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ABSTRACT
The 2014–15 Ebola outbreak in West Africa highlighted the potential for large disease outbreaks caused by
emerging pathogens and has generated considerable focus on preparedness for future epidemics. Here we
discuss drivers, strategies and practical considerations for developing vaccines against outbreak pathogens.
Chimpanzee adenoviral (ChAd) vectors have been developed as vaccine candidates for multiple infectious
diseases and prostate cancer. ChAd vectors are safe and induce antigen-specific cellular and humoral
immunity in all age groups, as well as circumventing the problem of pre-existing immunity encountered
with human Ad vectors. For these reasons, such viral vectors provide an attractive platform for stockpiling
vaccines for emergency deployment in response to a threatened outbreak of an emerging pathogen. Work
is already underway to develop vaccines against a number of other outbreak pathogens and we will also
review progress on these approaches here, particularly for Lassa fever, Nipah and MERS.
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Progression of the vectored vaccine approach: Success
of rapid clinical production and testing of Ebola and
malaria vaccine vectors

Since the first documented report of the use of an engineered
virus to induce a protective immune response,1 clinical testing
of numerous potential vaccine vectors has been undertaken
against a broad range of diseases. Over many years of preclini-
cal development, a series of new vector or vaccination regimens
have demonstrated improved immunogenicity: in particular,
antigen-specific antibody and/or T cell responses have been
increased through iterative rounds of vector vaccine develop-
ment. This is well illustrated by the development of malaria
vaccines against P. falciparum encoding the ME-TRAP antigen,
where vaccine-induced T cell responses have increased from 44
IFN-g spot-forming cells per million peripheral blood mono-
nuclear cells (SFC) after DNA vaccination, to 850 SFC after a
single vaccination with a simian adenovirus-vectored vaccine
(Table 1). Importantly, viral vectors have not shown age-limita-
tions in their use, with comparable T cell responses observed
following vaccination with a modified vaccinia Ankara (MVA)
vector expressing the influenza A antigens NPCM1 in healthy
older adults (aged 50–60, 60–70, 80C years) compared to a
younger adult population (aged 18–55 years).2 In addition, age
de-escalation studies of chimpanzee adenovirus 63 (ChAd63)
ME-TRAP in West-African children have demonstrated potent
T cell and antibody responses in immunised children as young
as 1 week of age.3,4

The urgent need for a treatment or vaccine intervention dur-
ing the West-African Ebola outbreak saw five vectored vaccines
tested concurrently in Phase I trials; three non-replicating

adenoviruses of different serotypes, MVA and Vesicular stoma-
titis virus (VSV), all encoding the ebolavirus glycoprotein (GP).
All vaccines were primarily tested for their ability to induce
high levels of antibodies against GP, as this correlated with pro-
tection observed in non-human primates, although cell-medi-
ated immunity has also been shown to play a protective role
with some vectors.5,6 While it is not straightforward to directly
compare antibody levels induced by the different vectors due to
the range of assays employed by different groups, responses fol-
lowing a single vaccination with ChAd3, Ad26 and rVSV were
detectable within 28 days, with a very significant enhancement
in antibody responses observed when adenoviral prime vacci-
nations were followed by an MVA boost.7,8 Humoral immuno-
genicity induced by various viral vectors encoding Ebolavirus
(EBOV) glycoprotein is summarised in Table 2. Although ini-
tially developed as a platform for inducing T cell responses, sin-
gle vaccinations with ChAd63 have demonstrated good
antibody induction against malaria antigens, which could be
enhanced by boosting with an MVA.9-12 Ad-MVA regimens
induced IgG responses that were maintained for at least
180 days after immunisation.7,13

Prime-boost vaccination with adenoviral and MVA vec-
tored vaccines is now well-stablished as a safe and robust
strategy for inducing both cellular and humoral immunity
against malaria and ebolavirus, with the addition of an MVA
boost increasing both the magnitude and the breadth of the
T cell response (Fig. 1 and Table 1).13,14 Either vaccine can
act as prime or boost, as demonstrated in a novel Phase I
Ebola vaccine trial with AdHu26 and the multivalent MVA
BN-Filo vaccines.7 Although the highest T cell and antibody
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responses to ChAd3 MVA were observed with a four to
eight-week interval between prime and boost, reducing the
interval to one week still induced comparable T cell
responses to the eight-week interval. However, the shorter
prime-boost interval did lead to a reduction in antibody
responses including neutralising antibodies.13

