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Background
With the rapid development of medical information technology, hospitals have adopted 
a variety of medical information systems, including hospital information systems (HIS), 
clinical information systems (CIS), and radiology information systems (RIS). At the same 
time, EMR has also become popular. In recent years, a large number of clinical records 
have accumulated in medical institutions, and EMR data has increased rapidly. Huge 
opportunities have emerged from these data for health care audits, drug safety monitor-
ing and clinical trials, etc.

Abstract 

Background:  Electronic medical records (EMR) contain detailed information about 
patient health. Developing an effective representation model is of great significance 
for the downstream applications of EMR. However, processing data directly is difficult 
because EMR data has such characteristics as incompleteness, unstructure and redun-
dancy. Therefore, preprocess of the original data is the key step of EMR data mining. 
The classic distributed word representations ignore the geometric feature of the word 
vectors for the representation of EMR data, which often underestimate the similarities 
between similar words and overestimate the similarities between distant words. This 
results in word similarity obtained from embedding models being inconsistent with 
human judgment and much valuable medical information being lost.

Results:  In this study, we propose a biomedical word embedding framework based 
on manifold subspace. Our proposed model first obtains the word vector representa-
tions of the EMR data, and then re-embeds the word vector in the manifold subspace. 
We develop an efficient optimization algorithm with neighborhood preserving 
embedding based on manifold optimization. To verify the algorithm presented in this 
study, we perform experiments on intrinsic evaluation and external classification tasks, 
and the experimental results demonstrate its advantages over other baseline methods.

Conclusions:  Manifold learning subspace embedding can enhance the representa-
tion of distributed word representations in electronic medical record texts. Reduce the 
difficulty for researchers to process unstructured electronic medical record text data, 
which has certain biomedical research value.
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When processing EMR data, we first need to represent words as real-valued vec-
tors. For many biomedical natural language processing (BioNLP) tasks, such as Drug–
Drug Interaction Extraction, Event Extraction, Protein-Protein Interaction Extraction 
[1–3], the word representation method is an important step. It turns out that effec-
tive word representations can help improve the performance of the BioNLP tasks. In 
recent years, distributed word representations have been widely used in the field of 
biomedical texts because they can better capture the semantic information of words. 
Distributed word representation uses the word co-occurrence to map the words into 
a low-dimensional dense vector, preserving the semantic information of the word. In 
this low-dimensional vector space, it is convenient to measure the similarity degree of 
two words according to the measurement methods, such as distance or angle between 
the vectors. Researchers apply distributed word representation to various NLP tasks.

Embedding words in a continuous semantic space has an important impact on 
many NLP tasks [4–6]. Mikolov et al. [7] used word co-occurrence to train word vec-
tors iteratively and proposed the Word2Vec model. Jeffrey et  al. proposed a Glove 
model considering local context features and global corpus features [8]. Wang et al. 
[9] trained word embeddings from clinical notes, literature, Wikipedia, and news, and 
used in biomedical NLP applications. Smalheiser et al. [10] proposed a word repre-
sentation method based on word co-occurrence. Zhang et al. proposed a set of open 
biomedical word vectors/embeddings, BioWordVec [11]. Jiang et al. [12] proposed a 
new method for computing continuous vector representations that leverage deeper 
information to represent words. Jha et al. [13] leveraged the rich taxonomic knowl-
edge in the biomedical domain to transformed input embeddings into a new space 
where they are both interpretable and retain their original expressive features. Chiu 
et al. [14] proposed a efficient method to align pretrained embeddings according to 
semantic verb clusters. Faruqui et al. [15] proposed a corpus-based approach that can 
be used to build semantic lexicons for specific categories.

The above word representation model has obtained good effects in the research of 
biomedical text and electronic medical record text. However, researches on the influ-
ence of the geometric structure of word vectors on the semantics of electronic medi-
cal records are insufficient. It is well known that the semantic information of words 
determines the representation of electronic medical record data. In cognitive psy-
chology, these concepts are points in Euclidean space [16]. Words are mapped into 
low-dimensional dense vectors and exist in Euclidean space in the form of points. 
Therefore, in Euclidean space, the distance between words with similar semantics is 
smaller, while the distance between words with opposite semantics is larger. However, 
existing word representation models do not consider geometric information between 
words. As a result, human semantic similarity evaluation is not always consistent with 
Euclidean spatial metrics. Earlier psychometric studies have confirmed this conclu-
sion. Tversky et al. studied whether the concept representation is consistent with the 
geometric sampling (GS) model and concluded that some hierarchical vocabularies 
are inconsistent with Euclidean embeddings [17]. The word vectors to be processed 
are regarded as points distributed in a high-dimensional semantic space, and the dis-
tance between the points is measured by Euclidean geometric straight-line distance. 
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The linear structure of Euclidean space leads to cognitive biases in the word similar-
ity, which requires a more efficient approach to deal with the similarity measure.

