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A B S T R A C T   

Compared to Caucasians (CAs), African Americans (AAs) have a higher rate of incidence and mortality in 
prostate cancer and are prone to be diagnosed at later stages. To understand this racial disparity, molecular 
features of different types, including gene expression, DNA methylation and other genomic alterations, have been 
compared between tumor samples from the two races, but led to different disparity associated genes (DAGs). In 
this study, we applied a network-based algorithm to integrate a comprehensive set of genomic datasets and 
identified 130 core DAGs. Out of these genes, 78 were not identified by any individual dataset but prioritized and 
selected through network propagation. We found DAGs were highly enriched in several critical prostate cancer- 
related signaling transduction and cell cycle pathways and were more likely to be associated with patient 
prognosis in prostate cancer. Furthermore, DAGs were over-represented in prostate cancer risk genes identified 
from previous genome wide association studies. We also found DAGs were enriched in kinase and transcription 
factor encoding genes. Interestingly, for many of these prioritized kinases their association with racial disparity 
did not manifest from the original genomic/transcriptomic data but was reflected by their differential phos
phorylation levels between AA and CA prostate tumor samples. Similarly, the disparity relevance of some 
transcription factors was not reflected at the mRNA or protein expression level, but at the activity level as 
demonstrated by their differential ability in regulating target gene expression. Our integrative analysis provided 
new candidate targets for improving prostate cancer treatment and addressing the racial disparity problem.   

Introduction 

Prostate cancer is the second leading cause of cancer-related death 
among men in the US [1]. The incidence and mortality of prostate cancer 
vary greatly among races. Specifically, African Americans (AAs) have 
about 75% higher morbidity and over twice the mortality rate of pros
tate cancer than Caucasians (CAs) [2]. Additionally, AAs with prostate 
cancer are usually diagnosed at a late stage and their disease progresses 
quickly [3,4]. Although external factors such as socioeconomic status, 
health insurance coverage, and household income have been found to 
contribute to racial disparity in prostate cancer [5–7], more research has 
focused on the impact of internal factors, the molecular features such as 

somatic mutation and gene expression between AA and CA prostate 
cancers [8–10]. Previous studies have shown distinct genetic profiles 
among AA prostate tumors, including PTEN loss, MYC amplification, 
and SPINK1 overexpression [10–12]. 

Although previous studies have extensively compared molecular 
features between AAs and CAs [8–10,13–16], their results are not al
ways consistent and may even be conflicting. For example, some studies 
found AAs had higher frequencies of SPOP mutations [10,15], while 
others found low SPOP mutation frequencies in AAs compared with CAs 
[8]. Furthermore, there are still debates regarding the clinical implica
tions of these differential molecular features between AA and CA, so it is 
inconclusive whether these molecular differences are causally related to 
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racial disparity in prostate cancer. As an example, SPINK1 was found to 
be overexpressed in AA across many studies [8,10,12,15], but its role in 
the development of prostate cancer remains unclear. Several studies 
reported no association between SPINK1 expression and poorer clinical 
outcomes [17–19], while others found it could predict disease-specific 
and recurrence-free survival in prostate cancer [20,21]. 

During tumorigenesis, genetic and epigenetic aberrations of genes 
will integrate at the pathway level to determine the ultimate pheno
types. Considering race as a phenotype variation, the seemingly incon
sistent observations at the gene level between different studies might be 
explained at the pathway or regulatory network level. Using the SPOP 
mutation as an example, it is possible that other genes in related path
ways also contribute to racial disparity, e.g., the onco-protein AR and 
SRC in the AR signaling pathway that are regulated by SPOP-mediated 
degradation [22]. Indeed, it has been reported that differentially 
expressed genes between AA and CA prostate cancer are enriched in 
AR-related pathways [23]. Interestingly, differential expression of AR 
itself between the two races are still under debate [13,24]. Thus, in this 
study we propose to integrate different types of data (genomic, epi
genomic, and transcriptomic) to better understand the inconsistency 
between them and to identify a core set of genes associated with racial 
disparity in prostate cancer. 

Network-based methods have been widely used to integrate different 
data types. For example, hotnet2 [25] integrates CNV and somatic 
mutation data through gene interaction networks and uses a network 
diffusion approach to identify dysregulated pathways in certain cancer 
types. Nevertheless, hotnet2 only considers somatic aberration data and 
ignores other molecular aberrations such as DNA methylation and RNA 
expression. Therefore, NetICS [26] integrates more data types such as 
DNA methylation and RNA expression to identify mediator genes within 
networks, which are affected by upstream genetic aberrations and lead 
to altered downstream gene expressions. This approach has been proved 
to accurately predict cancer genes based on TCGA data and might be 
applied to other scenarios as well. 

