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Editorial on the Research Topic

APPNING: Animal Population Imaging

This editorial review of the Research Topic Appning describes several solutions to support the
sharing of animal imaging data and processing tools. Appning promotes the federation of multiple
sources of information, processing tools and shows how this contributes to the diffusion of
knowledge distributed in various preclinical imaging centers.

ANIMAL DATA SHARING

Some large data repositories (e.g., for brain studies, The MJ Fox Parkinson’s database or the
Human Connectome project) and specific architectures (e.g., COINS, LONI) are now available
for human population imaging. The animal imaging community has also growing requirements
for multicenter studies, for example to allow the comparison of academic results as in brain
connectivity studies (Grandjean et al., 2020) or to characterize the effects of drugs (Bruns et al.,
2015). To share preclinical imaging data and data analysis pipelines, only few tools are available
that take into account the specificities of animal studies (Liu et al., 2020; Messinger et al., 2020),
and few studies aim at standardization of acquisition and post-processing techniques.

Kain et al. describe a solution, Small Animal Shanoir (SAS), for the management of imaging data
andmetadata. SAS is a preclinical extension of a cloud-based solution dedicated to themanagement
of human brain imaging repositories, Shanoir (Barillot et al., 2016). The main feature of this
working solution is to rely on a core ontology, OntoNeurolog, which allows for the federation
of different local databases via the mapping of their corresponding data models to the ontology,
and facilitates its extension, for instance for managing preclinical studies. Additionally, to reinforce
its extensibility capacity, SAS is designed as a set of independent micro-services. Then, a specific
micro-service,Dicomifier, is dedicated to the transformation to Nifti format, widely used by several
neuroimaging pipelines, of raw files in Bruker format, Bruker being a manufacturer of preclinical
MR scanners, or of Dicom files. Associated data acquisition parameters are kept under a json file
associated to each Nifti file stored in SAS. The web-oriented architecture allows for querying and
retrieving stored images and processing pipelines. A data transfer module can interface the data
management system to computing platforms for pipelines execution and the storage of image
processing results. Specific authentication mechanisms allow for the fine control of data access,
from an access restricted to a specific user’s community to a publicly access for promoting open
science. SAS was used for the project described by Deruelle et al. in this Research Topic.

Mandino et al. review the efforts done by the animal MRI community toward the
standardization of data acquisition and analysis procedures in the context of whole brain functional
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MRI; a key aspect for animal population imaging via multi-
center studies. Based on their 868 research papers analysis,
they showed that animal studies (mainly on rats and Sprague
Dawley strain, in general carried out on 10 subjects at 7T and
9.4T) were underpowered and the false-positive rate incorrectly
controlled, similarly to human studies (Button et al., 2013;
Eklund et al., 2016). Several sources of variations among
studies, from animal preparation and anesthesia to the use
of ad-hoc pipelines or/and ad-hoc templates, hamper the
comparison of published results. The authors propose guidelines
to improve data sharing and reproducibility. They emphasize
the importance of raw datasets sharing for data re-analysis
with other processing pipelines allowing results comparison
between studies, the adoption of standard templates for the
reporting of results (e.g., coordinates of activation clusters)
similarly to human neuroimaging studies (Fox et al., 2014),
and the availability of open-source validated pipelines to unify
data processing.