MVA vectors have been successfully used to boost responses
in adults induced by vaccination with BCG in infancy, demon-
strating the potential of the MVA vector to boost any pre-exist-
ing T cell memory response15 The development of multivalent
MVA vectors, such as MVA BN-Filo which encodes four pro-
teins from three ebolavirus species and Marburg virus, is also a
potentially important tool for reducing the number of vaccine
products that might need to be manufactured, by encoding pro-
tective antigens from several strains of the same pathogen or
from multiple pathogens into the same vaccine construct
(reviewed in16) The large genome of MVA allows insertion of a
larger amount of foreign DNA compared with other viral vec-
tors including adenoviruses.

Consistent with previous studies, strong T cell responses to
the EBOV glycoprotein were observed after a single ChAd3
administration and significantly enhanced after an MVA boost,
but were undetectable after rVSV vaccination.17 Only the rVSV
vaccine was assessed for efficacy during the outbreak in a ring-
vaccination trial where volunteers were stratified into immedi-
ate or delayed vaccination groups following exposure.18 The
significant reduction in Ebola cases from 10 days after vaccina-
tion in this Guinea trial highlights the need to induce a rapid
immune response in an outbreak scenario, with a single-dose
vaccine remaining the most manageable option. For a rapid
response in an outbreak setting, an early induction of protective
immunity would be prioritised over durability. However, for
immunisation of healthcare workers and other first responders
in anticipation of a potential outbreak in the future, durability

Table 1. Comparison of cellular immune responses with different delivery methods for the same malaria antigen (ME-TRAP) at seven days after the final vaccination.
Immunogenicity as measured by ex vivo interferon-gamma ELISPOT using the same ELISPOT method and peptide pools in the same lab.

Vector(s) Regimen Dose Route
Prime-boost
interval N

Mean SFC/106

PBMC (S.E.M)
Efficacy against

malaria?� Reference

Fowlpox (FP9) FF 1 £ 108 pfu i.d. 4 weeks 8 15 (85) NT 113

DNA DDD 500mg i.m. 3 weeks 4 48 (20) No 114

MVA MMM 3 £ 107 pfu i.d. 3 weeks 9 41 (13) No
DNA-MVA DDDM 1000mg-3 £ 107 pfu i.d.-i.m. 3 weeks 3 162 (112) No
FP9-MVA FM 1 £ 108 p.f.u.-1.5 £ 108 pfu i.d.-i.d. 4 weeks 5 350 (360) No 115

FP9-MVA FFM 1 £ 108 p.f.u.-1.5 £ 108 pfu i.d.-i.d. 3 weeks 12 475 (375) 13% (no efficacy in
malaria-exposed subjects)

115,116

ChAd63 ChAd63 5 £ 1010 vp i.m. None 10 726 (189) No 14,117

ChAd63-MVA ChAd63-MVA 5 £ 1010 vp- 2 £ 108 pfu i.m.-i.d. 8 weeks 15 2646 (522) 21% (67% efficacy in
malaria-exposed subjects)

SFC, spot-forming cells. PBMC, peripheral blood mononuclear cells. S.E.M., standard error of the mean. Pfu, plaque-forming units. i.d., intradermal. i.m., intramuscular. vp.,
viral particles.

�Efficacy against controlled human malaria infection in malaria-na€ıve subjects.

Table 2. Comparative humoral immunogenicity of viral vectors encoding Ebolavirus glycoprotein.

Viral vector Regimen
Mean SFC/106

PBMC
Protein ELISA
Endpoint Titre

Protein
ELISA EC90

Whole Virion
ELISA

Neutralisation
Titre Reference

MVA Prime only 25� <100 7

ChAd3 Prime only 700 1493.6 469 EC90 752.4 14.9 13,118

Ad26 Prime only 103 600 7

Ad5 Prime only 765 1305.7 EC90
119

rVSV Prime only 1780 920.7 22.2 120

MVA-Ad26 Prime-boost 880 17428.6 7

Ad26-MVA Prime-boost 648 8098.9 7

ChAd3-MVA Prime-boost 2068 9279.6 11970 EC90 9007 243.9 13,121

�lower limit of detection, same level as placebo vaccinated controls.
Note that the titres listed may not be strictly comparable because of some minor differences in methodology. However, the general scale of responses is informative. n.d.
not detected.