In this study, we assume that there is a core set of genes that receive 
the effects of upstream genetic alterations and trigger downstream 
abnormal gene expression through these networks, thereby driving the 
racial disparity in prostate cancer. Based on this assumption, we per
formed a series of comparative analyses between AAs and CAs using 
multiple genomic data types including copy number variation, somatic 
mutation, DNA methylation and RNA expression to identify differential 
altered genes between the two races. Detected differential alterations 
were further mapped into a protein-protein interaction network on gene 
level. By applying a random walk strategy to propagate influence of 
these alterations through the network, we prioritized genes associated 
with racial disparity and identified a set of 130 core disparity associated 
genes (DAGs). These DAGs had important clinical implications in pros
tate cancer, including prognosis, progression and development. 
Furthermore, we found that these DAGs dysregulated several pathways 
in prostate cancer, including MAPK signaling and AR signaling path
ways. Potential targets for precision therapy may lie in these pathways 
and DAGs, providing new insights into handling the racial disparity in 
prostate cancer. 

Materials and methods 

Datasets 

Somatic mutation, copy number variation (CNV), DNA methylation, 
RNA expression and clinical information for TCGA prostate adenocar
cinoma (PRAD) were downloaded through Firehose portal (htt 
ps://gdac.broadinstitute.org/). Specifically, mutation annotation files 
were downloaded, which contained mutation status of 24,058 genes for 
332 samples. The original CNV data provided segmental chromosome 
CNVs. We calculated relative CNV for each segment by log2(copy- 
number/2). A gene’s CNV was then determined by averaging the 

segment CNVs with which it overlaps, weighted by the ratio of over
lapping length to the gene’s length. Using such method, we obtained 
relative copy numbers of 23,311 genes for 492 samples. DNA methyl
ation level in genes was represented by the averaged β values of their 
promoters, covering 21,855 genes in 498 samples. RNA-seq data 
included 20,502 genes for 497 samples. From the clinical data, we 
extracted 58 AAs and 415 CAs. Samples other than AA and CAs and 
those of unknown race were excluded. Protein expression data for 
prostate cancer were downloaded from TCGA from reverse phase pro
tein array (RPPA) experiment, which included the expression level of 
195 proteins in 352 prostate cancer samples (32 AA and 301 CA). For 
some protein, the dataset provides their abundance in both phosphor
ylated and unphosphorylated states. 

Four processed microarray datasets were downloaded from the Gene 
Expression Omnibus (GEO) database with accession IDs: GSE6956 [27], 
GSE17356 [28], GSE41969 [29], GSE91037 [30]. Specifically, the four 
datasets contained 87 (40 AA and 47 CA), 27 (14 AA and 13 CA), 802 
(350 AA and 452 CA) and 26 samples (13 AA and 13 CA) respectively. 
Gene expression level was represented by expression level of corre
sponding probesets. For genes with multiple probesets, we selected the 
probe with maximum average intensity across all samples to represent 
the gene. Except for GSE91037, the other three provide Gleason scores 
of patients. Besides, GSE41969 provides age while GSE6956 and GSE 
17356 provide tumor stage information. A summary of these datasets 
can be found in Table S1. 

Identification of differential molecular alterations between AA and CA 
samples 

To identify gene mutations with significant different distribution 
between AA and CA, we used Fisher’s exact test to compare their gene 
mutation frequencies. A P value under 0.05 was considered as signifi
cant. Since the majority of genes have relative low mutation frequency 
and the number of samples are small, the statistical power for detecting 
variant mutation is low. Thus, we used unadjusted p-value (p<0.05) 
directly without considering confounding variables to ensure high 
sensitivity. To identify differential CNV, DNA methylation and mRNA 
expression between AA and CAs, we used R package “limma” [31]. 
Specifically, relative copy number, log2 transformed expression level 
and promoter methylation of genes were taken as inputs. To avoid po
tential impacts of factors other than race, we also adjusted clinical 
variables including age and Gleason score with “limma”. Adjusted p 
values under 0.05 were considered as significant. Since there are more 
than one mRNA expression dataset, meta-analysis was used to integrate 
results across datasets and to calculate a meta-p value for each gene 
based on Fisher’s method. In total, we identified 39, 466, 2876 and 1340 
genes with differential mutation, CNV, DNA methylation and RNA 
expression between AA and CAs. 

Network propagation 

To integrate pre-identified differential altered genes between AA and 
CAs, we mapped these identified genes into a protein-protein interaction 
network and applied a network-based approach to prioritize genes 
associated with racial disparity in prostate cancer. A network with 
13,096 genes (nodes) and 137,686 interactions (edges) was built on 
human interactome data from a previous study [32]. R package “igraph” 
was used to construct the network [33]. We pruned duplicated edges 
between nodes and only kept the largest connected components within 
the network, resulting in 12,972 nodes and 134,800 edges remaining. 
Pre-identified differentially altered genes between AA and CAs were 
then mapped to the network as seeds with label “1”, while the rest were 
labelled “0”. To prioritize genes associated with racial disparity, we 
simplified the network propagation method developed by Dimi
trakopoulos et al. [26], which was based on an insulated heat diffusion 
process [25]. Specifically, we normalized the adjacency matrix of the 

