A pediatric echocardiographic *Z*-score nomogram for a developing country: Indian pediatric echocardiography study – The *Z*-score

Sir.

We thank the author for his keen interest in our study^[1] and his valuable response for the same.^[2] We read with utmost interest the four issues put forth by the author and wish to provide relevant clarifications. As far as the point about body surface area (BSA) is concerned, we agree that there is no universal consensus on which formula is appropriate.^[3] However, concluding that this lack of consensus renders any one formula, in this instance Haycock's,^[4] inappropriate in the Indian

population is not justified. There is, in fact, no consensus on any other formula being more appropriate in the Indian population. We had decided to use the Haycock's formula^[4] to calculate the BSA in our study population for the following reasons:

1. Among the various available formulae, it is the one recommended by the writing group of the American Society of Echocardiography, Pediatric and Congenital Heart Disease Council, [5] and other experts, [6,7] as it yields the best correlation between

- BSA and the size of cardiovascular structures even at lower values of height and weight.
- 2. Some routinely used formulae for the calculation of BSA in children have been calculated from data that did not include children in the study population.^[8]
- 3. A study done previously for estimation of echocardiographic *Z*-score in children compared the variously available formulae for estimation of BSA including DuBois and DuBois,^[8] Haycock *et al.*,^[4] Dreyer and Ray,^[9] Boyd,^[10] Mosteller,^[11] Gehan and George,^[12] and Meban.^[13] Among these, the authors identified the Haycock's formula as the one with the best fit for BSA estimation in their study cohort. While Boyd and Meban formulae overestimated the BSA, the other formulae were found to underestimate the BSA in comparison to the Haycock's formula.^[14]

Regarding the role of gender as a probable confounding factor, an attempt was not made in our study to make gender-specific Z-scores because it is known that the size of cardiac structures is a function of cardiac output and the closest available tool for correlation with cardiac output is the BSA.^[15] Since gender differences in valve sizes and other structures are also explained by differences in the cardiac output between the two genders, and since cardiac output correlates directly with BSA, we concluded that the differences due to gender can be addressed by differences in BSA. Furthermore, previous studies have found little differences while attempting to exclude gender as a possible source of bias.^[14]

Three-dimensional echocardiography (3DE) for measurements might be better than two-dimensional echocardiography (2DE) for certain parameters such as left ventricular volumes and ejection fraction, but its superiority over 2DE in acquisition of valvular and arterial dimensions is questionable. [16] Since we were interested in providing valvular, M mode, and arterial dimension parameters in our study, we did not find 3DE as a mandatory tool for these measurements.

We agree that children of different ethnic backgrounds might have differences in the sizes of cardiac structures. Although we initiated an effort towards including children of various ethnic groups, we could only include children from the Rajasthan and Punjab states and children from Punjab comprised of only a smaller subset of the entire study cohort. A larger attempt with representation from Indian children of various ethnic origins would provide more comprehensive information on the role played by ethnic differences in the sizes of cardiac structures.

Financial support and sponsorship

Ni1

Conflicts of interest

There are no conflicts of interest.

Rajendra Kumar Gokhroo, Avinash Anantharaj, Devendra Bisht¹, Kamal Kishor, Nishad Plakkal², Nivedita Mondal²

Department of Cardiology, JLN Medical College and Associated Group of Hospitals, Ajmer, Rajasthan, ¹Department of Cardiology, Ace Heart and Vascular Institute, Shivalik Hospital Premises, Mohali, Punjab, ²Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India E-mail: avinboxer@gmail.com

REFERENCES

- 1. Gokhroo RK, Anantharaj A, Bisht D, Kishor K, Plakkal N, Aghoram R, et al. A pediatric echocardiographic Z-score nomogram for a developing country: Indian pediatric echocardiography study The Z-score. Ann Pediatr Cardiol 2017;10:31-8.
- Al-Mendalawi MD. A pediatric echocardiographic Z-score nomogram for a developing country: Indian pediatric echocardiography study – The Z-score. Ann Pediatr Cardiol 2017;10:314-5.
- Redlarski G, Palkowski A, Krawczuk M. Body surface area formulae: An alarming ambiguity. Sci Rep 2016;6:27966.
- 4. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 1978;93:62-6.
- Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: A report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 2010;23:465-95.
- 6. Kaski JP, Daubeney PE. Normalization of echocardiographically derived paediatric cardiac dimensions to body surface area: Time for a standardized approach. Eur J Echocardiogr 2009;10:44-5.
- Sluysmans T, Colan SD. Theoretical and empirical derivation of cardiovascular allometric relationships in children. J Appl Physiol 2005;99:445–57.
- 8. DuBois D, DuBois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 1916;17:863-71.
- 9. Dreyer G, Ray W. Further experiments upon the blood volume of mammals and its relation to the surface area of the body. Phil Trans R Soc Lond 1912;202:191-212.
- 10. Boyd E. The growth of the surface area of the human body. Westport, CT: Greenwood; 1935.
- 11. Mosteller RD. Simplified calculation of body surface area. New Engl J Med 1987;317:1098.

- 12. Gehan EA, George SL. Estimation of human body surface area from height and weight. Cancer Chemother Rep 1970;54:225-35.
- 13. Meban C. The surface area and volume of the human fetus. J Anat 1983;137:271 8.
- 14. Cantinotti M, Scalese M, Murzi B, Assanta N, Spadoni I, Festa P, *et al.* Echocardiographic nomograms for ventricular, valvular and arterial dimensions in Caucasian children with a special focus on neonates, infants and toddlers. J Am Soc Echocardiogr 2014;27:179-91.e2
- 15. Mawad W, Drolet C, Dahdah N, Dallaire F. A review and critique of the statistical methods used to generate reference values in pediatric echocardiography. J Am Soc Echocardiogr 2013;26:29-37.
- 16. Ruddox V, Mathisen M, Bækkevar M, Aune E, Edvardsen T, Otterstad JE, *et al.* Is 3D echocardiography superior to 2D echocardiography in general practice? A systematic review of studies published between 2007 and 2012. Int J Cardiol 2013;168:1306-15.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Access this article online Quick Response Code: Website: www.annalspc.com DOI: 10.4103/apc.APC_123_17

How to cite this article: Gokhroo RK, Anantharaj A, Bisht D, Kishor K, Plakkal N, Mondal N. A pediatric echocardiographic *Z*-score nomogram for a developing country: Indian pediatric echocardiography study – The *Z*-score. Ann Pediatr Card 2018;11:109-11.

© 2018 Annals of Pediatric Cardiology | Published by Wolters Kluwer - Medknow