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In-situ bone tissue regeneration, which harnesses cell external microenvironment and their
regenerative potential to induce cell functions and bone reconstruction through some
special properties of biomaterials, has been deeply developed. In which, hydrogel was
widely applied due to its 3D network structure with high water absorption and mimicking
native extracellular matrix (ECM). Additionally, exosomes can participate in a variety of
physiological processes such as cell differentiation, angiogenesis and tissue repair.
Therefore, a novel cell-free tissue engineering (TE) using exosome-laden hydrogels has
been explored and developed for bone regeneration in recent years. However, related
reviews in this field are limited. Therefore, we elaborated on the shortcomings of traditional
bone tissue engineering, the challenges of exosome delivery and emphasized the
advantages of exosome-laden hydrogels for in-situ bone tissue regeneration. The
encapsulation strategies of hydrogel and exosomes are listed, and the research
progress and prospects of bioactive hydrogel composite system for continuous
delivery of exosomes for in-situ bone repair are also discussed in this review.
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INTRODUCTION

Currently, bone replacements for skeletal defects are highly required by a majority of patients who
suffered accidents or age-related diseases in clinic. It is estimated that more than two million bone
grafting procedures are operated per year around the world, with more than a quarter of them
operated in the United States (Campana et al., 2014). Moreover, bone grafts need over 600,000 cases
in the US caused by cancer and traumatic injuries, which cost about $2.5 billion (Laurencin et al.,
2006).

As we all know, autologous bone grafting is always considered as a “gold standard”.
(Ho-Shui-Ling et al., 2018) for clinical treatments of bone defects while its source is limited

(Zhang et al., 2019) and secondary surgery caused infection (Laurencin et al., 2006). After that,
allografts was developed (Vanderstappen et al., 2015) but the immunological rejection was caused
(Dimitriou et al., 2011; Zhang et al., 2019). Therefore, the limitations of autograft and allograft result
in alternative bone repair strategies was highly desired and widely developed (Kempen et al., 2009; De
Witte et al., 2018).

In recent years, bone tissue engineering strategy, which utilizes the cell culture and
functional differentiation in vitro to construct bioactive bone-grafts, has been deeply
developed for bone regeneration (Figure 1A) (Kempen et al., 2009). Among them, the
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major elements of bone tissue engineering are seeding cells,
growth factors and biomaterial scaffolds (Petta et al., 2016; Yu
et al., 2018).scaffold is a crucial factor to bone tissue
engineering, which offered the space for cell growth,
proliferation and differentiation (Zhang et al., 2010). To
promote the three-dimensional attachment, growth and
tissue regeneration of cells, the scaffold needs a large
specific surface area and interconnected pores (Yu et al.,
2018; Zhu et al., 2021). The biomaterials which can be used
for fabricating porous scaffolds consist of inorganic ceramic,
polymer and metal materials (Yan et al., 2018; Wei et al.,
2022). Patients with diabetes mellitus (DM) suffer from poor
bone healing ability, the 3D-printed enzyme-functionalized
scaffold showed anti-inflammatory and osteogenic effects
under diabetic conditions (Yang et al., 2021b). Another
study also reported a novel 3D composite scaffold not only
triggered the ablation of osteosarcoma via high temperature
generated by near-infrared II light, but also promoted
vascularized bone regeneration in vivo by the controlled
release of bioactive ions (Sr, Cu, and Si) (Yang et al.,
2021a). The scaffold could offer the cells the 3D space,
mechanical support and so on. Recently, hydrogels with a
3D network structure, high water absorption and mimicking
cell microenvironment have been widely developed. It can be
used for the cell encapsulation and ingrowth, thereby
promoting their uniform distribution and slightly higher
loading densities (Hölzl et al., 2016). Also, bone tissue
engineering generally concentrates on fully elastic materials
as a result of their superior mechanical strength and stiffness,
whereas bone tissue is characteristically viscoelastic.
viscoelastic material, which has features such as direct cell

behavior and stress relaxation influence, complete with
mineralized matrix deposition and osteogenic
differentiation (Wang and Yeung, 2017). So, hydrogels
with tunable stress-relaxation behavior tend to be a key to
direct bone tissue regeneration in non-load-bearing
conditions. Mechanically stable 3D constructs can be
produced and an excellent biomimetic environment similar
to the natural ECM can be provided, in terms of adding
hydrogels to robust macroporous scaffolds, while their pores
are filled with soft cell-containing hydrogels (Visser et al.,
2015; Ovsianikov et al., 2018). However, the limitations of ex
vivo tissue engineering are noteworthy. This includes donor
tissue morbidity, the need for a great number of immune-
acceptable cells to fill synthetic scaffold, and the challenges
posed by the expansion of large numbers of cells in vitro, such
as lack and loss of reliable, reproducible cell sources and
cellular phenotype (Gaharwar et al., 2020).

Recently, a novel method called in-situ tissue regeneration,
which leverages the body’s innate regenerative potential, as well as
eliminates the need for ex vivo cell manipulation, was introduced
in (Figure 1B). It has several ways in in-situ tissue engineering,
such as bioactive cues can be incorporated into biomaterials, to
repair the place of injury. In situ tissue engineering has
advantages over ex vivo tissue engineering, because it does not
need the process of harvesting cells, thus, reducing regulatory
hurdles. In addition, ex vivo ways need complex cell culture
conditions to obtain functional tissues but in situ approaches
don’t. Finally, the shelf life of synthetic scaffolds over the cell-
laden scaffolds. Therefore, the in situ methods have an excellent
performance than ex situ methods for clinical application
(Gaharwar et al., 2020).