B. Zhang et al.                                                                                                                                                                                                                                   

https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/


Translational Oncology 17 (2022) 101327

3

network by multiplying the inverse diagonal matrix of node degrees. A 
diffusion matrix was then defined as: 

F = β(I − (1 − β)W)
− 1  

where W denotes the normalized adjacency matrix and β denotes the 
restart probability. F represents the diffusion matrix, in which Fij de
scribes the influence of node i applying to node j. To find optimized β, we 
selected several nodes with different centrality to study the effect of β 
value on the network. In practice, we selected 5 nodes according to their 
centrality (minimum, 25% quantile, median, 75% quantile, and 
maximum) in the network after excluding nodes with zero centrality. As 
the centrality metric, we used betweenness centrality since it provides 
better insight into the connectivity of nodes, which plays a major role in 
propagation scores. We calculated the influence of the 5 nodes applying 
to their neighbors, and selected β values that maximize the sum of in
fluence of the 5 nodes. Based on our calculations, the influence was 
maximized when β equals 0.45 (Fig. S1). The final propagation score was 
calculated as: 

E = FS  

where S denotes the vector that contains the initial labels assigned to the 
nodes. 

To determine the statistical significance of each gene’s contribution 
to racial disparity rather than simply using its propagation score, we 
constructed 100 random networks to determine a false discovery rate 
(FDR) for each gene. Specifically, each random network was constructed 
by 100 random edge swaps of the original network, so that node degrees 
can be preserved. For each gene, its FDR was calculated by taking the 
proportion of propagation scores from the 100 random networks that 
were higher than its propagation score in the original network. Using a 
cut-off as FDR < 0.01, we identified 130 genes as core DAGs. To visu
alize the interactions among the 130 genes, we created a subnetwork of 
them by extracting the 130 nodes and related edges between them in the 
original network using Cytoscape [34]. 

Disease associated gene sets 

Disease associated gene sets were downloaded from DisGeNET [35]. 
This database not only curated gene-disease associations from UNI
PROT, CGI, ClinGen, Genomics England, CTD (human subset), PsyGe
NET, and Orphanet, but also text-mined several gene-disease 
associations from MEDLINE abstracts. In total, 11,181 curated and 17, 
993 text-mined disease associated gene sets were retrieved. Fisher’s 
exact tests were used to evaluate the enrichment differences of these 
gene sets between DAGs and non-DAGs. To correct p values from mul
tiple tests, Benjamini-Hochberg method was used. 

Gene set enrichment analysis 

To investigate associated pathways of DAGs, we performed enrich
ment analysis of DAGs using KEGG pathways and GO terms. Specifically, 
186 KEGG pathways and 10,185 GO terms were downloaded from C2 
and C5 collection from MsigDB database [36]. Fisher’s exact test was 
used to calculate statistical significance of enrichment of KEGG path
ways and GO terms in DAGs. Benjamini-Hochberg method was used to 
correct p values from multiple tests. 

Gene essentiality analysis 

To examine the importance of the 130 DAGs in prostate cell line 
growth, we investigated gene essentialities of them. Gene essentiality 
data of prostate cancer cell lines was downloaded from DepMap data
base [37]. CERES score and dependency probability of 18,119 genes for 
VCAP cell line was retrieved [38]. The CERES score describes cell line 
growth rates after knock-out of given genes. Therefore, a low CERES 

score or a high dependency probability indicates a high essentiality of a 
gene. Gene essentialities between DAGs and non-DAGs were compared 
by Wilcoxon rank-sum test. 

SNPs associated with prostate cancer 

We downloaded a total of 616 risk SNPs for prostate cancer identified 
by genome-wide association study (GWAS) from NHGRI-EBI GWAS 
Catalog [39] on 02/14/2020. Associated studies are summarized in 
Table S2. 

The minor allele frequencies of these SNPs in different populations 
from the 1000 Genomes Project [40] were obtained through The 
Ensembl Variant Effect Predictor (http://www.ensembl.org/vep) [41]. 
There are five super populations in the 1000 Genomes Project dataset: 
African, Ad Mixed American, East Asian, European, South Asian. As 
African and European populations are genetically closest to AA and CA, 
we considered minor allele frequencies in the two populations as those 
in AA and CA. Fisher’s exact test was used to compare minor allele 
frequencies of SNPs between the two races. In total, we compared minor 
allele frequencies of 6 SNPs (corresponding to TP53, SMAD2, 
ADAMTSL4, SAMD9, AR, MAP3K1), whose associated genes were 
within the 130 DAGs. 

