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Abstract: Multiple myeloma (MM) is the second most common hematological malignancy and is
attributed to monoclonal proliferation of plasma cells in the bone marrow. Cancer cells including
myeloma cells deregulate metabolic pathways to ensure proliferation, growth, survival and avoid
immune surveillance, with glycolysis and glutaminolysis being the most identified procedures
involved. These disorders are considered a hallmark of cancer and the alterations performed ensure
that enough energy is available for rapid cell proliferation. An association between metabolic
syndrome, inflammatory cytokinesand incidence of MM has been also described, while the use of
metformin and statins has been identified as a positive prognostic factor for the disease course. In
this review, we aim to present the metabolic disorders that occur in multiple myeloma, the potential
defects on the immune system and the potential advantage of targeting the dysregulated pathways
in order to enhance antitumor therapeutics.
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1. Introduction

Multiple myeloma (MM) is the second most common hematologic malignancy and
is attributed to bone marrow infiltration by monoclonal plasma cells. The plasma cell
proliferation in the marrow leads to increased production and circulation of the monoclonal
paraprotein (M-spike) in serum and/or urine [1]. The cardinal clinical features of MM
include anemia, hypercalcemia, renal impairmentand myeloma-related bone lesions [2].
The prognosis of MM patients has significantly improved over the past 15 years, mainly
due to the incorporation of novel agents.However, it still remains an incurable disease and
all patients will eventually relapse [3]. MM is considered a disease of the elderly, with a
median onset age of 69 years. The elderly population presents usually with concurrent
co-morbidities such as obesity, diabetes and hyperlipidemia [4–9]. Possibly, these metabolic
disorders might be involved in the disease pathogenesis, although it has not yet been
clearly defined. Although the exact underlying pathogenetic mechanisms of the disease are
unknown, it has been demonstrated that the disease is more common in African Americans.
On the other hand, this subgroup of patients has a better prognosis when compared with
matched Caucasian patients [10,11]. These racial disparities have been correlated with
racial variations in gene loci associated with inflammation [12,13]. Furthermore, other
functional gene loci with ethnic variations among myeloma patients are implicated in
several metabolic pathways in MM [14].

Metabolic disorders are considered a hallmark of cancer and the changes that occur
in metabolic pathways are necessary to ensure that enough energy is available for rapid
cell proliferation and tumor growth. In this context, glycolysis and glutaminolysis are
the two main metabolic pathways that are deregulated and might be combined with
immune system impairment [15,16]. It has to be noted that the patterns of metabolic
landscape in myeloma cells are dynamic during the disease course. Metabolic changes
have been associated with acquired resistance to backbone treatment agents in myeloma
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such as bortezomib and melphalan [17–19]. Interestingly, a heterogenous metabolic pattern
in baseline positron emission tomography/computed tomography (PET/CT) has been
recently associated with adverse prognosis in patients with MM [20]. Therefore, response
to antimyeloma treatment might be indirectly correlated to impaired metabolic status
and changes in microenvironment [21,22]. Furthermore, metabolic signatures may have a
prognostic value in patients with MM. A recent study has formulated a validated prognostic
model based on the expression status of seven genes related to metabolic pathways. Patients
belonging in the high-risk metabolic group had a significantly worse survival rate compared
with those presenting with a low-risk metabolic profile (62% versus 85%, respectively,
p < 0.001) [23].

In this review, we aim to present the metabolic disorders that occur in multiple
myeloma, the potential defects on the immune system and the potential advantage of
targeting the dysregulated pathways in order to enhance antitumor therapeutics (Figure 1).
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Figure 1. A schematic overview of the most important metabolic disturbances in myeloma microen-
vironment.