FIGURE 1 | In-situ tissue engineering. (A) Traditional tissue-engineering approaches require the pre-seeding of engineered scaffolds and ex vivo conditioning
before implantation into the body. (B) In situ tissue regeneration uses bioresponsive materials that harness the innate regenerative ability of the body. These materials are
loaded with biochemical and biophysical cues to recruit endogenous cells for tissue healing (Gaharwar et al., 2020). Copyright 2020, Gaharwar, A.K., Singh, I. &
Khademhosseini.
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In this review, we aim to outline the recent advances of
exosome-laden hydrogels for in-situ bone tissue regeneration.
The advantages of in-situ bone tissue engineering compared
with traditional tissue engineering were summarized.
Moreover, the development and challenges of hydrogels
and exosomes for tissue regeneration was elaborated.
Besides, the encapsulation strategies of exosome-laden
hydrogels are listed, and the research progress and
prospects of bioactive hydrogel composite system for
continuous delivery of exosomes for in-situ bone repair are
also discussed in this review.

HYDROGELS USED FOR IN-SITU BONE
TISSUE REGENERATION

Types and Development of Hydrogels
Hydrogelsare three-dimensional (3D) structures formed by
physical or chemical cross-linking between hydrophilic
polymer chains. It is well known that hydrogels are
hydrophilic polymers, with the property of highly-crosslinked
water-swollen networks and the ability to swell in water without
dissolving. Due to its profound biocompatibility, it could be
used in numerous disease treatments as well as play an
important role in tissue remodeling (Buwalda et al., 2014).
During the biomimetic systems, the hydrogel is a soft
material similar to the extracellular matrix, which could
generate artificial organs. The material sources of hydrogels
can be divided into natural hydrogels and synthetic hydrogels
(Zhu and Marchant, 2011). There are four main types of natural
polymers including proteins, polysaccharides, protein/
polysaccharide hybrid polymers and DNA, could be used to
fabricate natural hydrogels. While the polymer types made of
synthetic hydrogels were divided into non-biodegradable,
biodegradable, and bioactive polymers (Zhu and Marchant,
2011). Natural materials including chitosan, alginate,
hyaluronic acid (HA), collagen and gelatin, with the inherent
performance of biodegradable and always have integrin binding
sites to adhere and coordinate cell responses (Dimatteo et al.,
2018). The natural polymers or synthetic polymers used in
hydrogels could determine some properties and application
of hydrogels. Natural protein polymers are suitable for the
preparation of biocompatible hydrogels, while synthetic
hydrogels are suitable for various biomedical applications,
such as controlled drug release. Moreover, the mechanical
property of synthetic hydrogels could be adjustable (Gyles
et al., 2017).

Requirement and Characterization of
Hydrogels for Bone Tissue Regeneration
For bone tissue regeneration, hydrogels can be considered as very
attractive scaffolds and very promising alternative materials (Bai
et al., 2018). And the marked advantage of injectable hydrogels is
that they can be implanted in the desired area of tissue through
minimally invasive techniques (Staruch et al., 2017). This is
because of their suitable properties, including their excellent

elasticity, biocompatibility, biodegradability and mechanical
properties (Huang et al., 2017; Pishavar et al., 2021). Injectable
hydrogels can promote in situ tissue regeneration by the way of
filling irregular defects.

Also, the different characteristics of hydrogels can be gained
through changing the chemical feature of bonds, degree of
cross-linking and molecular weight of the polymer (Xue et al.,
2022). Moreover, we are facing a huge challenge, for example,
the need to combine with the desired characteristics of
hydrogels. Because the hydrogel functions explored are
sometimes interdependent and sometimes mutually
exclusive. For instance, increasing the degree of chemical
cross-linking can gain higher stiffness hydrogels. On the
contrary, hydrogels with the potential to heal by themselves
can be obtained through introducing dynamic cross-linking.
Apart from hydrogel structure is required to be adjusted,
adding appropriate fillers becomes a strategy to control and
manipulate the nano and macro properties of materials
(Piantanida et al., 2019). Another factor that should take
into consideration is the degradation of hydrogels while
designing tissue regeneration scaffolds.

In terms of injectable hydrogels, which have highly
concentrated structures including nano-sized pores, micron-
level proliferating cells cannot penetrate them without
degrading the covalent bonds that bind them together.
Therefore, the regeneration of damaged tissue needs to
maintain an accurate balance between tissue integration rate
and scaffold degradation rate (Deng et al., 2019). On the one
hand, slow degradation of materials always leads to an increase
in the inflammatory response and can promote fibrosis
(Alijotas-Reig et al., 2013). On the other hand, materials
that degrade too fast provide insufficient scaffolds to
maintain the infiltration and batch arrangement of
proliferating cells. To solve these problems, the injectable
microporous scaffolds have been designed by some research
groups (Bencherif et al., 2012; Griffin et al., 2015), which not
only adapt to tissue regeneration but also keep bulk stability.
These systems’ widely adoption, provides an ideal design
method with scaffold adjustability so that the scaffold can
meet the precise physical and chemical requirements of the
wound site (Dimatteo et al., 2018; Wu et al., 2021). Moreover,
tissue regeneration is closely associated with biomaterials in
situ degradation. The rate of tissue generation for optimal
tissue growth is the same as the biomaterials degradation rate
(Gaharwar et al., 2020).