Table 1 shows the Similarity of two medical term pairs (“pulmonary edema”, “periph-
eral edema”) and (“ureteral obstruction”, “pkidney stone”) in the UMNRS-Sim, obtained 
through human judgment, Glove embedding with cosine similarity and our method. We 
can find that the results of ground truth and Glove are opposite. The reason is word 
vector generally exists in a high-dimensional semantic space by exhibiting a nonlinear 
structure. The word vectors to be analyzed and processed are regarded as points distrib-
uted in the high-dimensional Euclidean space [18], and the distance between the points 
is thus measured by the straight-line distance of the Euclidean geometry. This global lin-
ear structure of Euclidean space results in the cognitive bias for word similarity, which 
requires a more effective approach to handle space. The methods of Hasan et al. and Chu 
et al. solve the problem that the similarity of ground truth and Glove are opposite used 
the manifold learning [16, 19]. We also applied the manifold learning to obtain the simi-
larity between the medical term pairs. It can be seen that the term pairs similarity results 
based on manifold learning is indeed consistent with the real similarity.

Manifold learning tiles the sample distribution group in the high-dimensional feature 
space to a low-dimensional space. The sample distribution in the original space may be 
distorted. After tiling, it will be more conducive to the distance measurement between 
word vectors, and the distance will better reflect the similarity between the two samples. 
Figure 1 demonstrates that to map the original high-dimensional manifold space into the 
one in a relative low-dimensional embedding, which still preserves the structure in the 
original manifold space. Manifold learning estimates the distance between nearby terms 
by using direct similarity in the neighborhood, while the distance between faraway terms 
is approximated by multiple neighborhoods based on the shape of the manifold.

Table 1  Medical term pairs similarity on different methods

Medical term pairs UMNRS-Sim(Ground truth) Glove Ours

P1: “peripheral edema” sim(P1, P2) = 3.92 sim(P1, P2) = 0.55 sim(P1, P2) = 0.15

P2:“pulmonary edema”

P3: “pkidney stone” sim(P3, P4) = 4.69 sim(P3, P4) = 0.37 sim(P3, P4) = 0.32

P4:“ureteral obstruction”

Fig. 1  The relationship between high-dimensional space and low-dimensional embedding
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Manifold learning assumes that low-dimensional data is usually embedded in high-
dimensional space [20–22], there be recovering the low-dimensional manifold structure 
of the data. There has been progress in the development of effective algorithms for pro-
cessing nonlinear data and dimension reduction, such as isometric mapping Isomap [23], 
local linear embedding (LLE) [24] and its variations, and local tangent space alignment 
(LTSA) [25]. These algorithms include two common steps: learning the local geometry 
around each data point, and using the learned local information to non-linearly map the 
high-dimensional data points to the low-dimensional space.

In recent years, researchers have paid attention to the combination of pre-training 
word embedding and manifold learning. Manifold learning describes the local geometric 
structure information between sample points of word vectors by constructing adjacency 
graph structure of word vectors in high-dimensional space. Hashimoto et al. assumed 
that word representation and manifold learning were very suitable for recovering a 
Euclidean metric by the usage of co-occurrence counts and high-dimensional features. 
The manifold learning could be applied to embed words and phrases from high-
dimensional space into low-dimensional space and its obtained word vectors should be 
regarded as the inputs of distributed word representation [26]. Hasan and Curry sampled 
an off-the-shelf word embedding to generate inputs as a manifold learning process that 
employed local word neighborhoods constituted in the original embedding space and 
re-embedded into a new embedding space by local linear embedding(LLE) of manifold 
learning [16]. By considering the effect of the matrix of the unfilled rank of each local 
neighborhood on the word representation, Chu et  al. [19] imported MLLE to recover 
the word representation in a more general sense for improving the performance. In this 
work, we follow a methodology that adheres to this paradigm, Consider the nonlinear 
structure of EMR data, employs distributed word representation to train the biomedi-
cal word vector, which is used to learn a manifold to improve the results. This allows us 
to efficiently learn EMR data hidden semantic information, and we show that the model 
learns high-quality biomedical word representations. Specifically, we use the Word2Vec 
model to train word vectors on a specific corpus, then we use a manifold learning algo-
rithm to re-represent the electronic medical record word vectors, and finally apply it to 
electronic medical record classification and text matching tasks. Solve the problem of 
irregularities in the structure and standardization of EMR data, which procrastinate the 
accuracy of medical text representation.