2. Glucose and Glutamine Pathways-General Principles

The main metabolic components involved in multiple myeloma pathogenesis are the
glucose and glutamine pathways. Hexokinase II is an enzyme overexpressed in multiple
myeloma that plays the role of a catalyst in the initial steps of glucose metabolism [24,25].
In combination with other metabolites and enzymes involved in the glucose pathway,
they could be potential targets to reverse the increased glycolysis in myeloma cells. The
glutamine pathway can also be targeted to alter the increased metabolic activities [26].
Additionally, the role of the folate and proline pathways in multiple myeloma metabolism
are currently under investigation. Myeloma cells undergo several metabolic changes such
as rearrangements involving adjustments in glucose, glutamine pentose phosphate, folate
pathway and serine metabolism. These alterations might be involved in drug resistance
along with hypoxia, apoptosis inhibition, epigenetic effects, drug inactivation, DNA dam-
age repair and drug efflux [27]. For example, resistance to bortezomib, a well-known and
widely used proteasome inhibitor has been correlated with the upregulation of several
metabolic pathways that could be potentially targeted. Resistance to immunotherapeutic
agents resistance has also been linked to metabolic disorders. Novel compounds targeting
metabolic pathways, if combined with immunotherapy along with the available treatment
options, might overcome the induced resistance [28].
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3. Glycolysis and Gluconeogenesis

In contrast to normal cells, cancer cells and myeloma cells depend on aerobic glycolysis
which converts glucose into lactic acid. This conversion leads to adenosine triphosphate
(ATP) production that is necessary for their growth and survival. It is known that myeloma
cells depend on glycolysis and are vulnerable to glycolysis inhibitors such as inhibitors
of glucose transporter (GLUT) and key glycolytic enzymes [29]. The upregulation of
GLUT1 isoform elevates glucose uptake and therefore GLUT1-inhibition can potentially
induce myeloma cell death [30]. Furthermore, other isoforms such as GLUT4 are also
crucial for myeloma growth and proliferation [31]. Initially, glucose is transported in
the cells, transformed into lactate which induces ATP production. This is mediated by
hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase M2 (PKM2) and lactate
dehydrogenase A (LDHA) that are highly expressed in myeloma [28]. An upregulation of
genes associated with aerobic glycolysis such as PKM2 and NIMA related kinase 2 (NEK2)
has been associated with inferior survival outcomes in patients with MM [32]. Along
with glycolysis the pentose phosphate bypass pathway (PPP) is also activated leading
to increased production of nicotinamide adenine dinucleotide phosphate (NADPH) and
glutathione (GSH) that is known to support tumor cells against oxidative stress [33]. It is
well known that oxidative stress is one of the main mechanisms targeted by bortezomib
and this might explain the drug resistance that is linked to increased antioxidant capacity.
Currently available data show that the production of NADPH may induce proteasome
inhibitors intolerance [34]. Lactate is transported by the monocarboxylate transporters
(MCT) MCT1 and MCT4. The expression of MCT1 is increased under aerobic conditions,
while MCT4 is increased under hypoxia [35].

Gluconeogenesis is a two-step process that leads to glucose production, therefore
ensuring stable blood levels. Pyruvate is initially converted to oxaloacetate and finally
converted to phosphoenolpyruvic acid (PEP). Subsequently, PEP is converted and phos-
phorylated to 1,2-bisphosphoglycerate. Several metabolic steps lead to the final product,
which is glucose 6-phosphatase that dephosphorylates forming glucose. This procedure
is considered the opposite of glycolysis and both share same enzymes and regulators to
ensure the homeostasis of blood glucose levels [28].

4. Glutaminolysis

Glutamine is another important component in plasma cell metabolism since depletion
of glutamine limits myeloma cell growth [36]. Glutamine is important for amino acids and
nucleotides synthesis [37]. Bortezomib-resistant myeloma cell lines have shown increased
mitochondrial function enhanced mainly by glutamine compared to glucose. Therefore,
alterations in glutamine metabolism might be involved both in treatment efficacy and drug
resistance [38]. Glutaminase inhibitors may restore the efficacy of proteasome inhibitors by
restoring caspase-mediated death signals [39]. c-Myc increases glutamine transporters and
glutaminase (GLS) expression leading to enhanced glutaminolysis [40]. In glutaminolysis,
glutamine is transported in the cells by binding to glutamine transporters such as amino
acid transporter ASCT2 (SLC1A5) and SNAT1 (SLC38A1) [41], is converted to glutamate
and α-ketoglutarate (α-KG) enhancing the TCA cycle [42,43]. It has been demonstrated that
CD138+ cells upregulate the expression of the glutamine transporters ASCT2 (SLC1A5),
LAT1 (SLC7A5) and SNAT1. However, the ASCT2 inhibition is the only one identified that
decreases glutamine uptake and myeloma cell growth [44].