Application and Prospect of In-Situ Bone
Tissue Regeneration
Zhang and his group fabricated a bioactive nanocomposite
hydrogel to regulate the delivery in the local and regeneration-
specific release of dexamethasone (Dex). The nanocomposite
hydrogel with excellent injection performance and efficient
stress relaxation, so it can be easily injected and adapted to
irregular bone defects. The release of Mg2+ from hydrogel can
promote osteogenic differentiation, encapsulate human
mesenchymal stem cells (hMSCs), and activate alkaline
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FIGURE 2 | Injectable HA-Pam-Mg nanocomposite hydrogel promotes the healing of bone defects. (A) Schematic representation of “smart” hydrogels and
injections of hMSC-laden nanocomposite hydrogels promote in situ bone regeneration. (B) Demonstration of the injectability and formability of nanocomposite
hydrogels. (C)HA-Pam-Mg nanocomposite hydrogels encapsulating MSCs promote healing of rabbit femur defects (Zhang et al., 2018b). Copyright 2018, WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim.
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FIGURE 3 | Schematic diagram of MgO/MgCO3@PLGA(PMM) hydrogel promoting bone defect repair. (A) Schematic diagram of the mechanism of injectable
PMM hydrogel promoting bone defect regeneration. (B) SEM images of PLGA and PM scaffolds loaded with MgO/MgCO particles with different weight ratios. (C) The
relative expression levels of marker genes related to osteogenic differentiation were analyzed. (D) Reconstructed 3D micro-CT images of rat crania with the treated
defects labeled with rectangular box (gray: PLGA, blue: PMM). (E)Histological evaluation of bone defect regeneration using H&E, Masson’s trichrome, and Safranin
O-Fast Green staining (*represents residual materials showing the blank area; red arrows indicate new bone, and black arrows indicate host bone) (Zhou et al., 2021).
Copyright 2021, American Chemical Society.
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phosphatase (ALP) (Figure 2). For the sake of promoting hMSCs
osteogenesis further, the activated ALP catalyzes the
dephosphorylation of Dex phosphate results in releasing Dex
from hydrogel quickly. With an emphasis on the bone
regeneration rate is better than previous in terms of the
positive feedback circuit controlling the activation and release
of Dex at the hydrogel implantation sites. The report reveals that
injectable nanocomposite hydrogel regulates diverse therapeutic
cargoes released in an optimization way and promotes in situ
bone regeneration through minimally invasive surgery (Zhang
et al., 2018b).

Hang reported an excellent injectable MgO/MgCO3@PLGA
(PMM) hydrogel to improve bone regeneration. PMM hydrogel
not only has good injectable properties, but also can form porous
scaffolds in situ by solid-liquid transformation, and fill irregular
bone defects through its huge shape adaptability. As shown in
Figure 3, the injectable PMM hydrogel was investigated for rat
calvarial defect repair. Injectable PMM hydrogels can form
porous scaffolds in situ, through controlled release of Mg2+,
can meaningfully promote bone regeneration (Zhou et al.,
2021). Another study reported an in situ-forming biomaterial,
which mixed montmorillonite (MMT) with photopolymerizable
methacrylated glycol chitosan (MeGC) hydrogel, could promote
bone regeneration. And the nanocomposite hydrogels have great
potential to recruit native cells and promote bone formation.
Nanosilicate-loaded MeGC hydrogel, which provides a new
material design strategy with cell-free and free of growth
factors (Cui et al., 2019).

To exploit the potential of hydrogels in various bone
regeneration strategies, further research should also focus on
developing better compatible nanoparticles (Mehrali et al., 2017).
Additionally, one of the biggest challenges still facing bone tissue
engineering is that, unlike natural tissues, biomaterials lack the
ability to repair themselves (Koons et al., 2020).

EXOSOMES: A CELL-FREE TISSUE
ENGINEERING STRATEGY FOR BONE
REGENERATION
Biogenesis and Composition of Exosomes
Extracellular vehicle (EV) is a phospholipid bilayer spherical
structure with substantial dynamic heterogeneity, which is
released by almost all mammalian cells and plays a vital role
in cell-to-cell communication (Robbins and Morelli, 2014). The
exosome is a saucer-shaped vesicle with a diameter of 40–160 nm
(Figure 4), which can float in sucrose gradients with a density of
1.13–1.19 g ml−1. Plenty of cell types can secret and absorb
exosomes, such as endothelial cells, immune cells, tumor cells
and mesenchymal stem cells (MSCs) (Huang et al., 2021). Since
diverse cells with different characteristic exosomes, this reflects
the sorting process of exosomes not just related to the donor cells
(van Niel et al., 2006). Some studies have found that both inside
and surfaces of exosomes contain cargo, which refers to various
proteins and nucleic acids, including DNA, mRNA, miRNA,
lipids and small molecules (Mathivanan et al., 2010; D’Asti
et al., 2012). It has been demonstrated that some proteins
originate from cells or tissue while others are existing in all
exosomes by proteomic analysis (Valadi et al., 2007). Generally,
the various function of proteins are contained by exosomes such
as heat shock proteins (HSP70 and HSP90) not only take part in
the stress response but also connect with antigen binding and
delivery; tetraspanins such as CD9, CD63, CD81 and CD82,
which are involved in cell penetration, fusion and invasion. In
addition, in exosome secretion, MVB (Multivesicularbody)
formation proteins (Alix, TSG101) and proteins (Annexin and
Rab) were found to possess the capacity of membrane
transplantation and fusion (Cordonnier et al., 2017). Among
the above proteins, some of them are involved in exosome
biogenesis, such as fotilin, TSG101 and Alix. These proteins