Results
For intrinsic evaluation, we apply Pearson’s correlation coefficient and Spearman cor-
relation coefficient to evaluate the effectiveness of different word embeddings. For dif-
ferent word embedding, we leverage cosine distance to measure the similarity of word 
pairs based on the learning word embedding. We explore several state-of-the-art meth-
ods to compare with our proposed method [11, 27–31]. Zhang et  al. [11] proposed a 
BioWordVec method to train word embeddings by using biomedical text-domain 
knowledge. Chiu et  al. [27] employed the Word2Vec model to train biomedical word 
embedding based on PubMed and PubMed Central articles. BERT has led to impres-
sive gains on many natural language processing tasks [28]. A pre-trained biomedical 
language representation model for biomedical text mining (BioBERT) [29]. A lite BERT 
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for self-supervised learning of language representations (ALBERT) [30]. An Empirical 
Study of Multi-Task Learning on BERT for Biomedical Text Mining (BlueBERT) [31]. 
The results in Table 2 show that manifold learning is valuable and useful in the task of 
improving word similarity in the biomedical domain. We note that the context pre-train-
ing model (such as BERT) lags other baselines on the word similarity task. BERT is opti-
mized for specific downstream tasks that are not directly related to word similarity.

We use the Scikit-learn toolkit in the experiments [32]. We used Glove and Word2Vec 
to represent the word vectors, then we re-embedded word vectors using the MLLE algo-
rithm. When using manifold learning to re-represent word vectors, we did not modify 
the word vector dimension but transformed between two equally-dimensional coordi-
nate systems. When using MLLE to construct the neighborhood structure of the test 
words, we select a certain amount of words in the vocabulary obtained by Glove and 
Word2Vec as the training set. The training word window size is selected in the values 
of [1001, 1501, 2001] and the MLLE algorithm neighborhood value range is [300, 1000]. 
The results are listed in Tables 3 and 4.

In Table 3, we can find that our proposed method obtains the best results in the major-
ity of evaluations of various indicators for medical coding classification. In addition to 
the relatively low performance of individual items, the performance of our method is 
outstanding with different parameters. Compared with convolutional neural networks 
(CNN) [33] and long short-term memory (LSTM) [5], the convolutional neural net-
work and attention mechanism (CAML) [34] model produces the strongest results on 
all metrics under different categories of word embeddings. The success of CAML can be 
attributed to the attention of multi-label. For each label, the CAML uses a specific label 
weight matrix to generate attention for different labels of all the words in the text. We 
found that the performance of the method of adding different pre-training word vectors 
is better than that of randomly generating vectors, which shows the contribution of pre-
training word vectors to medical coding classification. Compared with other pre-trained 
word vectors, our method yields certain advantages. This is because the geometric struc-
tures of word vectors, ignored by traditional distributed word vectors, imply the seman-
tic information of the words. Noting that, we use manifold learning to represent the 
geometric structures between the words and integrated them into our model. Table 3 
shows that compared with Word2Vec, our proposed method can generally improve the 

Table 2  Pearson and Spearman correlations coefficient score ( ×100 ) between model predictions 
and human ratings on three evaluation datasets

Bold values denote the best result for each column of data

Method MayoSRS UMNSRS-sim UMNSRS-rel

Pearson Spearman Pearson Spearman Pearson Spearman

BERT 24.7 24.5 28.3 26.2 31.4 28.2

Zhang 62.5 61.1 64.9 62.5 57.0 57.0

Chiu 60.4 61.5 66.3 65.2 60.0 60.1

ALBERT 24.9 25.0 28.7 26.6 31.5 28.7

BioBERT 26.0 25.5 29.8 27.4 33.4 29.4

BlueBERT 26.5 27.6 31.2 28.9 33.9 30.4

Ours 63.2 62.1 67.0 66.5 61.3 60.8
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accuracy of different baseline models. We observed the BERT falls behind the other 
word embeddings on medical coding classification task. The possible reason is that the 
fine-tuning does not work well for high-dimensional structured prediction with a full 
label set that has more than 942 labels.