5. The TCA Cycle

The TCA cycle is the main catabolic pathway that mediates the production of ATP,
which is the main energy component for myeloma cells. TCA cycle enhances this procedure
through fatty and amino acids metabolism along with the presence of oxygen. Based on
the energy needs of each cell the TCA cycle has several different regulation mediators that
might enhance or down regulate the relevant procedures [45]. Patients with MM present
higher levels of TCA intermediates compared with patients with the premalignant state of



Int. J. Mol. Sci. 2021, 22, 11430 4 of 15

monoclonal gammopathy of undetermined significance (MGUS) [46]. Increased glutamine
anaplerosis into the TCA cycle in myeloma cells is associated with increased expression of
the proto-oncogene c-myc. C-myc mutations are considered among the driver events of
progression from MGUS to MM [47].

6. Fatty and Amino Acid Synthesis

Fatty acids are responsible for stabilizing cell membranes and are important com-
ponents of long-term energy reserves. The synthesis starts with the reaction between
acetyl-CoA and malonyl-ACP, leading to acetoacetyl-ACP and C02, finally ending to syn-
thesis of glycerophospholipids, triacylglycerides, phosphatidateand phosphatidylcholine.
The production as well as the degradation of fatty acids is mainly dependent on the energy
reservoir. Whenever increased energy is required, ATP molecules are produced to accelerate
fatty acids degradation [28]. Amino acids are involved in protein and hormone synthesis.
In cases of energy starvation, fatty acids are exhausted and then proteins are degraded
to balance the energy gap. Protein oxidation leads to L-glutamine that is transferred to
liver to produce energy. Alternatively, the glucose-alanine cycle is activated to metabolize
the protein products [28]. Both increased fatty acid and amino acid synthesis may result
from increased glutaminolysis and promote cancer cell survival [48]. Furthermore, fatty
acids derived from bone marrow adipocytes may sustain the survival and propagation of
myeloma cells [49]. Myeloma cells have also shown to increase fatty acid binding proteins
(FABPs), which may promote tumor growth [50,51]. Interestingly, pharmacological inhi-
bition of fatty acid metabolism by etomoxir, which inhibits fatty acid beta oxidation, and
orlistat, which inhibits de novo fatty acid synthesis, suspended myeloma proliferation and
reduced myeloma cell survival [52].

7. Immune Cells Metabolic Disorders

As already described, cancer cells undergo metabolic alterations; however, it seems
that such alterations occur in immune cells as well, and this may lead to tumor survival
through immune escape [53,54]. M1 macrophages induce anabolic procedures, such as gly-
colysis and fatty acid biosynthesis (FAS) and M2 macrophages induce oxidative phospory-
lation (OXPHOS). Aerobic glycolysis is mainly induced by toll like receptor (TLR)-induced
signaling that stabilizes hypoxia-inducible factor (HIF)-1α and boosts mammalian target
of rapamycin (mTOR) [55]. Similarly, naïve and memory T cells mainly depend on OX-
PHOS and fatty acid β-oxidation (FAO) leading to ATP production [56,57]. Post-activation,
T-effector cells switch to glycolysis and glutaminolysis suppressing FAO [58]. This is
mediated by T cell receptor (TCR) and CD28 by phosphatidylinositol 3′-kinase (PI3K)-AKT-
mTOR pathway activation and upregulation of metabolic enzymes [59]. Activated NK
cells also induce glycolysis, since PI3K is required for NK maturation, homing and func-
tioning [60,61]. Since immune cells share the same metabolic requirements with myeloma
cells, metabolic competition is created. During the disease course from asymptomatic to
symptomatic and relapsing myeloma, the immune microenvironment is highly dynamic
and changes in the immune signatures also result in changes in the metabolic profile [62].
Cancer cells, through hypoxia and lactate increase, have better access to nutrients, which
promotes tumor survival and inhibits immune surveillance [63]. Based on the available
data, it is possible that controlling the myeloma cells could also restore immune cells’
functionality. Novel antimyeloma treatments and autologous stem cell transplantation
might reduce CD4+ naïve T cells, increase CD8+ memory T cells and increase CD4+ T cells
that overexpress PD1 [64]. The understanding of immune cell restoration might lead to
more effective treatment strategies in the near future.