Survival analysis 

To identify a gene list associated with prognosis, we downloaded a 
dataset (Accession ID: GSE16560) [42] from the GEO database, which 
contains expression profiles of 6100 genes for 281 samples, and clinical 
variables including disease-specific survival. We used univariate Cox 
regression models to assess the prognostic value of each gene based on 
its continuous expression levels. Because the statistical power is rela
tively low, with only 13 genes having p values below 0.05 after 
Benjamini-Hochberg adjustments, we considered unadjusted p values 
without multi-test corrections below 0.05 as significant to identify more 
prognostic genes. Specifically, 878 prognostic genes were identified. To 
examine whether the 130 DAGs are enriched for prognostic genes 
compared to non-DAGs, Fisher’s exact tests were performed. We 
selected two DAGs (YWHAZ and JUN) as examples to visualize their 
prognostic value by Kaplan-Meier plots. Specifically, the whole cohort 
(Accession ID: GSE16560) [42] was dichotomized according to the mean 
expression value of each gene, and log-rank tests were used to compare 
survival differences between high and low expression groups. 

We used R package “survival” to perform survival analysis. Cox 
regression models were built using the function "coxph". Comparisons 
between two survival curves were made by using the "survdiff" function. 

Kinase-substrate interactions 

To investigate which kinase are enriched for DAGs in its substrates, 
we downloaded Kinase-substrate dataset PhosphoSitePlus [43]. 12,228 
kinase-substrate interactions from humans were retrieved. We examined 
which kinase substrates were enriched with the identified DAGs using 
Fisher’s exact tests. Kinases with fewer than 20 substrates were 
excluded. Benjamini-Hochberg adjusted p values below 0.05 were 
considered significant. 

Inference of transcription factor regulatory activity 

Transcription factor binding profiles were downloaded from the 
ChEA dataset [44]. A previously developed rank-based algorithm, BASE, 
was used to calculate regulatory activities for transcription factors based 
on the expression profile of their target genes [45]. The Wilcoxon 
rank-sum test was used to compare transcription factor regulatory ac
tivities between AA and CA. 
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Results 

Overview of the study 

In this study, we collected a comprehensive list of genomic data that 
were generated to identify differential molecular features between AA 
and CAs in prostate cancer, including copy number variation (CNV), 
somatic mutation, DNA methylation, and gene expression. To better 
understand racial disparity, we employed a network-based method to 
integrate these data to identify a set of core DAGs using the pipeline 
shown in Fig. 1. First, for each type of data we performed comparative 
analyses between AA and CA prostate cancer patients to identify 
significantly differential molecular features on gene level. For gene 
expression analysis, multiple datasets were available and meta-analysis 
was performed to obtain combined results. Next, we integrated these 
results by projecting them into a curated protein-protein interaction 
network [32] and then adopted network propagation to prioritize genes. 
Statistical significance was determined by referring a null distribution 
obtained from topology-preserved network permutations. We identified 
a total of 130 DAGs that were significantly associated with racial 
disparity at the significance level of false discovery rate (FDR) <0.01. 
Finally, we performed a series of analyses to investigate the 130 DAGs in 
the context of their associated pathways, their contribution to genetic 
risk of prostate cancer and their prognostic value. In particular, we 
found kinases and transcription factors were highly enriched in these 
DAGs, and thus we investigated their potential functions in prostate 
cancer. 

Identification of molecular alterations of different types between AA and 
CA 

We compared molecular difference between AA and CA prostate 
cancer in four types of molecular features: somatic mutation, CNV, DNA 
methylation and RNA expression. We first examined differential somatic 
mutation events between AA and CAs in the TCGA prostate adenocar
cinoma dataset (TCGA-PRAD). We compared number of point mutations 
of each gene between the two races and identified 39 genes with 
significantly differential mutation frequency at the significance level of p 

< 0.05 using fisher’s exact test. Out of them, 38 were enriched in AA and 
1 was enriched in CA (Fig. 2A). For example, SPOP mutation was found 
to be enriched in AA (p = 0.008), while TP53 mutation was found to be 
enriched in CA (p = 0.04). For CNV, we identified 466 differential CNV 
events between AA and CA at FDR < 0.05 from TCGA-PRAD dataset, of 
which 139 gene deletions and 327 gene amplifications were enriched in 
AA after adjusting for age and Gleason score using “limma” [31] 
(Fig. 2B). 

To identify differentially methylated genes between AA and CA, for 
each gene we calculated the average methylation level (β values) of 
measured CpG sites that were located in its promoter. Using the TCGA- 
PRAD data, we identified 2876 differentially methylated genes (1786 
hyper- and 1110 hypomethylated in AA) at FDR < 0.05 after adjusting 
for clinical variables (Fig. 2C). 

Using the TCGA-PRAD dataset, we identified 845 differentially 
expressed genes, with 542 up-regulated and 303 down-regulated in AA 
(Fig. 2D). In addition to the TCGA dataset, we examined four datasets 
with expression profiles of AA and CAs [27–30]. We identified 487, 113, 
21 differential expressed genes in GSE17356, GSE41969 and GSE6956 
at FDR < 0.05 (Figs. 2D and S2). We didn’t find any differential 
expressed genes in GSE91037, potentially due to its small sample size. 
Only a few differentially expressed genes were shared across datasets. 
Specifically, there were only 17 differentially expressed genes shared 
between TCGA-PRAD and GSE17356, the two datasets with the highest 
number of identified differentially expressed genes (Fig. S2). These re
sults indicated high inconsistency across these datasets. Because of this, 
we performed a meta-analysis to combine the results from these data
sets. As shown in Fig. 2E, we identified more differential expressed genes 
with meta-analysis. At the same threshold, 1340 differential expressed 
genes were identified, with 748 up-regulated and 592 down-regulated in 
AA across the five datasets. 