Figure 1. Comparative T cell immunogenicity of different viral vector regimens
encoding the same pre-erythrocytic malaria antigen, ME-TRAP, as measured by ex-
vivo interferon-g ELISpot assays. F, Fowlpox (FP9); M, MVA; D, DNA; SFC, SFC, spot-
forming cells; PBMC, peripheral blood mononuclear cells.
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would be more important than rapid induction of immunity.
For the former application, single dose vaccines will be most
desirable, whereas for durable immunity a multi-dose regimen
would likely be acceptable and could be required.

Viral vector biology influences the choice
of vaccine platform

Several viral vectors currently have the potential to serve as sin-
gle dose vaccine platforms for the purpose of outbreak pre-
paredness, having shown robust immunogenicity in clinical
trials (reviewed in19). However, in order to achieve high vaccine
effectiveness, it is equally important to consider parameters
affected by vector biology, such as manufacturability, stability
and safety of the vaccine.

A key factor is the manner in which the vaccine antigen is
encoded and expressed. In adenoviral vectored vaccines, the
antigen is typically placed under the control of a heterologous,
strong promoter, and encoded in an independent expression
cassette which is inserted into a well-characterised location in
the adenoviral genome. This is most commonly the E1 locus.
Concurrent deletion of the adenoviral E1 genes at this locus
renders the virus replication incompetent. Vector production
can therefore only take place in complementing cell lines
expressing the E1 genes, such as HEK-293 or PER.C6�.20 Typi-
cal genetic engineering methods for antigen insertion into
adenoviral vectors include plasmid-based homologous recom-
bination in E. coli,21 bacterial artificial chromosome (BAC)-
based recombineering,22 or in vitro Gateway� recombination.23

The placement of such antigen expression cassettes within the
viral genome leads to de-novo expression of the antigen in the
vaccine target cells, which in turn results in a strong humoral
as well as cellular immune response against the antigen. More
recently, the capsid-incorporation approach has shown prom-
ise for the induction of antigen-specific antibodies using modi-
fied adenoviral vectors.24 Here, antigenic epitopes or entire
antigens are engineered to be part of adenoviral capsid proteins
and are thus displayed on the surface of the viral vector, for rec-
ognition by the immune system. However, as the capsid-display
strategy has not yet been evaluated in clinical trials, this review
will focus on traditionally engineered adenoviral vectors with
antigen cassettes at the E1 locus.

The first adenoviral vaccine vectors to be developed were
based on human adenovirus serotype 5 (HAd5), a species C
adenovirus which commonly infects humans. However, it was
found that pre-existing anti-HAd5 antibodies which are present
in a large proportion of the human population could signifi-
cantly dampen the humoral and cellular immune response to
the vaccine antigen.25 Various strategies have since been
explored to circumvent this problem: the use of alternative
human serotypes, such as HAd26 or HAd35,26 re-engineering
the capsid of HAd5 to prevent antibody recognition,27 and the
use of simian adenoviral vectors against which there is no pre-
existing immunity.28 As discussed above, chimpanzee adenovi-
ral vectors (ChAds) have successfully been used in clinical trials
against a variety of diseases.

ChAds are non-enveloped viruses, meaning that the antigen
(e.g. a membrane glycoprotein) is not present on the surface of
the vector, but is expressed at high levels once the vector enters

the target cells of the vaccinated individual. This is in contrast
to VSV-based vaccine vectors, which, as enveloped viruses, are
designed to incorporate glycoprotein antigens into their viral
lipid membrane and thus display the antigen on the virus sur-
face, in addition to expressing it upon entry into the target
cell.29 Crucially, VSV-based vectors carrying heterologous gly-
coprotein antigens are generally deleted for their endogenous
glycoprotein (VSV-G), which implies that it falls to the vaccine
antigen to fulfil the role of functional viral fusion protein as an
essential component for vector propagation during manufac-
ture as well as for target cell entry. This important requirement
for functionality inherently affects the choice of antigen for
VSV-based vectors, as some viral glycoprotein antigens are
either not functional by themselves (e.g. Nipah virus glycopro-
tein G needs glycoprotein F30 or are not incorporated into the
VSV membrane without modification (e.g. HIV env31). In addi-
tion, while adenoviral vectors can equally well encode antigens
which are not membrane-bound glycoproteins (e.g. Ebolavirus
nucleoprotein, HIV gag), VSV vectors carrying such antigens
rely on the endogenous glycoprotein (VSV-G) for viral entry.
Since the full-length VSV-G protein is implicated in neurotrop-
ism,32 a genetically attenuated vector carrying a truncated VSV-
G has been developed,33 which has an acceptable safety profile
in healthy adults.34