8. PI3K-AKT and AMPK Pathways

The PI3K-Akt signaling pathway regulates transcription, translation, proliferation,
growth and survival. In MM, it is activated by interleukin (IL)-6 [65,66] and stromal-derived
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factor (SDF)-1 [67,68]. Following activation, Akt promotes mTOR and mTORC1 enhances
the expression of glycolytic enzymes such as PFK leading to increased glycolysis [69].

Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an energy
sensor of cellular activities and identifies energy stress by upregulating signal transduc-
tion pathways and downregulating ATP-consuming biosynthesis processes. Furthermore,
AMPK suppresses the mammalian target of rapamycin (mTOR) signaling pathway [70].
Upregulation of the AMPK could be proven beneficial for antimyeloma treatment. Pre-
clinical studies have shown that resveratrol induces the phosphorylation of AMPK, which
in turn decreases the phosphorylation of mTOR and its downstream targets, that leads
myeloma cells to autophagy [71].

9. The Transcription Factors HIF-1α, c-MYC, and P53

HIF-1α is highly expressed in myeloma bone marrow and is considered as a regulator
of cellular metabolism [72]. HIF-1α enhances the expression of glycolytic genes and
suppressors of the TCA cycle [73,74]. Increased expression of HIF-1α may lead to drug
resistance [19,75]. Interestingly, pharmacologic inhibition of HIF-1α is able to restore
sensitivity to bortezomib in myeloma cell lines [19]. MYC family is an oncogene family that
regulates the genes involved in glycolysis and glutaminolysis [76]. When combined with
HIF it leads to mitochondrial impairment. P53 is a tumor suppressor and the deletion or
mutation of the TP53 gene is considered as one of the most important negative prognostic
factors in MM [77]. P53 is among the key regulators of cancer metabolism [78–80]. P53
induces aerobic glycolysis and inhibits the PI3K-Akt pathway [80]. Preclinical MM models
with P53 mutations have shown that BCMA overexpression alters the metabolic profile
and induces an immunosuppressive phenotype in the bone marrow in this setting [81].

10. Metabolic Deregulation of Angiogenesis

Increased angiogenesis in patients with multiple myeloma induces tumor prolifer-
ation. This is mediated mainly through vascular endothelial growth factor (VEGF) and
fibroblast growth factor-2 (FGF-2) and is correlated with worse prognosis. The endothelial
marrow cells secrete interleukin-6 and promote additional myeloma cell growth. Increased
angiogenesis reverses hypoxia and therefore the potential use of anti-angiogenic agents
results in a more hypoxic environment, along with increased glycolysis [82–84]. Other inter-
leukins such as IL-6 and IL-3 are also involved promoting myeloma cell differentiation [85].
Furthermore, myeloma cells impair the bone marrow microenvironment ensuring their sur-
vival. More specifically, tumor cells adhere to stromal cells, activate several antiapoptotic
pathways such as Janus kinase (JAK)/signal transducer and activator of transcription 3
(STAT3) and upregulate anti-apoptotic proteins such as BcL-xL, nuclear factor-κB (NF-κB)
and Mcl-1 [86]. The abovementioned interactions may lead to anemia via their adverse
effect on the erythropoietic niches [87].

