tively weak. Lastly, this study focused on grey matter vol-
umes and ReHo values as discriminant features to
construct the SVM classifier, yet these may not provide a
comprehensive assessment of the brain. More suitable
neuroimaging biomarkers, such as those to detect changes
in white matter microstructures and cerebral blood flow,
should be considered in future studies.

Conclusions

In this study, we have shown grey matter volumes and
ReHo values, as the discriminate features, could be used
to conduct SVM classifiers and recognize patients with
BPD at the individual level. Compared with the single-
modality MRI, the combination of structural and func-
tional MRI data could be of added value in the construc-
tion of SVM classifiers for the accurate detection of BPD.
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