PIPELINES COMPOSITION AND PIPELINE

SHARING

As shown by Mandino et al. in their review of the small animal
literature, a source of difficulty for comparing results in animal
studies is the absence of a core of validated solutions for data
processing and analysis, similarly to what is available for human
neuroimaging. Four papers address this point. To facilitate the
sharing of raw MR brain imaging data, Ioanas et al. present a
tool to transform files in a proprietary format (Bruker files) to
Bids format that has been proposed for human neuroimaging
studies (Gorgolewski et al., 2016). The workflow is implemented
as a function, bru2bids, written in Python. In the same vein,
Celestine et al. propose the Python package Samba-MRI to
preprocess, register to templates, perform functional analysis,
and perfusion measures from raw MR brain imaging datasets.
It reuses several neuroimaging python libraries (e.g., Nipype,
Nibabel or Nilearn) and incorporates additional features for
group-wise registration or inter-modality registration. The code
is available via the open GitHub platform. One can mention
here the recent work of Brossard et al. (2020) who introduce
a package to design pipelines and obtain multiparametric MRI
maps that was extensively evaluated at the preclinical level. The
papers from Groeneboom et al. and Yates et al. propose software
for analyzing histological rodent brain images. Indeed, the recent
in vitro imaging systems provide large collections of high-
resolution images that raise specific computational problems
for memory management and time execution. The former,
Nutil, allows to automatize image processing and analysis of 2D
brain histological sections. Standard image transformations are
proposed to the user and their execution has been optimized
to deal with large datasets. Nutil can be used independently or
conjointly with the Quint workflow. Quint is a suite of tools that
allows for the quantification and the spatial analysis of selected
features in series of histological section images of rodent brain
within a known atlas space. It combines several pre-existing
tools for pre-processing, registration to 3D reference atlas

(mouse and rat) and object segmentation, for the quantification
of specific parameters in regions defined by the atlas. The
Quint suite allows the user to perform in a convenient way, a
quantitative analysis at different levels of granularity on large
imaging datasets.

APPLICATIONS OF EXISTING DATA

SHARING AND DATA ANALYSIS

SOLUTIONS

MR imaging is a non-invasive versatile technique that allows
to assess to various anatomical, functional or physiological
parameters. Then, the T1 and T2 relaxation times are tissue
and region-dependent parameters that may reflect structural
alterations and may be used as biomarkers for various
pathologies. The goal of Deruelle et al. was to define maps
of T1 and T2 values for specific rat brain regions. To
serve as reference, such maps should be defined based on a
sufficient number of healthy animals reflecting inter-individual
variability. They designed a multi-center study which included
two data provider centers and three image processing pipeline
provider centers. They used the SAS architecture (Kain et al.)
and showed first, that MR data from 40 rats acquired in
two centers could be successfully combined; second, that a
good reproducibility could be obtained when using different
processing solutions. Their study demonstrates the feasibility
of a multi-center animal study if an appropriate architecture
for data management and pipelines composition and execution
is available. Raw data and reference T1 and T2 relaxometry
maps, as well as processing pipelines are freely available
via SAS.

Badea et al. use genetically modified mouse models to
relate genotype with brain aging trajectory for Alzheimer’s
disease. They use diffusion tensor imaging to compare
structural connectomes, and region volumes for two gene
modified mouse groups associated with genetic risk for
Alzheimer disease. Additionally, behavioral tests provide
information about learning and memory function deficits.
They show that behavioral and imaging markers allow to
identify vulnerable brain networks induced by the genetic risk
factor. Their findings contribute to a better understanding
of the physio-pathological mechanisms triggering the
onset of the Alzheimer’s disease. All generated datasets
generated are available to the scientific community and
may be pooled with new data to reinforce the robustness of
the findings.

Interestingly, all the papers of the RT Appning concern
the investigation of the rodent brain with both in vivo,
MR imaging, and in vitro, histological imaging. Indeed,
neuroimaging is the domain for which scientists have
developed to date several solutions for sharing data and
process large data repositories. This is certainly due to the
impressive quantity of neuroimaging studies performed in
the recent years, generating large-scale databases. This is also
stimulated by publications showing the poor replicability
and reproducibility of the results obtained (Carp, 2012;
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Button et al., 2013; Nichols et al., 2017; Poldrack et al., 2017).
Because these caveats are not restricted to brain studies, but
concern many areas of life science (Ioannidis, 2005), new
solutions for dealing with other organs and species will for
sure emerge.
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