Table 3  Three basic models use different types of pre-trained word embeddings to predict 
performance

Bold values denote the best result for each row of data(%)

Method Embedding Macro AUC​ Micro AUC​ Macro F1 Micro F1 Test loss value Top-10 recall

RNN Random 0.854 0.972 0.204 0.653 0.032 0.772

FastText 0.842 0.973 0.149 0.628 0.032 0.774

Glove 0.861 0.974 0.219 0.656 0.031 0.788

Word2Vec 0.851 0.974 0.165 0.642 0.031 0.783

BERT 0.500 0.908 0.000 0.000 0.061 0.442

ALBERT 0.503 0.915 0.026 0.018 0.054 0.446

BioBERT 0.513 0.923 0.051 0.038 0.052 0.457

BlueBERT 0.533 0.939 0.075 0.043 0.050 0.471

Ours 0.857 0.976 0.182 0.659 0.030 0.793
CNN Random 0.825 0.968 0.214 0.626 0.040 0.753

FastText 0.665 0.921 0.012 0.223 0.053 0.488

Glove 0.842 0.972 0.188 0.622 0.034 0.767

Word2Vec 0.692 0.925 0.021 0.313 0.052 0.492

BERT 0.549 0.906 0.000 0.000 0.059 0.442

ALBERT 0.556 0.914 0.014 0.012 0.053 0.453

BioBERT 0.559 0.921 0.015 0.041 0.047 0.459

BlueBERT 0.567 0.929 0.021 0.047 0.042 0.464

Ours 0.852 0.974 0.217 0.628 0.038 0.779
CAML Random 0.855 0.978 0.257 0.656 0.032 0.806

FastText 0.856 0.980 0.270 0.656 0.031 0.809

Glove 0.867 0.978 0.272 0.647 0.033 0.801

Word2Vec 0.855 0.980 0.274 0.662 0.030 0.813

BERT 0.497 0.908 0.000 0.000 0.058 0.442

ALBERT 0.505 0.916 0.026 0.022 0.054 0.457

BioBERT 0.513 0.924 0.045 0.041 0.048 0.465

BlueBERT 0.534 0.934 0.060 0.076 0.042 0.478

Ours 0.886 0.982 0.270 0.673 0.029 0.823

Table 4  Average performance on clinical sentence pair similarity tasks

Bold values represent the best result for each row of data. (window start ∈ [0,1000], number of MLLE local neighbours = 500, 
manifold dimensionality = space dimensionality)

Space Metric Glove Ours

6B300d Pearson 69.2 73.6
6B300d Spearman 64.6 69.4
6B200d Pearson 69.9 70.5
6B200d Spearman 64.6 67.0
6B100d Pearson 68.3 68.8
6B100d Spearman 64.4 63.5
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Table 4 shows the results of our proposed method compared with the Glove model for 
the experiments on the clinical sentence pair similarity task. We used the Glove model 
by pre-training different corpora with correspondingly different dimensions. The dimen-
sions of word embeddings in the experiments are 100, 200 and 300, respectively. We can 
see that our proposed method outperforms Glove. In the six billion word corpus, we 
obtained 69.4% of the Spearman rank correlation coefficient and Glove obtained 64.6% 
with 300 dimensions, which is an improvement of 4.8%. Meanwhile, in the six billion 
word corpus, our method got 67.0% and Glove got 64.6% with 300 dimensions, which is 
an improvement of 2.4% in this task. From Table 4, we can see that our proposed model 
outperforms baseline models in most cases, which also verifies the effectiveness of mani-
fold learning in EMR data representation.

From the above results, we can see that all the performances of our proposed method 
are better than baselines. The main reason is our proposed model uses manifold learning 
to describe the geometric structure of EMR data word vectors. Manifold learning rep-
resents the local geometric structure information between sample points of word vec-
tors by constructing the adjacency graph structure of word vectors in high-dimensional 
space. It will be more suitable to measure the distance between words and better reflect 
the similarity between samples based on the framework of the manifold.

Model interpretability

We evaluate the interpretability of our proposed approach. Table 5 is the top 10 words 
with the largest contribution for each corresponding medical code in the diagnostic 
summary. While the key-words study confirm by an expert. Classifier with CAML, using 
attention mechanism to calculate the weight of each word, the higher the weight, the 
greater the contribution of the word.

It can be seen from Table 5 that our method can obtain a higher keyword weight than 
Word2Vec. Through the word weight detection experiment in frequent diabetes medi-
cal codes, our method finds words that have important meanings in diabetes inference, 
such as “hemodialysis” “disease” and “diabetes”. While Word2Vec gives higher weight to 
the word “disease” rather than “hemodialysis” which is more directly related to diabetes.