11. Metabolic Disturbances of Calcium Metabolism

Hypercalcemia is a common metabolic disorder in multiple myeloma patients, es-
pecially those with high tumor burden and aggressive disease forms such as plasma cell
leukemia [88]. The main reason is the increased osteoclastic bone resorption compared with
renal impairment if present. In this case, the kidney functionality to clear calcium load is
downregulated, thus resulting in increased serum calcium levels [89]. Bone metabolism is
markedly deregulated in MM [90,91]. The bone resorption is mediated by receptor activator
of NF-κB ligand [RANKL], macrophage inflammatory protein [MIP]-1α, and tumor necro-
sis factors [TNFs]. The relevant cytokines are secreted either by myeloma cells or in the bone
marrow microenvironment [92]. Myeloma cells activate the osteoclasts leading to bone
resorption. The upregulation of the osteoclasts is mediated by adhesion modules such as
vascular cell adhesion molecule 1 (VCAM-1) and α4β1 integrin. Additionally, the RANKL
induces osteolysis along with other osteoclast-activating factors [93,94]. The induced bone
resorption leads to calcium in the extracellular fluid. Other factors seem to be involved in
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the pathogenesis of hypercalcemia; therefore, further investigation is required. Parathyroid
hormone-related protein (PTHrP) is usually within normal limits in contrary with solid
tumors and myeloma patients usually respond rapidly to corticosteroids administration,
due to rapid control of the disease. Interestingly, anti-myeloma treatment seems to restore
bone metabolism [95–99], whereas anti-resorptive treatment such as bisphosphonates and
anti-RANKL agents reverse myeloma-induced hypercalcemia [90,96].

12. Metabolic Syndrome

Metabolic syndrome represents a cluster of clinical features including central obesity,
insulin resistance and hyperglycemia, dyslipidemia and hypertension [89]. There is increas-
ing evidence for higher prevalence of the syndrome or its individual components in patients
with MM [100]. The question arising is whether this phenomenon is due to the advanced
age of MM patients, due to the disease itself or due to antimyelomaincluding steroids,
chemotherapy, and bone marrow transplantation [100,101]. Obesity has been identified
by several studies as risk factor for MM development and increased mortality [102–106].
A meta-analysis, including 19 prospective studies [103] reported a statistically significant
increased incidence of MM in overweight individuals (body mass index, BMI > 25 kg/m2,
risk ratio, RR = 1.12) or obese individuals (BMI > 30 kg/m2, RR = 1.21) compared to controls
with normal weight. Moreover, RR estimates of MM mortality were 1.15 and 1.54 for over-
weight and obese patients, respectively [103]. A case study of 82 patients at various stages
of MM reported that 58.5% of patients had at least one feature of metabolic syndrome [97].
A more advanced approach to study the possible effect of metabolic syndrome on MM risk
accounts for confounding variables such as environmental and dietary factors [107–113].
Mendelian randomization studies have shown contradictory results. Although the two
prior studies have not shown a significant correlation between obesity/adiposity and risk
of MM [114,115], a recent study revealed a possible causal relationship between MM and
greater genetically instrumented unfavorable adiposity according to single nucleotide
polymorphisms [116].

In addition to the above, obesity increases the number and size of bone marrow
adipocytes [117]. Accumulating evidence has shown that adipocytes are in close interplay
with myeloma cells [117,118]. Bone marrow adipocytes have a dual role; being an energy
depository andinvolvement in metabolic activity by providing adipokines and bioactive
molecules [118]. Myeloma cells may regulate adipogenesis in order to sustain their survival
and homing in the bone marrow milieu [118]. Myeloma cells induce the expression of genes
related to an inflammatory state and a senescence associated secretory phenotype (SAPS)
in the adipocytes, in order to promote myelomatogenesis and myeloma cell survival [119].
Interestingly, the response to treatment may restore the adipocyte homeostasis in the bone
marrow [120].

Several explanations have been proposed for the association of central obesity with
MM. Insulin resistance, hyperinsulinemia and subsequent hyperglycemia, overproduction
of insulin like growth factor 1 (IGF-1) and increased secretion of inflammatory cytokines
are considered as the most important factors related [101]. Interestingly, there have been
reported some cases of patients with MM who develop hypoglycemia episodes even in
the absence of a prior history of diabetes mellitus (DM). In these cases, hypoglycemia
has been associated with the ability of monoclonal paraprotein to recognize and bind to
insulin [121–123]. These anti-insulin monoclonal antibodies have low affinity to insulin.
Therefore, insulin may be able to bind to its receptor, but it has a delayed clearance and a
prolonged effect on glucose homeostasis [121].