FIGURE 4 | Biogenesis and composition of exosomes. Exosome formation is initiated by invagination of the plasma membrane to form EEs, which fuse to form
MVBs. Then, MVBs fuse with the plasma membrane to release exosomes into the extracellular matrix, or fuse with lysosomes for degradation. The composition of
exosomes includes lipids, DNA, RNA and proteins (Huang et al., 2021). Copyright 2021, The Royal Society of Chemistry.
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are secreted during plasma membrane spillage, while others exist
specifically in exosomes and can be regarded as exosome marker
proteins, such as HSP70, TSG101, CD63 and CD81 (Cordonnier
et al., 2017; Elkhoury et al., 2020).

Exosomes are involved in the regulation of different signaling
pathways in neighboring and distant recipient cells by delivering
kinds of biomolecules, including mRNAs, miRNAs, proteins and
lipids (Akbari et al., 2020; Hu et al., 2021). As a cell-free
biomaterial, exosomes can solve some problems encountered
in the clinical application of regenerative medicine, such as the
source, quantity and immune rejection of seed cells. Thus,
combining exosomes with tissue engineering scaffolds can
provide a new generation of scaffold biomaterials that are
more suitable for tissue repair (Huang et al., 2021).

Separation and Extraction Strategies for
Exosomes
The limitation of nano-sized and distributing in complex body
fluids leads to difficulty to isolate exosomes in high yield (Willms
et al., 2018). At the moment, ultracentrifugation is one of the
most feasible strategies for exosome isolation due to its high yield,
but the high levels of protein aggregates and lipoprotein
contamination present in exosome samples prepared by this

method are critical for quantitative and functional analysis
have a large impact (Li et al., 2017). Since it is impossible for
a single way to adapt to diverse sample sources, efforts have been
made to explore the different physicochemical and biochemical
properties of exosomes. At present, six kinds of methods have
been used in exosome separation (Table1), including
ultracentrifugation, immunoaffinity capture, ultrafiltration,
charge neutralization polymer precipitation, microfluidic
technology and size exclusion chromatography. Each method
has its unique special advantages and disadvantages (Yang et al.,
2020). Exosomes isolated by different methods can usually be
identified by detecting their surface morphology, particle size,
and surface markers. Commonly used morphological-based
identification methods include transmission electron
microscopy (TEM) (Manda et al., 2018), scanning electron
microscopy (SEM) (Singh et al., 2014), cryo-electron
microscopy, and atomic force microscopy (AFM) (Misumi
et al., 2018). Identification methods based on exosome size
include nanoparticle tracking analysis (NTA) and dynamic
light scattering (DLS) (Sitar et al., 2015). Exosome-based
identification of various specific or non-specific markers. They
contain the same fusion proteins and membrane transport
proteins (Annexins, Flotillin, GTPases), Tetraspannins (CD9,
CD82, CD81 and CD63) (Zhang et al., 2012). Exosomes

TABLE 1 | Current strategies for exosome separation (Yang et al., 2020).

Isolation technique Advantages Disadvantages

Sequential ultracentrifugation • Low cost and • High equipment requirement
• Low contamination risk with extra isolation

reagents
• Time consuming
• Labor intensive

• Suitable for large volume preparation • Protein aggregation
• Low portability

Ultrafiltration • Low equipment cost • Moderate purity
• Fast procedure • Possible loss due to clogging and membrane trapping
• good portability

Gradient ultracentrifugation • High purity of products • Lower volume process ability
• Allowing separation of subpopulation of

exosomes
• High equipment requirement
• Time consuming
• Labor intensive
• Low portability

Size-exclusion
chromatography

• High purity • High device costs
• Fast preparation • Additional method for exosome enrichment is required
• Keep native state of exosomes
• Good reproducibility
• Potential for both small and large sample

capacity
Immunoaffinity capture • Suitable for separating exosomes of specific

origin
• High-cost antibodies

• High-purity exosomes • Exosome markers must be optimized
• Easy to use • Low processing volume and yields
• No chemical contamination

Microfluidics-based
techniques

• Highly efficient • Low sample capacity
• Cost-effective
• Portable
• Easily automated and integrated with diagnosis

Polymer Precipitation • Easy to use • Contaminants of protein aggregates, other extracellular vesicles and polymeric
contaminants

• Using ordinary equipment • Extended processing time
• Suitable for both small and large sample volume • Require complicated clean-up steps
• High efficiency
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derived from MSCs could be stored at −20°C or −70°C, and can
maintain biological activity for a long time (Sokolova et al., 2011;
Lee et al., 2016).