Taking together, we identified 39, 466, 2878 and 1340 genes asso
ciated with differential mutation, CNV, methylation and expression 
between AA and CA. Specifically, 159 genes showed both differential 
methylation and expression, 46 genes showed both differential 
methylation and CNV, and 28 genes showed both differential CNV and 
expression between AA and CA (Fig. 2F and G, Table. S3). There were 
only seven genes showing differential methylation and one gene with 

Fig. 1. The diagram of this study. We performed comparative analysis to identify four types of differential molecular alterations (somatic mutation, CNV, DNA 
methylation, mRNA expression) between AA and CA. The detected alterations were then mapped to an interaction network on gene level. We next applied network 
propagation to prioritize genes associated with racial disparity in prostate cancer. Based on FDR < 0.01, we identified 130 DAGs underlying racial disparity and 
characterized them in terms of function and pathways, prognostic value as well as kinases and transcription factors within them. 
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Fig. 2. Differential molecular alterations between AA and CA. (A–C): Identified differential mutated (A), copy number altered (B) and methylated (C) genes between 
AA and CA. (D): Differential expressed genes identified from TCGA, GSE17356, GSE41969 dataset. (E): Meta-analysis was used to combine p values from different 
mRNA expression datasets. (F): Total numbers of the differential altered genes between AA and CA from four data types. (G): Overlap of identified differential altered 
genes across four data types. 

Fig. 3. Functions and pathways of DAGs. (A): Subnetwork of the 130 DAGs. (B): Distribution of scores for the 130 DAGs. (C): DAGs were enriched with cancer-related 
disease gene sets. (Fisher’s exact test) (D and E): DAGs were enriched with cancer-related and signaling transduction pathways from KEGG (D) and GO (E) term 
enrichment analysis. (Fisher’s exact test). 
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differential expression within differentially mutated genes because of 
their small number. 

Network-based data integration leads to the identification of 130 core 
genes associated with racial disparity 

To identify core DAGs, we mapped previously identified genes as 
seeds into a human protein-protein network and applied a label propa
gation method to prioritize all genes within the network. Using FDR <
0.01, we identified 130 DAGs (Table S4). These 130 DAGs formed a 
subnetwork (Fig. 3A). Within them, 52 were seeds and 78 were non- 
seeds. Seeds and non-seeds had similar distributions of propagation 
scores, non-seeds did not necessarily have lower scores than seeds 
(Fig. 3B). Specifically, the AR gene, which drives tumorigenesis and 
progression of prostate cancer [46], was within the 130 DAGs, even 
though it’s not a seed. Indeed, AR was previously reported to differ in 
related signaling pathways [23] and to correlate differently with 
carcinogen [24] between AA and CA, despite no differences in expres
sion levels. These results suggested that network- based methods iden
tified latent genes associated with racial disparity, which were not 
readily apparent from comparative analyses alone. 

The functions and pathways of DAGs 

We then examined the function of these DAGs in known human 
diseases. To this end, we retrieved disease associated gene sets from 
DisGeNet [35]. As shown, gene sets associated with prostate cancer such 
as “Prostatic neoplasms” and “Malignant neoplasms of prostate cancer” 
were highly enriched in DAGs, four times compared to non-DAGs 
(Fig. 3C). Furthermore, gene sets associated with cancer severity such 
as “Neoplasm metastasis”, “Neoplasm invasiveness” and “Undifferenti
ated carcinoma” were also enriched in DAGs, 8–15 times more than 

non-DAGs (Fig. 3C). Specifically, gene sets related to castration-resistant 
prostate cancer (CRPC), the most lethal subtype of prostate cancer, such 
as “Hormone refractory prostate cancer”, “Androgen independent 
prostate cancer” and “Metastatic castration-resistant prostate cancer”, 
were all significantly enriched in DAGs (Fig. 3C). As previous studies 
reported AA and CA patients responded differently to CRPC treatment 
[47], DAGs might explain such racial disparity in CRPC treatments. 

Next, we investigated which pathways the DAGs were involved in. As 
expected, we observed the DAGs were enriched for some cancer path
ways including prostate cancer from KEGG pathways (Fig. 3D). Besides, 
several kinases-involved signaling pathways such as MAPK, TGF-β, 
ERBB and WNT pathways were found to be enriched in DAGs, 10–25 
times compared to non-DAGs. In addition, cell cycle related pathways 
were also enriched in DAGs. We found similar results using enrichment 
analysis of Gene Ontology (GO) terms. Signaling-related GO terms 
(positive regulation of signaling and kinase binding) and cell cycle 
related GO terms (apoptotic process and regulation of cell death) were 
enriched in DAGs 3 to 6 times more than non-DAGs (Fig. 3E). 