Having thus weighed up some of the characteristics of the
two most clinically advanced vectors for emergency prepared-
ness platforms, it becomes apparent why vector biology can
have significant implications for vaccine safety. Specifically, tis-
sue tropism and replication competency of the viral vector
have to be taken into consideration. Intuitively, a replication-
deficient vector (such as ChAd) carries less safety risks than a
replication competent, albeit attenuated, vector (such as VSV),
since the inability to replicate prevents dissemination of the
vector throughout the body. Accordingly, transgene expression
of replication-deficient adenoviral vectors was shown to be con-
fined to the injection site and the draining lymph nodes,35

whereas recent Phase I/II trials of rVSV-ZEBOV found evi-
dence of viral vector replication in synovial fluid and skin
lesions, presumed to be a result of Ebolavirus glycoprotein-spe-
cific tissue tropism of the vaccine.8 These findings underline
the difficulty in predicting the safety profile of VSV-based vac-
cines, since tissue tropism will be highly dependent on the cho-
sen glycoprotein antigen. In contrast, adenoviral vectors have a
well-characterised safety profile, across a range of age groups,
which is largely independent of the nature of the antigen.36

Lastly, vector biology may also significantly impact vaccine
manufacture and delivery. For emergency preparedness stock-
piling, each vaccine might need to be produced at a scale of
500,000 – 2 million doses, with the option to quickly increasing
manufacture to perhaps 4–6 million doses or more in case of
an outbreak, depending on the specific pathogen. Of the two
most clinically advanced platforms, VSV and adenoviruses, the
latter can likely meet this requirement more easily: GMP-com-
pliant large-scale adenoviral vector production facilities exist in
many countries, related to the regular use of adenoviral vectors
not only in prophylactic vaccines but also in some cancer and
gene-therapy trials. One potential drawback of ChAd-based
viral vectors compared to human Ad vectors is the need for
vector optimisation or cell line engineering to ensure high viral

3022 K. EWER ET AL.



yields during virus production. For example, ChAd vectors may
need to contain certain E4 genes from HAd5 in order to grow
to high titers in current HAd5-E1-transcomplementing cell lines,
as was demonstrated with the ChAdOx1 vector.23 Alternatively,
producer cell lines can be engineered to increase viral yield.37

However, this need for optimisation has not been a hurdle to
large-scale manufacturing so far. GMP-compliant VSV-vector
production has also been developed in recent years, and scalable
manufacture of rVSV is now possible.38 Once a stockpile has
been produced, vector stability during storage and deployment is
critical. Most viral vectored vaccines are stable for >5 years at
¡70�C, and a 2–8�C cold chain is required for distribution and
storage of adenoviral vectors. One study assessing the recently
deployed rVSV-ZEBOV vaccine observed a significant loss of
viral titres at a temperature of 4�C after 2 weeks,39 whereas ade-
noviral vectors were shown to be stable for 20 days at room tem-
perature in a sucrose buffer.40 In addition, sensitivity of any
VSV-based vaccine to pH changes is presumably dependent on
the specific envelope glycoprotein (i.e. the vaccine antigen).
Overall, vaccine stability in terms of temperature and pH range
would therefore likely be variable across a panel of putative
VSV-based outbreak vaccines, since the glycoprotein will differ
from vaccine to vaccine. In the case of an adenoviral vectored
vaccine, on the other hand, variation in stability is expected to
be minimal, since the vaccine antigen is not present in the viral
capsid, and the composition of the virus particles would be very
similar across different vaccines. Of note, new approaches for
thermostabilisation have recently been developed for adenoviral
vectors, such as immobilization of viral particles in a sugar glass
on a filter41 or the use of biocompatible additives to slow down
the degradation of virus particles.40 These improvements are
expected to have a significant impact on the deployment of vec-
tored vaccines in challenging climates such as sub-Saharan
Africa. In human populations, pre-existing immunity to simian-
derived adenoviral vectors is, unsurprisingly, less prevalent than
immunity to human adenoviruses, and antibodies to some sim-
ian vectors, such as ChAdOx1, appear to be particularly rare.23