Recent Advances of Exosomes for Bone
Tissue Regeneration
Recently, compared with other cell-based therapies, the secretion
of MSCs have received considerable attention as a regeneration
tool (Liu et al., 2017). First discovered in the 1960s, MSCs were
originally described as spindle cells derived from bone marrow,
which regulate the quiescence and self-renewal of hematopoietic
stem cells via the release of paracrine factor (Pluchino and Smith,
2019). These cells with the feature of heterogeneous, apart from
bone marrow, have been successfully isolated from the placenta,
amniotic fluid, adipose and other tissues. Exosomes, which are
derived from MSCs, have a vital influence on the function of
endothelial cells and promote tube formation and thus play a role
in angiogenesis and vascular network maturation (Li et al., 2016).
It is easy to isolate bone marrow mesenchymal stem cells from
adult tissues and have great expansion ability in vitro. Several
evidence has been shown that MSCs with an outstanding
therapeutic role in plenty of diseases (Khayambashi et al., 2021).

There is no doubt that the MSC-based tissue engineering
method is an innovative strategy for clinical treatment (Lin
et al., 2017). Nevertheless, it has been found that they are
instability and with the potential to form cancer (Carson et al.,
2006). These findings lead the research community to reconsider
the biosafety of stem cell therapy. With the development of cell-
free therapies, exosome has gradually become a tool for tissue
repair, which is better than traditional stem cell therapy because it
conquers risks and limitations.

Zhang et al. (Zhang S. et al., 2018) reported that MSC-derived
exosomes with the potential to repair osteochondral defects
through a way that contains increased migration, matrix
synthesis and proliferation, decreased apoptosis and regulated
immunoreaction. Cui et al. (Cui et al., 2016) reported that
mineralized osteoblasts derived exosomes affected the miRNA
profile of recipient bone marrow cells, thus promoting
differentiation into osteoblasts. Owing to a change in miRNA
profile, the expression of Axin 1 was inhibited, whereas the
expression of ß-catenin was increased as well as the Wnt
signaling pathway was activated (Gu et al., 2021).

Studies have shown that exosomes from MSCs with similar
functions to MSCs, including tissue regeneration and repair,
inhibition of inflammation, regulation of immunity and so on
(Askenase, 2020). Some advantages of using exosomes for tissue
regeneration rather than MSCs are as follows. First of all, the
immune risks associated with stem cell transplantation are
avoidable. And exosomes cannot self-replication without the
potential to form endogenous tumors (Lener et al., 2015). A
report showed that a spinal cord–injured patient, who
transplanted olfactory mucosal stem cells, formed tumors at
the injured site (Dlouhy et al., 2014), emphasizing stem cell
therapy with potential risks. Second, compared with MSCs,
exosomes can be stored for a longer time and can be used
more conveniently. Third, differ from exosomes, MSCs are too

big to circulate through capillaries. Especially, exosomes can
promote lung repair by entering the lungs after infecting
Corona Virus Disease 2019 (COVID-19) (Askenase, 2020).
Finally, in contrast with MSCs, the biogenesis and functional
characteristics of exosomes can be defined more correctly. The
function of MSCs can be reprogrammed by environmental
factors, but not exosomes (Lener et al., 2015). All of these
advantages make MSC exosomes can be administered easily
and treat kinds of diseases safe (Shiue et al., 2019).

A study reported that exosomes secreted by human
mesenchymal stem cells (hMSCs) could induce osteogenesis of
hMSCs through osteogenic pre-differentiation at different times,
and the extracted exosomes were combined with 3D printed
titanium alloy scaffolds for cell-free bone regeneration (Figure 5).
The results showd that the bone tissue regeneration efficiency of
cell-free exosome scaffolds was comparable to that of hMSC-
seeded scaffolds, so replacing stem cells with osteogenic exosomes
secreted by pre-differentiated stem cells was expected to become a
new cell-free bone regeneration pathway (Zhai et al., 2020).

Limitation and Prospect of Exosomes for
In-Situ Bone Regeneration
Although we all know the benefits of exosomes, the shortcomings
of delivering a therapeutic dosage of exosomes, peculiarly via
systemic injections, may over their advantages (Riau et al., 2019).
The common ways to administer exosomes are intravenous,
subcutaneous, and intraperitoneal injections. When it comes
to the exosomes’ biological effects, the crucial factor that must
be considered is the target cell, which could internalize exosomes
through endocytosis, if not, exosomes will enter the blood
circulation and be quickly removed. Since the short half-life
exosomes possess, which exist only 2–4 min (Saunderson et al.,
2014), and will be quickly removed from the blood vessels. Then
exosomes will enter the organs (Schiffelers et al., 2000). For
example, exosomes isolated from B16-BL6 mouse melanoma
cells rapidly disappeared after intravenous injection with a
half-life of 2 min (Takahashi et al., 2013). Further study has
been demonstrated that after 2 h systemic injection, exosomes
can be found in the liver, lung, spleen and gastrointestinal
significantly (Takahashi et al., 2013; György et al., 2015).
Generally, these exosomes are mainly phagocytosed by
macrophages in the spleen or liver (Huang et al., 2021). On
the one hand, the injection ways of exosomes like direct
intravenous, subcutaneous and intraperitoneal injection, can
cause a macrophages response in the reticuloendothelial
system, leading to rejection. When applied systemically or
locally (skin or eye), exosomes have shown a short half-life
after interacting with sweat, tears and the epithelial barrier
(Riau et al., 2019). On the other hand, it is difficult to purify
and produce exosomes on a large scale due to the demand for
consistency of nanometer-sized exosomes by the costly protocols
(Riau et al., 2019).