Table 5  Words with the highest weight by manifold and Word2Vec for frequent diabetes medical 
code

Ours Word2Vec

Word Weight Word Weight

Hemodialysis 0.7856 Disease 0.4320

Found 0.0235 Hemodialysis 0.2576

Disease 0.0347 Renal 0.0726

Stage 0.0043 Found 0.0123

Job 0.0052 Hypertension 0.0026

Hypertension 0.0071 Job 0.0010

Renal 0.0046 Stage 0.0009

Name 0.0083 End 0.0005

Mellitus 0.0008 Initial 0.0004

Diabetes 0.0005 Declared 0.0003
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From Table  6, experiments on the medical code of rare asbestosis medical through 
the manifold and the word with the highest weight in Word2Vec, we can see that our 
method finds several more relevant terms than Word2Vec, such as “pneumothorax” and 
“silhouette”. Compared with Word2Vec, our method can better find relevant terms and 
give a higher weight value, indicating that our method has higher interpretability.

Case study

Figure 2 provides the similarity visualization of 43 words of biomedical domain in May-
oSRS. The original 100-dimensional vectors are projected into a 2-dimenstional plane 
using TSNE toolkit.1 To visually show the performance of the manifold in our proposed 
model, we give some intuitive case studies comparing the word vectors processed by 
Word2Vec with the manifold learning post-processing, as is shown in Fig. 2.

Table 6  Words with the highest weight by manifold and Word2Vec for rare asbestosis medical code

Ours Word2Vec

Word Weight Word Weight

Pneumothorax 0.00535 Old 0.0617

Silhouette 0.0241 Service 0.0345

Mediastinal 0.0336 Evidence 0.0187

Opacity 0.0184 Partially 0.0171

Tissue 0.0173 Present 0.0162

Tobacco 0.0102 Without 0.0137

Meet 0.0085 Speaking 0.0095

Without 0.0091 Brief 0.0084

Remains 0.0075 Stable 0.0064

Partially 0.0059 Associated 0.0063

(a) Word2Vec (b) Manifold

Fig. 2  Visualization of word vectors on MayoSRS. The abscissa is the first dimension of vectors, and the 
ordinate is the second dimension of vectors

1  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​manif​old.​TSNE.​html.

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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We can see that through manifold representation, the medical term pairs with simi-
lar semantics are also close in Euclidean distance. For example in Fig. 2b “colitis” and 
“diarrhea” semantics are related, through manifold embedding, their Euclidean distance 
is also very close. However, in Fig. 2a Word2Vec embedding, the distance between the 
term pairs is faraway. Besides, the term pairs “sinusoid”, “sinusitis” and “lupus”, “ketoaci-
dosis” with similar semantics are close in Euclidean distance after being represented 
by manifold. These cases show that manifold learning can capture the hidden semantic 
information of word vectors, which makes biological text representation more efficient 
and powerful.

Discussion
Unstructured text data in EMR account for the vast majority, which results in EMR has 
such characteristics as incompleteness, unstructured, and redundancy. In the electronic 
medical record data representation, the existing distributed word representation model 
obtains the word vector through large-scale corpus training, ignoring the unstructured 
characteristics of EMR data and the influence of the geometric structure of the word 
vectors on the semantic information of the word. Therefore the electronic medical 
record data cannot be well represented. To address this problem, we introduce mani-
fold learning into a distributed word representation model. We analyze the re-embed-
ding word embeddings in terms of their principal components and demonstrated that 
the effectiveness of our proposed methods in the electronic medical record classification 
and text matching experiments. The experimental results show that the proposed model 
can effectively improve the performance of electronic medical record word representa-
tion and better capture its semantics.

Effect of dimension

In our method, we start from a word embedding which is already a good embedding 
of the raw word co-occurrences. With the dimension of 300, our method exceeds the 
baseline method by Spearman coefficient with 1.6% and Pearson coefficient with 3.5%, 
respectively. Manifold learning usually starts from a high-dimensional original space and 
aims to reduce the number of dimensions. Therefore, the dimensions should be retained, 
otherwise, information may be lost during the calculation and selection of feature 

Table 7  The results of different dimensions on medical code classification between our method 
and Word2Vec

Bold values represent the best result for each row of data(%). (Original space dimension is 300d,(window start ∈ [0,1000], 
number of MLLE local neighbors = 500, manifold dimensionality = space dimensionality)

Dimension Metric Word2Vec Ours

100 Pearson 69.2 68.8

100 Spearman 63.8 63.5

200 Pearson 69.2 70.1
200 Spearman 63.8 64.3
250 Pearson 69.2 71.2
250 Spearman 63.8 65.6
300 Pearson 69.2 70.8
300 Spearman 63.8 67.3
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vectors in manifold learning. Table 7 show that under the condition that other param-
eters remain unchanged, the closer the of manifold learning dimension is to the original 
space dimension, the better the performance of re-embedding word vectors.