A retrospective review of 1240 MM patients investigated the rate of DM, as well as the
impact of DM and anti-diabetic therapies on MM clinical outcomes [124]. Type 2 DM and
steroid-induced DM were present in 12.6% and 31.7% of the cohort, respectively. Patients
with DM presented a significantly reduced overall survival (OS) (median 65.4 months)
compared to non-diabetic patients (median 98.7 months). In the multivariate analysis,
steroid-induced DM was found as a significant predictor of poor OS [124]. Interestingly,
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there were differences among anti-diabetic medications. Specifically, metformin use was
associated with decreased mortality, while insulin analogues were associated with increased
mortality [124]. Furthermore, preclinical studies have shown that metformin amplifies
DNA damage induced by melphalan. Metformin decreases the availability of ATP for
the damage repair response in myeloma cells, which in turn leads them in increased
apoptosis [125]. Other studies also reported high prevalence of DM, between 18 and 22%,
already at the time of MM diagnosis [126,127]. Moreover, the results of a recent study
demonstrated a higher prevalence of DM (25%) among individuals even with smoldering
MM (SMM) compared to a healthy control group (8%) at baseline [101].

Dyslipidemia has been also extensively described in patients with MM, and particu-
larly in those with the immunoglobulin (Ig) A subtype [100,128,129]. It can be present as
isolated hypercholesterolemia or hypertriglyceridemia or in combination with clinical fea-
tures, such as cutaneous xanthomas and hyperviscosity syndrome [128,129]. The results of
a recent study demonstrated a higher prevalence of dyslipidemia (54%) among individuals
even with SMM compared to a healthy control group (32%) [101]. Interestingly, several
case reports of acquired myeloma-related Frederickson’s type III hyperlipoproteinemia
(increased remnant or intermediate-density lipoproteins, IDL) and type V hyperlipopro-
teinemia (increased chylomicron and very low-density lipoproteins, VLDL) hyperlipopro-
teinemia have been published [130,131]. Many studies have implicated paraproteins in
the development of MM associated dyslipidemia [101,129,132]. The binding of parapro-
teins to lipoprotein lipase, serum lipoproteins or tissue receptors, may result in clearance
reduction of lipoproteins and could explain the phenomenon from a pathophysiological
point of view [100,132]. Additionally, the fractional catabolic rate of IDL, the conversion of
IDL to low density lipoproteins (LDL), and the affinity of LDL to its receptor have been
found to be impaired in patients with MM, possibly due to the formation of Ig-lipoprotein
complexes [100]. LDL may prevent myeloma cell apoptosis and promote myeloma cell
survival [133]. Interestingly, patients with MM and high APOA1 serum levels, which is the
major component of high density lipoprotein (HDL), present superior survival outcomes
compared with patients with low APOA1 levels [134,135]. Patients with MM have lower
levels of HDL-C and higher levels of triglycerides at diagnosis and when myeloma is active,
as compared with healthy individuals [136]. Furthermore, patients with favorable disease
traits (international staging system, ISS-1) may present with higher HDL levels compared
with those with adverse prognostic characteristics (ISS-3) [134,135,137]. Dyslipidemia in
patients with MM may be relatively refractory to conventional lipid lowering medications,
but it seems responsive when MM is successfully treated [100,138]. On the other hand,
there is accumulating recent evidence to suggest that statin use may reduce both the risk of
MM development and mortality [139,140]. Interestingly, the combination of lipid-lowering
agents with proteasome inhibitors has shown to have a synergistic effect against myeloma
cells [141].

Hypertension is another component of metabolic syndrome and it has been reported
to be present with high incidence in patients with MM [142,143]. Additionally, there are
increased events of malignant hypertension in individuals with MM. It is possible that cer-
tain therapies used in MM such as high-dose steroids and selective proteasome inhibitors,
such as carfilzomib, may evoke hypertension in some patients [144,145]. However, even
at baseline and before any treatment initiation, the prevalence of hypertension among
MM patients approaches 38–47% [142,146]. The results of a recent study demonstrated a
higher prevalence of hypertension (60%) among individuals even with SMM compared to
a healthy control group (41%) [101].