To solve this problem, the exosome therapy research with
emphasis on the combination of exosomes and biomaterials. The
durability and stability of exosomes can increase significantly
while combined with diverse biomaterials as scaffolds.
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FIGURE 5 | Overview of stem cell-derived exosomes for bone tissue regeneration. (A) Exosomes from hMSCs were isolated and complexed with Ti scaffolds and
implanted into the radial defect of the rat. (B) Immunofluorescence staining of osteogenic markers (COL-1[a-e]; OPN[f-j]) in hMSCs showing osteogenic exosome-
induced osteogenic differentiation. (C) Real-time PCR of osteogenic markers (COL-1, Runx2, ALP, and OPN) showed exosome-induced osteogenesis of hMSCs. (D)
Intensity of Alizarin Red after induction in various exosomes. (E) H&E staining demonstrated new bone formation in vivo (Zhai et al., 2020). Copyright 2020 The
Authors. Published by Wiley-VCH GmbH.
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Furthermore, the ideal biomaterial should with the capacity of
maintaining the bioactivity of exosomes and controlling the
release kinetics of exosomes in terms of the expected release
schedule. In addition, the characteristic of biomaterials must be
taken into consideration, which can influence the efficiency of
loading or releasing exosomes. Thus, when it comes to materials
design, porosity is a fundamental element that needs to be
emphasized, which can promote substance transport in the
injured tissue owing to highly connected porous networks.
Through the micro or nanoscale porosity can release bioactive
agents, move gasses, nutrients, and waste products better than
materials of other sizes. Tissue engineering biomaterials as similar
to the natural ECM, which can supply migration, growth and
survival of MSCs with a scaffold. As biomaterials for bone tissue
repair, with proper stability and integrity, and have appropriate
stiffness and mechanical properties like bone tissue look
necessary. Undoubtedly, the scaffold needs the potential to be
biodegradable, and the degradation rate should match the
regeneration of new tissue so that the scaffold could be
replaced. When cleavable groups need to incorporate into the
scaffold, the rate of degradation should be controlled primarily.
What important most is the biocompatibility of biomaterial, the
potential to perform without causing adverse host reactions, and
it should not accumulate in the body, thus the biomaterial and
degradation products should be bio-absorbable (Safari et al.,
2021).

As we all know, natural ingredients obtained from biological
sources with inherent biocompatibility can be well applied in the
body and can also be degraded by enzymatic cleavage easily.
However, synthetic biomaterial with more fantastic functions
and structures. The biomaterials will be more universal if
change the molecular composition gain new properties and
optimize the existing properties and so on. Beyond that,
kinds of membranes, nanoparticles and hydrogels have been
used to promote the controlled release of bioactive molecules in
tissue repair (Ding et al., 2014; Xu et al., 2015; Liang et al., 2019;
Safari et al., 2021).

Without encapsulation, exosomes can be cleared from the
body through fluids at a quick speed (Riau et al., 2019). Thus,
delivering exosomes needs a more powerful way to avoid
clearance by the host (Khayambashi et al., 2021).

EXOSOMES LADEN HYDROGELS FOR
INDUCING IN-SITU BONE REGENERATION

Hydrogel as a Vehicle for Exosome Delivery
It is a popular choice to apply hydrogels as a delivery system and
scaffold materials owing to hemostatic ability, antibacterial
activity, injectability, tissue adhesion, self-healing and so on
(Li et al., 2015; Huang W. et al., 2016; Lokhande et al., 2018;
Safari et al., 2021). Hydrogel encapsulated exosomes can protect
them without degradation and supply therapeutic effects with
persistent exosomes delivery (Riau et al., 2019). Currently, the
local continuous drug delivery of exosomes is available through
hydrogels as carriers. For instance, previous studies reported that
the MSC-EVs combined with chitosan and silk fibrin-synthesized

hydrogels showed a sustained release and long-term wounding
healing for up to 2 weeks (Shi et al., 2017). The property of
hydrogels, such as hydrophilic and cross-linking behavior, have
promoted the capability of controlled drug release. Besides, it has
demonstrated that hydrogels with important effects on the fields
of bone formation, angiogenesis, immunology and oncology
(Mantha et al., 2019). It has been studied that the purified,
unformulated exosomes biodistribution in animal models. The
vary of administrations including intravenous, subcutaneous,
intraperitoneal, intranasal and retro-orbital, were used to
evaluate disposal and exosome kinetics in vivo (Zhang et al.,
2018a).

In comparison with stem cells, exosomes with more
advantages in tissue regeneration can maintain biological
activity and are highly stable for some time. Additionally,
exosomes have the capability for targeting organs, initiating
tissue regeneration, and protecting plenty of bioactive
ingredients without degradation (Lou et al., 2017). Owing to
exosomes do not have self-replicating characteristics, exosomes
can reduce the danger of iatrogenic tumor formation and can
reduce the formation of embolism when MSCs are injected.
However, purified unformed exosomes can be cleared from
the host at a short period after being absorbed by the
reticuloendothelial system (Conlan et al., 2017). To conquer
these limitations, hydrogels with the property of degradation
can play a crucial role in protecting exosomes and take for a
carrier and delivery depots of exosomes in the entry site so that a
more durable therapeutic effect will obtain.

In addition, the high concentration of therapeutic molecules
involved in exosomes can be delivered locally when exosomes are
combined with hydrogels and applied near or in the target tissue
site (Riau et al., 2019). Because of the structural or
physicochemical characteristics of the hydrogel, the
degradation rate of the hydrogel matrix can be adjusted, and
the release and functional characteristics of the embedded
exosomes can be controlled.