Effect of number of local neighbors

In the experiment, the number of neighborhood points directly affects the calculation 
speed, so selecting appropriate neighborhood points is an important issue for the algo-
rithm. To study the influence of neighborhood on word embedding, we made quantitative 
analysis in the experiments. Table 8 gives the experimental results of different local neigh-
bors on the medical code classification task. It can be seen that the optimal number of 
neighborhood points can be found for the experiments.

Effect of window length

To investigate the effects of window length, we conduct the experiments based on the 
different window lengths. Without loss of generality, we use the Word2Vec model in the 
experiments. The results are shown in Table 9, we can find that we obtain better perfor-
mance than Word2Vec on medical code classification tasks when the window length is 
higher. Through the experimental results of the window lengths, we can select the optimal 
starting position of the sliding window for each data set to re-embedding the word vector.

Table 8  The results of the different numbers of local neighbors on medical code classification 
between our method and Word2Vec

Bold values represent the best result for each row of data. (Space is Glove 840B 300d)

neighbor Metric Word2Vec Ours

300 Pearson 69.2 68.5

300 Spearman 63.8 64.2
400 Pearson 69.2 71.7
400 Spearman 63.8 65.6
500 Pearson 69.2 70.8
500 Spearman 63.8 67.3
600 Pearson 69.2 72.3
600 Spearman 63.8 68.2

Table 9  The results of different window lengths on medical code classification between our 
method and Word2Vec

Bold values represent the best result for each row of data. (Space is Glove 840B 300d)

Win Metric Word2Vec Ours

1000 Pearson 69.2 70.8
1000 Spearman 63.8 67.3
1500 Pearson 69.2 71.9
1500 Spearman 63.8 67.1
2000 Pearson 69.2 71.2
2000 Spearman 63.8 67.3
3000 Pearson 69.2 70.7
3000 Spearman 63.8 66.9
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Conclusions
In this study, we describe an unsupervised post-processing EMR data word re-embed-
ding approach. EMR data is unstructured and has the characteristics of incomplete-
ness. Defferent from the distributed word representation that ignores the influence of 
the geometric structure of the word vector, our proposed method imports the frame-
work of manifold learning and renders off-the-shelf representations even stronger. To 
verify the effectiveness of the model mentioned in this article, we conduct experiments 
on electronic medical record data. Experimental results show that the algorithm pro-
posed in this paper has achieved good results in both classification and text matching 
tasks, which is superior to other algorithms. Such a simple process could be applied as 
an initialization for pre-training the task-specific embeddings. In the future, we intend 
to extend our experiments to improve multilingual word vectors and other types of bio-
medical text data.

Methods
Our method aims to obtain a valid biomedical text representation based on word 
embeddings in the manifold framework. Manifold learning constructs the local struc-
ture of data vectors through adjacency graphs and restores the essential geometric struc-
ture of the data. The structure diagram of the model proposed in this paper is shown in 
Fig. 3.

The model in this paper can be divided into the following steps. In step (a), we obtain 
the processed EMR word representation vectors with the pre-training model. In step (b), 
we sample through a fixed window to train the manifold learning algorithm. In step (c), 
the manifold algorithm is employed to re-embed word vectors. In step (d), we fit the 
manifold learning algorithm to denote the word embedding in the specific task.

In step (a), specific field knowledge is included in the biomedical text, and the domain 
knowledge plays an important role in the representation of the biomedical text. To bet-
ter represent the electronic medical record data, we use the Word2Vec and Glove mod-
els to train on the biomedical corpus to obtain pre-trained word vectors.

In step (b), we select a specific number of word vectors as the word vector window 
from the pre-trained word vectors in step (a). Hasan et al. deem that manifold learning 
attempts to restore a Euclidean metric [9]. Frequent words can better represent samples 

Fig. 3  Biomedical word re-embedding via manifold learning
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of the underlying space, thus restoring the manifold. While, all the word vectors are used 
to train the MLLE algorithm, which will generate a huge amount of computation. There-
fore, we explore window sampling to train the MLLE algorithm. In the experiment, we 
conducted different window sizes on window sampling.