13. Myeloma Treatment and Metabolism

The treatment landscape in MM includes several anti-myeloma agents and drug com-
binations with distinct mechanisms of action. The main drug categories include proteasome
inhibitors (bortezomib, carfilzomib, ixazomib), immunomodulatory drugs (lenalidomide,
pomalidomide, thalidomide), anti-CD38 monoclonal antibodies (daratumumab, isatux-
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imab), anti-SLAMF7 monoclonal antibodies (elotuzumab), epigenetic modifiers (panobi-
nostat), conjugated antibodies (belantamabmafodotin) and selective inhibitors of nuclear
export (selinexor) [147]. Preclinical studies have shown that anti-myeloma drugs exert a
selective pressure on myeloma cells, which have increased energy demands for survival.
Myeloma cells can hijack mitochondria from nearby bone marrow mesenchymal stem cells
through partial cell fusion and tunneling nanotubes [148]. Therefore, myeloma cells acquire
resistance to chemotherapeutic drugs. Interestingly, anti-mitochondrial agents have shown
to restore the sensitivity of myeloma cells to proteasome inhibitors [39]. The combination of
metabolic regulators with proteasome inhibitors may induce synthetic lethality, prevent the
activation of resistance mechanisms and increase efficacy [141,149]. Recently, preclinical
studies have shown that adaptive natural killer cells have decreased CD38 expression
and enhanced metabolic fitness by resisting oxidative stress, which may lead to improved
anti-myeloma activity in the relapsed disease setting [150,151]. Furthermore, the vast
majority of anti-myeloma regimens contain a high load of dexamethasone, which may
alter the metabolic profile substantially. Besides its anti-myeloma effect, dexamethasone
may induce disturbances in lipid and glucose metabolism, as well [152]. Therefore, the
metabolic phenotype of patients with relapsed/refractory MM may vary significantly and
reflect the metabolic imprint of previous lines of therapy.

14. Conclusions

In conclusion, MM is a heterogeneous disease with several therapeutic options that
can prolong patients’ survival. Despite the incorporation of novel agents over the past few
years, the underlying metabolic reprogramming through hypoxia and increased lactate
enhances tumor growth and survival and supports drug resistance. Myeloma cells compete
with immune cells with regards to their metabolic needs and this overlapping interaction
needs to be further investigated. Metabolic disorders have an important impact in the care
of patients with MM. Importantly, prognostic models incorporating metabolic indices may
improve patient risk stratification in addition to the well-established revised ISS [23]. A
further insight will explain tumor growth and progression, and probably identify predictive
and prognostic biomarkers for the management of multiple myeloma. Glucose is the most
important energy compound and is essential for all regular functions. Therefore, it is
believed that targeting the aspects of glucose metabolism mentioned above could lead
to novel therapeutic options. More specifically myeloma cells mainly enhance glycolysis
and lactate production instead of TCA cycle activation. This results in tumor growth,
myeloma survival and, finally, chemoresistance. When glucose metabolism is inhibited
post exposure to therapeutic agents such as proteasome inhibitors, the myeloma cells
become resistant, and their energy needs depend mainly on glutamine and thus are less
vulnerable to apoptosis [153]. When glutamine is the main energy compound used, it also
affects the bone marrow microenvironment.

The combination of antimyeloma treatment with agents targeting the relevant metabolic
pathways could be a potential future strategy to cure the disease. Targeting the GLUT and
MCT transporters, IGF-1, FAS, ETC and OXPHOS need to be further explored as potential
anti-myeloma therapeutic strategies. Ideally, future preclinical and clinical studies will
help to elucidate metabolism’s role in myeloma development and progression and may
lead to the discovery of novel therapies for patients suffering from this disorder. Metabolic
syndrome is more common in patients with MM and the relevant disorders seem to affect
the clinical outcomes of the disease. If this phenomenon is an epidemiological association
or has pathophysiological links—possibly bidirectional—or it is the effect of medications
used for the MM remains to be fully elucidated. Until then, increased awareness of the
presence of metabolic syndrome or its components in patients with MM is advisable. BMI
should be estimated, waist circumference should be measured, and glycemic status, lipid
profile and blood pressure should be periodically monitored.
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