Association of DAGs with incidence and mortality in prostate cancer 

To elucidate potential mechanisms by which these DAGs contribute 
to racial disparity in prostate cancer, we characterized them in several 
clinical implications. 

First, we examined gene essentiality of these DAGs in prostate cancer 
cell lines. The gene essentialities were downloaded from DepMap 
database [37], represented by CERES score and dependency probability. 
Low CERES scores or high dependency probabilities imply high essen
tiality of a gene for prostate cancer cell line growth. We observed that 
the DAGs tend to have lower CERES scores and higher dependency 
probabilities compared to non-DAGs (Figs. 4A and S3). Our results 
indicated that DAGs were more likely to be essential in prostate cancer 

Fig. 4. Association of DAGs with incidence risk and mortality of prostate cancer. (A): DAGs have higher essentialities compared to non-DAGs, represented by lower 
CERES score (Wilcoxon rank-sum test). (B): DAGs were enriched for GWAS genes compared to non-DAGs (Fisher’s exact test). GWAS gene: genes corresponding to 
prostate cancer risk SNPs in GWAS studies. (C): Genetic risk of the six GWAS genes within a DAG as measured by corresponding risk allele’s odds ratio. (D): The DAGs 
were enriched for prognostic genes compared to non-DAGs (Fisher’s exact test). (E): Hazard ratio and corresponding p values for the prognostic DAGs. (F and G): 
Survival difference between patients with high and low expression of YWHAZ (F) and JUN (G) with mean as cut-off (log-rank test). 
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compared to non-DAGs. 
Second, we investigated association of the DAGs with prostate cancer 

incidence. To this end, we retrieved 559 genes (GWAS genes) associated 
with risk SNPs from genome-wide association studies (GWAS) [39]. We 
found that the DAGs were enriched with GWAS genes nearly three times 
to non-DAGs (p = 0.02, Fig. 4B), indicating potential roles of DAGs in 
prostate cancer incidence. Totally, there were six GWAS genes in DAGs, 
containing both seed and non-seed genes. The incidence risk of corre
sponding risk alleles of these six genes were represented by odds ratio as 
shown in Fig. 4C. Given AA and CA have different incidence rates of 
prostate cancers [2], we next examined if those DAGs, which were also 
GWAS genes, exhibited different allele frequencies between the two 
races. As shown, the six genes being both DAGs and GWAS genes 
significantly differed in their minor allele frequencies between AA and 
CA (Fig. S4A–F). 

Third, we examined prognostic values of these DAGs. Specifically, 
we retrieved 878 genes prognostic for disease specific survival in pros
tate cancer from the GSE16560 dataset [42] at p < 0.05. As shown in 
Fig. 4D, the DAGs were enriched for more than twice as many prognostic 
genes as non-DAGs (p = 0.001). Out of the 17 prognostic DAGs, 3 were 
protective and 14 were hazardous (Fig. 4E). Among them, there are both 
seeds and non-seeds. For example, a seed gene, YWHAZ, which is 
associated with prostate cancer progression and cell proliferation 
[48–50], was in the 14 hazardous DAGs (Fig. 4F). Furthermore, 
non-seed genes such as JUN, an onco-gene regulates apoptosis [51], 
were also within the prognostic DAGs (Fig. 4G). 

Taken together, these results suggested that the DAGs can affect 
incidence and mortality, which in turn might contribute to the racial 
disparity in prostate cancer. 

Differential activity of disparity associated kinases between AA and CAs 

Kinases play important roles in signaling transduction and regulate a 
variety of cellular processes. Several dysregulated kinases and associ
ated pathways have been observed in prostate cancer, including over
expression of SRC and elevated PI3K-AKT-mTOR pathway activity [52, 
53]. Therefore, we examined potential roles of kinases within the DAGs 
in racial disparity. There were 26 kinases as DAGs, with 8 seeds and 18 
non-seeds (Fig. 5A). Using TCGA reverse phase protein array (RPPA) 
data, we compared protein levels of these kinases between AAs and CAs. 
As shown, AA has significantly higher levels of phosphorylated MAPK8 
than CAs (Fig. 5B). In addition to phosphorylated kinases, TCGA RPPA 
includes some unphosphorylated kinases, allowing comparison of kinase 
protein levels both in the phosphorylated (activated) and unphos
phorylated (inactivated) states between AA and CA. We found some 
kinases with comparable levels of inactivated states between AA and CA, 
but significant differences of activated states, such as EGFR and SRC 
(Fig. 5C and D). Furthermore, there were also some kinases that differed 
in AA and CA in opposite directions between inactivated and activated 
states, such as MAPK1 and GSK3B (Fig. 5E and F). To investigate 
whether the differences of kinase levels between AA and CA would 
remain significant after adjusting for clinical variables, we constructed a 
generalized linear model using kinase levels, age and Gleason score. Our 
results indicated the differences in protein levels of aforementioned ki
nases between AA and CA remain significant, even after taking into 
account other clinical variables (Table S5). 