Anti-vector immunity to the backbone of simian viruses
increased after vaccination but is relatively short-lived. As a
result, reuse of the same vectors has been successful for boosting
after 6 or more months in clinical trials.42

Limitations of the traditional approach

The traditional approach to vectored vaccine design has been to
identify an immunogenic antigen from the pathogen, construct

the vector in the chosen platform and then assess immunoge-
nicity and efficacy in murine models, prior to further testing in
higher species and progression to the next stage of vaccine
development. A significant obstacle in this approach is that the
pathogen must be infectious in rodents if the efficacy of the vac-
cine is to be assessed preclinically and therefore the data may
rely on mouse-adapted or chimeric pathogens (Table 4 summa-
rises common mouse models for evaluating candidate vaccines
for outbreak pathogens).

In the case of MERS CoV or SARS CoV, preclinical vaccine
candidates could be tested in murine models with a mouse
adapted strain of virus,43,44 but for newly emerging pathogens,
establishing a mouse model could take significant time, in par-
ticular for evaluation of numerous viral isolates or serial passag-
ing of a virus in mice. Alternatively, use of neonatal mice or
knockout mice (e.g. of IFN-a/bR, STAT-1) have been required
to mimic human disease for Ebola, Marburg, Lassa, Nipah, or
Zika viruses in mice, and only through expression of human
DPP4 (receptor for MERS CoV) in mouse lungs could infection
of mice with MERs CoV be achieved.45 While these mouse
models may prove useful in drug discovery, if a significant
component of the immune response is compromised, it is
unlikely that protection observed in pre-clinical studies will be
consistent with the protective immune response required in
humans.

A new strategy for developing vaccines against outbreak
pathogens

A more economical and achievable strategy than traditional
approaches to vaccine development and deployment would be
to focus on manufacturing small stockpiles of vaccine using a
common platform technology. ChAd vectored vaccines provide
a good example of a suitable vaccine platform, which has been
identified as one of significant interest by the WHO R&D Blue-
print process. The overall strategy would be to generate suitable
stockpiles for emergency response use having previously dem-
onstrated safety and immunogenicity of each vaccine up to
Phase II trials in the target geographical regions. These prod-
ucts could be stored in relevant locations for each disease and,
in the event of an outbreak emerging, could be deployed in a
ring vaccination program similar to that employed in a Phase
III trial in Guinea of the rVSV ZEBOV vaccine during the
West African Ebola outbreak.18 Such a deployment would need
to be made under the provisions of policies for use of unap-
proved medicinal products, such as the FDA Expanded Access

Table 3. Mouse models for evaluating candidate vaccines for outbreak pathogens.

Disease Mouse-adapted virus strain? Knock-out mouse line Age of mice Paper/Review of model

Ebola Yes IFN-a/b R¡/¡ or Stat1¡/¡ Neonates 122

Marburg No IFN-a/bR¡/¡ Neonates
Lassa No STAT1¡/¡ 123

Nipah No IFN-aR¡/¡ Adults BALB/c and C57BL/6
intranasal inoculation (Dups 2014)

124

CCHF No STAT1¡/¡ 125

MERS Yes 43

SARS Yes 44

Zika No IFN-aR¡/¡ 126

Chikungunya No IFN-a/bR¡/¡ Neonates 127

HUMAN VACCINES & IMMUNOTHERAPEUTICS 3023



Ta
bl
e
4.

Ch
ar
ac
te
ris
tic
s
of
th
e
pr
io
rit
y
di
se
as
es

id
en
tifi

ed
in
th
e
W
H
O
R&

D
bl
ue
pr
in
t(
re
vi
se
d
20
17
).