Furthermore, biodegradable hydrogel should be taken into
consideration as an outstanding candidate for exosomes
encapsulation in plenty of treatments, because they have the
ability of biocompatible and are similar to the intracellular
matrix. These advanced hydrogel-exosome formulation
platforms could offer special formations to tissue engineering,
for example, bone repair (Liu et al., 2019). To a certain degree, the
treatment effect of exosomes depends on the design and function
of hydrogels (Pishavar et al., 2021).

Approaches of Hydrogel-Exosome
Encapsulation
At present, there are several methods to transport exosomes to
target tissues and organs, which can be divided into systematic
and local. Systemic ways of administration include intravenous,
oral, intranasal, intraperitoneal, and subcutaneous, while local
administration can be realized by directly loading exosomes
suspension or loading exosomes into biomaterials (Pinheiro
et al., 2018; Alqurashi et al., 2021). The therapeutic benefit
process of using exosomes is enhanced by the use of hydrogels
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in bone tissue engineering. Generally, there are three ways to
encapsulate exosomes into a hydrogel matrix (Riau et al., 2019).

The first means is that exosomes are combined with the
polymer, and then a cross-linking agent is added to induce
gelation (Figure 6A). Studies have reported this method,
which uses hyaluronic acid (HA), gelatin and heparin to form
a polymer. Exosomes derived from bone marrow stem cells are
incorporated into this polymer, and polyethylene glycol
diacrylate (PEGDA) is used as the gelling agent of the system
(Ghosh et al., 2005; Qin et al., 2016). This method is based on the
active precursor for covalent cross-linking. Since this technology
provides hydrogels with adjustable properties, controllable
mechanical properties and degradation rates, it is an attractive
strategy for exosomes and cell encapsulation (Nicodemus and
Bryant, 2008). Nevertheless, a universal problem that exists is that
when new compounds are added, such as cross-linking agents,
they may be potentially cytotoxic to biomolecules. The advantage
of this method is the use of macromonomers, which are usually
derived from biocompatible polymers (Khayambashi et al., 2021).

The second way is the physical combination of hydrogel or
“breathing” technology (Figure 6B). This technique has twomain
steps. First, the water in the hydrogel is removed by putting the
swollen hydrogel in a solvent. The second step is to put the
hydrogel in an aqueous solution containing exosomes so that the
porous hydrogel is absorbed into the exosomes (Thomas et al.,
2009). According to the principles of smart hydrogels, the method
has been developed. That is, the hydrogel will form a swelling
structure when in water, and the hydrogel will even collapse and
undergo a phase change in a low-polar solvent (Shipway and
Willner, 2001). Nevertheless, to use the method, the pore size of

the hydrogel needs to be adjustable, and there is no doubt that the
pore size needs to be larger than the encapsulated exosomes. Once
inside the cell, loosely attached exosomes will effusion when
exposed to the target (Thomas et al., 2009).

The last method is to mix the polymer and the crosslinker in
the solution with the exosomes at the same time (Figure 6C). A
study used this method, which resulted in situ gelation, enabling
targeted delivery of exosomes to the site of action. They used fat-
derived exosomes and peptides for wound healing (Wang et al.,
2019). In general, this strategy requires the use of a dual-cavity
syringe, which has the ability to inject the hydrogel with exosomes
directly into the defect site (Ghosh et al., 2005; Riau et al., 2019).
There are a variety of mechanisms that can be used for in-situ
gelation, such as ultraviolet radiation, ion exchange, pH changes,
and temperature changes (Ruel-Gariépy and Leroux, 2004). This
strategy is very significant in filling the critical size defects of
complex shapes, allowing the combined biomolecules to have
good viability. This type of injectable scaffold has the required
inherent tissue properties, so it can work alone without external
induction (Sargeant et al., 2012; Khayambashi et al., 2021).

Advances and Development of
Exosome-Laden Hydrogels for In-Situ Bone
Regeneration
The interaction between exosomes and biological materials
determines the effective concentration of exosomes in
biological materials. Electrostatic interaction and biologically
active adhesion are the main ways to combine exosomes with
biological materials. The mutual attraction or repulsion between

FIGURE 6 | Approaches to encapsulate exosomes in hydrogels: (A) Combining the exosomes with polymers followed by the addition of crosslinkers to induce
gelation. (B) Physical incorporation of the hydrogels, or the “breathing” technique. (C) Mixing of the exosomes with both the polymers in solution and crosslinkers
simultaneously (Khayambashi et al., 2021). Copyright 2021, MDPI, Basel, Switzerland.
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FIGURE 7 | Schematic diagram of uMSCEXOs combined with HA-Gel and nHP scaffolds to promote the repair of skull defects. (A) Hydrogel composite exosomes
scaffold promotes angiogenesis to repair critical size skull defects in rats. (B) The micro-CT scan image and quantitative analysis of the Masson’s trichrome (40 × ) image
after 8 weeks of repairing the critical size skull defect in vivo in the rat, showing the skull defect area. (C) Transwell migration analysis of endothelial progenitor cells in
different treatments. (D)CCK-8 shows that uMSCEXOs can promote EPCs proliferation. (E)Quantitative analysis of the migration rate (Zhang et al., 2021). Copyright
2021, American Chemical Society.
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FIGURE 8 | HucMSC-derived exosomes combined with CHA/SF/GCS/DF-PEG hydrogel for the treatment of femoral condyle defects in rats. (A) The separation
and identification of HucMSC-derived exosomes and the preparation of CHA/SF/GCS/DF-PEG hydrogel are used for testing on SD rats with induced femoral condyle
defects. (B) 0, 30 and 90 days after implantation of CHA/SF/GCS/DF-PEG hydrogel or CHA/SF/GCS/DF-PEG hydrogel combined with hucMSC-derived exosomes,
gross observation (C) X-ray (D) Micro-CT imaging results (Wang et al., 2020). Copyright 2020, Frontiers in Bioengineering and Biotechnology.
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exosomes and biological materials depends on the negatively
charged phospholipid membrane of exosomes and the charged
residues of glycocalyx (Gerlach and Griffin, 2016). For example, a
cation delivery system containing chitosan hydrogel retains
exosomes through electrostatic force. The exosomes derived
from MSC express adhesion molecules, for example, CD44
and a integrins. Therefore, exosomes have biological activity
on extracellular matrix ingredients, for instance, type I
collagen, fibronectin and hyaluronic acid and so on (Huang
C.-C. et al., 2016; Brennan et al., 2020; Safari et al., 2021).