In step (c), we use the word vector window selected in step (b) to train the manifold learn-
ing algorithm MLLE. We extract the word vectors corresponding to the electronic medical 
record data from the pre-trained word vectors, and then we use manifold learning to map 
the word vectors contained in the electronic medical record data to the manifold space and 
re-embed the word vectors. Next, we introduce the training process.

For a given word vector set X = {x1, x2, . . . , xN } , where N is the number of word vectors 
in the vocabulary, we use the k nearest neighbors to construct the neighbor structure of 
a word vector. The model constructs the word vector X and then represents the objective 
function as:

Consider the neighbor set of xi with ki neighbors. Assume that the first ri singular val-
ues of Gi are larger compared with the remaining si = ki − ri singular values. Let 
w
(1)
i , . . . ,w

(si)
i  be si ≤ k linearly independent weight vectors, which are defined as:

Here wi(γ ) is the regularized solution, Vi is the matrix of Gi corresponding to the si 
smallest right singular values, αi = i

√
si
� vi � with vi = VT

i lki , and H is a Householder 

matrix that satisfies Hi = vilki = αilsi . We use the geodesic distance to calculate the 
neighbors of each word vector. The specific formula is as follows:

where f (xi, xj) is the geodesic distance between xi and xj , d(xi), d(xj)are the mean dis-
tances of xi and xj from other points, respectively. We use Lagrange to solve Eq. (1) to 
obtain the weight matrix W. Then, the weights are used to set up a new embedding Y of 
sample X:

In step (d), we re-embedded the word vector x obtained by the Glove model into the 
electronic medical record data using the model trained by Eq. (1). The formula is:

In Eq. (5), if xj is not in the K-neighborhood of the word vector x, thenwl
= 0 . Transform 

x in y to which living in the new embedded space by the following equation:

(1)min

N
∑

i=1

si
∑

l=1

� xi −
∑

j∈Ji

wl
j,ixj �

2

(2)w
(l)
i = (1− αi)wi(γ )+ ViHi(:, l), l = 1, . . . , si

(3)dij =
f (xi, xj)

√

d(xi) · d(xj)

(4)E(Y ) =

N
∑

i=1

si
∑

l=1

� yi −
∑

j∈Ji

wl
j,iyj �

2

(5)min

si
∑

l=1

� x −
∑

j∈Ji

wl
j xj �

2
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Eq. (6) is solved to obtain the optimal y, which is the re-embedding result of the word 
vector x.

The steps of the electronic medical record word embedding algorithm based on mani-
fold learning are as follows: 

Algorithm: Electronic Medical Records Representation With Manifold Embedding.

Input: Word set X, and threshold parameter N, k, and d.

1.Using the Word2Vec and Glove models to train the electronic medical records obtain the word embeddings 
for each word.

2.Select the word vector window from the pre-trained word vectors as the sample of manifold learning.

3.The data samples obtained in step 2 are used to train the MLLE algorithm by using Eqs. (1) and

(4) X = X1, X2, . . . , xN
fit

−→MLLE.

4.The MLLE model is trained using Eqs. (1) and (4), and then the model re-embeds the electronic

medical records words embedding using Eqs. (5) and (6): v(x) → v
′

(x).

Output: Processed embeddings v′(x).

Datasets

In this study, we carried out the experiments on four data sets. The UMNSRS and May-
oSRS word similarity datasets are intrinsic metrics in the biomedical domain [35, 36]. 
We use a subset of UMNSRS-Sim and MayoSRS-Rel as our references, with 566 and 587 
word pairs, respectively.2 The MayoSRS dataset is compiled from selected concepts from 
UMLS and includes 101 medical term pairs.3

MIMIC III is an open relational database, which contains all the records of the patient 
visits [37]. As the diagnostic information is merely considered in the previous research, 
we still only summarize the diagnostic information for each patient. A total of 52,722 
diagnostic records were generated, and the average length of each diagnostic record was 
1,596. In addition, we also converted uppercase words in diagnostic records to lower-
case, removed punctuation marks, and characters with numbers. We listed all ICD-9 
diagnostic codes for the diagnostic records according to the Bai’s method [38], and 
grouped them by the first three digits. A total of 942 medical codes were generated. on 
average, each visit has 11 medical codes. Given a discharge summary records, our goal is 
to predict associated medical codes. Therefore, medical code prediction is a multi-label 
text classification task. In multi-label text classification, we divide the data into the train-
ing set, test set, and valid set by a ratio of 7:2:1.