Since a kinase can phosphorylate many substrates including other 
kinases as well as itself [54–56], we next examined which kinases were 
enriched for DAGs in their substrate using a kinase-substrate dataset 

Fig. 5. Kinases within DAGs exhibited differential activity states between AA and CA. (A): Propagation score of 26 kinases within DAGs. (B–F): Protein levels of 
MAPK8 (B), EGFR (C), SRC (D), MAPK1 (E) and GSK3B (F) between AA and CA (Wilcoxon rank-sum test). The position of the phosphorylated amino acid in a protein 
is followed by "_p". (G): 32 enriched kinases with the DAGs (Fisher’s exact test). (H): Protein levels of AKT1 between AA and CA (Wilcoxon rank-sum test). 
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from PhosphoSitePlus [43]. At a threshold of adjusted p values below 
0.01, we identified 32 kinases significantly enriched for the DAGs in 
their substrates, including 18 DAGs (Fig. 5G). Although not a DAG, 
AKT1 exhibited a very significant p value, ranking third, right after the 
two DAGs: MAPK1 and MAPK3. Indeed, AKT1 showed significantly 
differential activities between AA and CA, with a more elevated activity 
in the latter (Fig. 5H). This result remained significant after adjusting for 
the same clinical variables (Table S5). Taken together, our results sug
gested that the AA and CA differed significantly in activation states of 
kinases, especially those within DAGs, which may lead to differential 
activity of kinase-directed signaling transduction pathways between the 
two races, thereby contributing to the racial disparity in prostate cancer. 

Differential activities of disparity associated transcription factors between 
AA and CA 

Transcription factors regulate the expression of many genes, which 
in turn affects cellular growth, division and apoptosis. Dysregulation of 
key transcription factors (AR, ERG) has been reported to contribute to 
tumorigenesis and progression of prostate cancer [57,58]. Therefore, we 
also examined potential roles of transcription factors within the DAGs in 
racial disparity. A total of 22 transcription factors were found within the 
DAGs, with 10 seeds and 12 non-seeds (Fig. 6A). Using the TCGA RPPA 
dataset, we compared protein levels of 7 transcription factors within 
DAGs between AA and CA. AA was found with higher protein levels of 
TP53 (p = 0.03) and lower protein levels of ESR1 (p = 0.04), RB1 (p =
0.06) and MYC (p = 0.09) compared to CA (Fig. 6B). Interestingly, 
phosphorylated ESR1 along with JUN, AR and CTNNB1 had comparable 
protein levels between AA and CA (Fig. 6B). After adjusting for the same 

clinical variables with a generalized linear model, TP53 still remained 
significantly different in protein levels between AA and CA (Table S6). 

In addition to protein expression levels, mutations and alternative 
splicing can also affect the regulatory activity of transcription factors 
[59–61], which in turn impacts a number of downstream pathways. 
Hence, we subsequently compared regulatory activities of transcription 
factors within DAGs between AA and CA. Using a previously developed 
deconvolutional algorithm [45], we calculated transcription factor 
regulatory activities based on TCGA PRAD gene expression profile and 
transcription factor binding profiles from the ChEA dataset [44]. In 
contrast to protein levels, TP53 exhibited significantly higher regulatory 
activities in AA instead of CA (Figs. 6C and S5), indicating different 
mechanisms in dysregulation of TP53 downstream pathways between 
the two races. While the TCGA RPPA data didn’t include the protein 
level of NR3C1, its regulatory activity did differ significantly between 
the two races (Fig. 6C). Furthermore, while AR, CTNNB1, and JUN did 
not differ in protein levels between the two races, we still observed 
significant or weakly significant differences in their regulatory activities 
(Fig. 6C). Specifically, the differences in AR regulatory activities be
tween AA and CA remained significant even after adjusting for the same 
clinical variables as previously described (Table S7). 

As a key driver in tumorigenesis and development of prostate cancer 
[46], AR has been investigated in multiple prostate cancer cell lines and 
tumor tissues in terms of its binding profiles [62–65]. The ChEA dataset 
includes four AR binding profiles measured from different prostate 
cancer cell lines or tissues (VCAP, PC3, LNCAP and tumor tissue). We 
calculated and compared regulatory activities in AA and CA with the 
four different profiles. As shown, only AR regulatory activities calcu
lated using the corresponding binding profile from VCAP were 

Fig. 6. Transcription factors within DAGs exhibited differential regulatory activities between AA and CA. (A): Propagation score of 22 transcription factors within 
DAGs. (B): Protein levels of the transcription factors within DAGs between AA and CA. Protein names of corresponding genes were after “|”. For phosphorylated 
proteins, positions of the phosphorylated amino acids were after “_p”. (C): Regulatory activities of the transcription factors between AA and CA. Names of cell lines 
from which the binding profile used to calculate the regulatory activity were indicated in parentheses. (D): AR regulatory activities calculated by different binding 
profiles from multiple prostate cancer cell lines between AA and CA. P values were calculated by Wilcoxon rank-sum tests. 
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significantly different between AA and CA (Fig. 6D). Out of the three cell 
lines, VCAP was the only one that can express AR-V7 protein, a splice 
variant of AR, which was rare in primary prostate cancer but common in 
CRPC and can render resistance to anti-androgen drugs [66,67]. Based 
on this result, there may be differences in alternative splicing events 
between AA and CA, resulting in differential delays to advanced prostate 
cancer stages. 