Zhang has reported that a nanoparticle composite was
prepared by encapsulating umbilical MSC-derived exosomes
(uMSCEXOs) in hyaluronic acid hydrogel (HA-Gel), and
combining them with nanohydroxyapatite/poly-ε -caprolactone
(nHP) scaffold combined to repair rat skull defects (Figure 7).
The methods of imaging and histological evaluation have shown
that the uMSCEXOs/Gel/nHP composite material significantly
promotes bone regeneration in vivo, and uMSCEXOs may be
essential in the bone repair pathway. In addition, in vitro
experiments have shown that uMSCEXOs have the potential to
make endothelial progenitor cells (EPCs) proliferate, migrate, and
angiogenesis, but have little effect on the osteogenic
differentiation of bone marrow mesenchymal stem cells. It
cannot be ignored that mechanism studies have shown that
exosomal miR-21 is a potential intercellular messenger, which
promotes angiogenesis by up-regulating the NOTCH1/DLL4
pathway. In summary, the results of the study show a way to
use exosomes to repair bone defects, which may be regulated by
the miR-21/NOTCH1/DLL4 signal axis (Zhang et al., 2021).

Another research has been reported that a self-healing
coralline hydroxyapatite (CHA)/silk fibroin (SF)/glycol
chitosan (GCS)/difunctionalized polyethylene glycol (DF-PEG)
hydrogel was successfully prepared (Figure 8), which has perfect
comprehensive properties. Moreover, it is expected to be an
excellent material that will be used in bone graft. The better
bone repair effect will be if add hucMSC-derived exosomes to this
hydrogel (Wang et al., 2020).

FUTURE AND PROSPECTS

In the past few decades, bone tissue engineering has gradually
developed, especially in the past few years due to the rise of in-
situ tissue engineering. In this context, the composite of various
types of hydrogels and nanoparticles that are similar to natural
extracellular matrixes has obvious advantages in the treatment
of bone tissue repair. There is no doubt that the evaluation of the
main properties of hydrogel composite nanoparticles, such as
biocompatibility and biodegradability, is necessary. In addition,
their interaction with surrounding tissues is also an important
factor that must be considered. Seed cells are widely used as a
key element in regenerative medicine. For example,
mesenchymal stem cells (MSCs) derived from various sources
have good prospects in clinical research as cell-based therapies.
As the core of tissue repair, seed cells are widely used in various

fields of regenerative medicine. However, the use of stem cells
for treatment always has problems such as low cell survival rate
and immune rejection. Therefore, the use of stem cells for tissue
regeneration has safety issues that cannot be ignored (Hofer and
Tuan, 2016). And most of the therapeutic benefits of MSCs
come from the release of paracrine factor exosomes with anti-
inflammatory activity. The exciting discovery of exosomes
contributes to cell-free therapy in tissue regeneration.
Exosomes are nanoscale extracellular vesicles that contain
biologically active molecules such as RNA and proteins;
therefore, exosomes have similar functions to parent cells.
Although the size of exosomes is similar to liposomes,
naturally derived exosomes have many natural advantages
over other nanoparticles. Naturally derived exosomes have
outstanding biocompatibility, biodegradability, low toxicity
and immunogenicity. The major limitations of exosome
extraction was the purity and mass production, which
restricted the wide clinical application (Aheget et al., 2020).
Moreover, exosomes had their own inherent limitations
including low targeting capacity, low circulating half-life and
low concentration of functional molecules, which affected the
clinical effectiveness (Jafari et al., 2020). The separation of
exosomes is also a key issue. At present, ultracentrifugation
is the most common method for extracting exosomes, but it also
has disadvantages such as lipoprotein contamination. If we want
to make progress in the field of exosomes research, we must
develop efficient exosomes separation technology. A large
number of studies have shown that the compounding of
exosomes and hydrogel can improve the stability of
exosomes and provide a continuous treatment environment
for tissue defects. In addition, it contributes to maintaining
the content of exosomal protein and miRNA in the body.
However, many current treatment strategies to promote bone
tissue repair also have shortcomings. These limitations include
how the biomimetic scaffold is optimized to be like natural
tissues and how bioactive molecules can deliver and maintain
activity more efficiently. With the comprehensive disclosure of
exosomes and their functions, the combination of exosomes and
hydrogels will have more applications that cannot be ignored in
clinical practice.
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