D
is
ea
se

Ca
us
at
iv
e
ag
en
t

Fa
m
ily

an
d
ge
nu

s
H
os
t/

ve
ct
or

Tr
an
sm

is
si
on

to
hu

m
an
s

Ca
se

fa
ta
lit
y

ra
te
in
hu

m
an
s

G
eo
gr
ap
hi
ca
l

di
st
rib

ut
io
n

Ar
en
av
ira
lh
ae
m
or
rh
ag
ic

fe
ve
rs
(in
cl
ud

in
g
La
ss
a

Fe
ve
r)

Ar
en
av
iru

s,
e.
g.
La
ss
av
iru

s
(L
AS
V)

Ar
en
av
iri
da
e
M
am

m
ar
en
av
iru
s

M
as
to
m
ys
ra
ts

Co
nt
ac
tw

ith
ra
tu

rin
e
or

fa
ec
es
,

co
nt
ac
tw

ith
in
fe
ct
ed

bo
dy

fl
ui
ds

1%
W
es
tA

fr
ic
a

Cr
im
ea
n-
Co
ng

o
H
ae
m
or
rh
ag
ic

Fe
ve
r(
CC

H
F)

Cr
im
ea
n-
Co
ng

o
H
ae
m
or
rh
ag
ic

Fe
ve
rv
iru

s
(C
CH

FV
)

Bu
ny
av
iri
da
e
N
ai
ro
vi
ru
s

D
om

es
tic

an
im
al
s/
H
ya
lo
m
m
a

tic
ks

Ti
ck

bi
te
s,
co
nt
ac
tw

ith
in
fe
ct
ed

liv
es
to
ck

at
sl
au
gh

te
r,
co
nt
ac
tw

ith
in
fe
ct
ed

bo
dy

fl
ui
ds
.

10
-4
0%

Af
ric
a,
th
e
Ba
lk
an
s,

M
id
dl
e
Ea
st
,A
si
a

Fi
lo
vi
ra
ld
is
ea
se
-E
bo
la
vi
ru
s

di
se
as
e

Eb
ol
av
iru

s
(E
BO

V,
SU

D
V,
RE
ST
V,

BD
BV

,T
AF
V)

Fi
lo
vi
rid
ae

Fi
lo
vi
ru
s

Fr
ui
tb

at
(P
te
ro
po
di
da
e
fa
m
ily
)

Co
nt
ac
tw

ith
in
fe
ct
ed

w
ild

an
im
al
s
or

in
fe
ct
ed

hu
m
an

bo
dy

fl
ui
ds
.

25
-9
0%

Ce
nt
ra
la
nd

W
es
tA

fr
ic
a

Fi
lo
vi
ra
ld
is
ea
se
-M

ar
bu

rg
vi
ru
s

di
se
as
e

M
ar
bu

rg
vi
ru
s
(M

AR
V,
RA

VV
)

Fi
lo
vi
rid
ae

M
ar
bu
rg
vi
ru
s

Fr
ui
tb

at
(R
ou
se
tt
us

ae
gy
pt
i)

Co
nt
ac
tw

ith
ba
ts
or

in
fe
ct
ed

hu
m
an

bo
dy

fl
ui
ds

24
-8
8%

Ce
nt
ra
lA

fr
ic
a

M
id
dl
e
Ea
st
Re
sp
ira
to
ry

Sy
nd

ro
m
e
(M

ER
S)

M
ER
S
co
ro
na
vi
ru
s
(M

ER
S-
Co
V)

Co
ro
na
vi
rid
ae

Be
ta
co
ro
na
vi
ru
s

Ba
ts
,d
ro
m
ed
ar
y
ca
m
el
s

Co
nt
ac
tw

ith
ba
ts
or

ca
m
el
s,
H
um

an
-

to
-h
um

an
tr
an
sm

is
si
on

co
m
m
on

36
%

M
id
dl
e
Ea
st
,K
or
ea

Se
ve
re

Ac
ut
e
Re
sp
ira
to
ry

Sy
nd

ro
m
e
(S
AR

S)
SA
RS

co
ro
na
vi
ru
s
(S
AR

S-
Co
V)

Co
ro
na
vi
rid
ae

Be
ta
co
ro
na
vi
ru
s

Ba
ts
,p
al
m
ci
ve
ts

Pr
im
ar
ily

hu
m
an

to
hu

m
an

th
ro
ug

h
in
fe
ct
ed

re
sp
ira
to
ry
se
cr
et
io
ns

an
d

fa
ec
es
.