Discussion 

To investigate potential DAGs underlying racial disparity in prostate 
cancer, we integrated differential molecular alterations between AA and 
CA from different data types and applied a network-based approach to 
identify 130 DAGs. Subsequent characterizations revealed these DAGs 
were highly associated with patient prognosis as well as tumorigenesis, 
development and progression in prostate cancer. Furthermore, kinases 
and transcription factors that act as DAGs differed in activity state or 
regulatory activity between AA and CA, although some of them were 
comparable at the protein level. These results suggested that, with the 
network-based integration method, we detected some new racial 
disparity associated genes in prostate cancer that weren’t detectable by 
common comparative analysis due to their similar expression levels. 

We observed AA had significantly lower protein levels of activated 
AKT1, MAPK1 and GSK3B but higher levels of their inactivated state 
proteins compared to CA. Indeed, an elevated PI3K/AKT/mTOR 
signaling pathway, containing GSK3B, is observed in many prostate 
cancer cases [68,69]. An activated MAPK pathway is often found in 
CRPCs and is associated with resistance to anti-androgen drugs [69,70]. 
Based on these results, it might be more important to also consider ki
nase activity instead of only comparing mRNA or protein expression. 
Similarly, AR has significantly different regulatory activities regardless 
of similar protein levels between the two races. More importantly, we 
can observe the difference only by calculating regulatory activity based 
on the AR-binding profiles of the VCAP cell line that expresses AR-V7 
isoform [66]. AR-V7 is highly expressed in CRPC and associated with 
resistance to anti-androgen therapy [67]. This result highlights the po
tential different alternative splicing of AR between the two races, which 
in turn leads to racial disparity. 

Interestingly, we observed significant different levels of unphos
phorylated ESR1 but similar levels of its phosphorylated form between 
AA and CA. As ESR1 exhibits different allele frequencies between AA 
and CA [71], there may already be effects of differential variants within 
races, in which case dysregulation of associated downstream pathways 
at phosphorylation level might not be necessary. 

It should be noticed that both AA and CA populations might have 
diverse genetic backgrounds. Simply categorizing patients into AA and 
CA may overlook admixture from multiple genetic ancestries. Different 
proportion of other ancestries within AA population will also confound 
current results. Besides, the sample sizes between AA and white are 
imbalanced, which may reduce the statistical power. Therefore, we used 
meta-analysis to combine multiple datasets and network-based methods 
to integrate differentially altered genes between AA and CA from 
different data types. Although these methods can compensate to some 
extent for the relatively low statistical power, a larger and more 
balanced dataset would be more desirable. Similarly, due to low muta
tion frequencies of the majority of genes, we used unadjusted p values 
without considering other confounding variables to identify differential 
mutated genes. Such an approach improves sensitivity, but it also leads 
to the identification of some genes that are not differentially mutated. In 
addition, we showed the DAGs were highly associated with prognosis. 
However, there’s no race information within that dataset. So differential 
association of DAGs with survival between the two races will need to be 
further examined. 

Most importantly, our results were generated based on solely 
computational method. Even though the DAGs identified can be vali
dated with high essentiality and association with prostate cancer 

incidence using cell line and GWAS data, experimental validation will be 
needed to evaluate the specific role they play in prostate cancer. For 
example, knock-out animal studies can be performed to examine role of 
these DAGs in vivo. The clinical value of DAGs can be explored through 
the use of drugs that target these DAGs in cell line or animal models. 
Besides, by using a network-based approach, we lost the direction of 
differential molecular alterations. Considering the identified DAGs 
alone, we are unable to identify their roles in prostate cancer or the 
direction they contributed to racial disparity, whether they increased 
risk for AAs or decreased risk for CA. Furthermore, the label propagation 
method only considered the presence of the differential molecular al
terations and overlooked how much they differ between AA and CA. 
Although such method allows integrating results from different data 
types with different distributions, it will somewhat amplify the effect of 
relatively less significant molecular alterations and reduce the effect of 
extremely significant molecular alterations. Last, the ChEA dataset [44] 
contains a limited number of transcription factor binding profiles, so 
many of the profiles we used to calculate regulatory activity were not 
from prostate cancer cell lines. These results would be verified and 
consolidated using profiles directly from prostate cancer cell lines. 

Conclusion 

In summary, we applied a network-based algorithm to integrate 
differential molecular alterations between AA and CA and identified 130 
DAGs. By characterizing these DAGs, we observed significant differen
tial downstream pathway activities of MAPK, AKT and AR. Targeting 
these pathways may advance precision medicine, and ultimately bene
fits AA as well as other ethnicities. 
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