The dataset n2c2/OHNLP Track on Clinical Semantic Textual Similarity (Clini-
calSTS)4 provides pairs of clinical text fragments, which are unrecognizable sentences 
extracted from clinical notes. The task is to assign a numerical score to each pair of sen-
tences to express their semantic similarity. The scores are arranged in order, ranging 

(6)E(Y ) =

si
∑

l=1

� yi −
∑

j∈Ji

wl
j yj �

2

2  http://​rxinf​ormat​ics.​umn.​edu/​Seman​ticRe​lated​nessR​esour​ces.​html.
3  http://​rxinf​ormat​ics.​umn.​edu/​data/​MayoS​RS.​csv.
4  The dataset is available at https://​n2c2.​dbmi.​hms.​harva​rd.​edu.

http://rxinformatics.umn.edu/SemanticRelatednessResources.html
http://rxinformatics.umn.edu/data/MayoSRS.csv
https://n2c2.dbmi.hms.harvard.edu
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from 0 to 5, where 0 means that the two fragments are completely different, and 5 means 
that the two fragments have complete semantic equivalence. There are 1,642 sentence 
pairs in the training sets, and 412 sentence pairs in the test sets.

Evaluation metrics

To compare the performance of different algorithms, we use a series of evaluation 
criteria. For the multi-label classification problem, we used the following evaluation 
criteria, micro-averaged and macro-averaged F1 score and area under the ROC curve 
(AUC), the average loss value of the test set, and the average accuracy value and the 
top-10 recall score. The calculation formula of F1 as:

where P =
Truepositives

Truepositive+Falsepositive
 and R =

Truepositives
Truepositive+Falsenegatives The calculation formula 

of AUC as:

where M is the number of positive samples, N is the number of negative samples.
The F1 value is an evaluation indicator, integrating precision and recall, used to 

reflect the overall indicator comprehensively. The micro-average is to summarize the 
category of all instances and calculate the average of all instance categories. Therefore, 
this metric is dominated in the medical code classification task. And the macro-aver-
age first calculate the value of each code separately, and then averages all the codes. 
Because the weight of frequent categories is the same as that of rare categories, the 
macro average metric is usually applied for rare medical code prediction. The top-10 
roughly corresponds to the fraction of the top-n highest scored labels that are present 
in the ground truth. The metric is driven by potential use cases in computer-aided 
coding. It calculates the score of the top-n tags with the highest scores in the actual 
situation. The system recommends the top n codes for viewing by human experts.

For the evaluation criteria of word similarity, we used Pearson correlation coeffi-
cient and Spearman rank correlation respectively. Pearson correlation coefficient 
reveals the relationship between response characteristics and response. This method 
measures the relationship between variables Linear correlation. It is a non-parametric 
indicator that using the monotone equation to evaluate the correlation of them.

Word embeddings

For the medical code classification task, we use Word2Vec to pre-train word vec-
tors on the pending text of all discharge summaries, and then re-embed the obtained 
word vectors using manifold learning. Pre-trained embedding baseline methods 
include Random initialization(Random), Glove, Word2Vec,Fasttext, BERT, ALBERT, 
BioBERT and BlueBERT. For the word pairs similarity task, we use general publicly 
available Glove and Word2Vec embeddings as the original input. Word2Vec comes 
from Google’s pre-trained 300-dimensional news corpus. For out-of-vocabulary 
words, we randomly initialize according to the dimension size.

(7)F1 =

2PR

P + R

(8)AUC =

∑

i∈Positiveclass ranki −
M(1+M)

2

M × N
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Baseline classification model

In the medical code classification experiment, we employed three basic neural net-
work models as baseline classifiers. The first one is a long short-term memory (LSTM) 
[5]. We first map the word in the diagnosis to a low-dimensional vector emb ∈ Rd 
according to a pre-trained dictionary. Then, we input the word embedding sequence 
into the recurrent neural network:

The second one is the convolutional neural network(CNN) [33]. Like LSTM, we also 
convert the input sequence to word embeddings, and input them to the convolutional 
neural network:

The third one is the combination of the convolutional neural network and attention 
mechanism (CAML) [34], which is currently the most advanced method in medical cod-
ing classification:

For sentence pair matching, we use the ESIM model as a classifier. ESIM is a common 
basic model in sentence matching [39]. Like classification problems, we convert sentence 
pairs into corresponding sequence vectors:

The above models are treated as constants and the word vectors are variables. Our goal 
is to verify the effectiveness of the proposed method for improving biomedical text 
representations.
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