9%
Ch

in
a,
H
on
g
Ko
ng

,V
ie
tn
am

N
ip
ah

(a
nd

re
la
te
d

H
en
ip
av
iru

se
s)
di
se
as
e?

N
ip
ah

vi
ru
s
(N
iV
),
al
so

Ce
da
r,

H
en
dr
a.

Pa
ra
m
yx
ov
iri
da
e
H
en
ip
av
iru
s

Fr
ui
tb

at
(P
te
ro
po
di
da
e

fa
m
ily
),
pi
gs

Co
nt
ac
tw

ith
ba
ts
an
d
pi
gs

75
%

M
al
ay
si
a,
In
di
a,
Ba
ng

la
de
sh

Ri
ft
Va
lle
y
Fe
ve
r

Ri
ft
va
lle
y
fe
ve
rv
iru

s
(R
VF
)

Bu
ny
av
iri
da
e
Ph
le
bo
vi
ru
s

D
om

es
tic

an
im
al
s,
Ae
de
s

m
os
qu

ito
Co
nt
ac
tw

ith
in
fe
ct
ed

liv
es
to
ck

tis
su
e,

oc
ca
si
on
al
ly
in
fe
ct
ed

m
os
qu

ito
es

U
p
to

50
%

�
Af
ric
a,
M
id
dl
e
Ea
st

Se
ve
re

fe
ve
rw

ith
th
ro
m
bo
cy
to
pa
en
ia

sy
nd

ro
m
e
(S
FT
S)

Se
ve
re

fe
ve
rw

ith
th
ro
m
bo
cy
to
pa
en
ia

sy
nd

ro
m
e
vi
ru
s
(S
FT
SV
)

Bu
ny
av
iri
da
e
Ph
le
bo
vi
ru
s

Ti
ck
s,
m
ite
s,
do
m
es
tic

an
im
al
s

Ti
ck

bi
te
s

7.
3%

12
8

Ch
in
a,
Ja
pa
n,
Ko
re
a,
U
SA
.

Zi
ka

di
se
as
e?

Zi
ka

vi
ru
s
(Z
IK
V)

Fl
av
iv
iri
da
e
Fl
av
iv
iru
s

Ae
de
s
m
os
qu

ito
In
fe
ct
ed

m
os
qu

ito
bi
te

Ve
ry
ra
re
.

Af
ric
a,
As
ia
,M

ic
ro
ne
si
a,

Am
er
ic
as

� i
n
ha
em

or
rh
ag
ic
fe
ve
rc
as
es
.47

3024 K. EWER ET AL.



program, also known as “compassionate use”, or other emer-
gency use legislation. This would require fulfilment of certain
conditions including that no comparable or satisfactory therapy
is available, that the risk of harm from the vaccine is not greater
than the risk of disease and that there is sufficient evidence of
the safety and effectiveness of the product to support its use in
the given circumstances.46 In this context, a vaccine for an out-
break pathogen, based on a well-developed platform, such as
ChAd vectors, with evidence of efficacy from a relevant animal
model would be likely to gain approval for use in a limited set-
ting. Based on research, manufacturing and clinical trial costs
for the ChAd3 vectored vaccine developed for Ebola, vaccines
might be stockpiled for just $50 million per disease, represent-
ing a fraction of the cost of bringing a vaccine through to licen-
sure. Deployment would provide the efficacy data in humans
required for approval by a national regulator, increasing the
likelihood of the vaccine progressing through the later stages of
development.

Tackling future outbreak threats

To improve responsiveness to epidemics, in 2015 the WHO
published a list of nine diseases requiring urgent vaccine R&D
to prevent public health emergencies in the future. This list was
revised in 2017, and key characteristics of the diseases priori-
tised by the WHO are summarised in Table 3. The process of
prioritising diseases took into account properties of the causa-
tive pathogen e.g. transmissibility, host-based factors such as
immunopathology, clinical aspects including ease of accurate
diagnosis, availability of countermeasures and mortality, public
health capacity and epidemiological factors.47 Research and
development priorities for these diseases include development
of suitable diagnostic tests, assessment of potential treatments,
identification of key knowledge gaps, production platforms,
behavioural interventions and acceleration of vaccine develop-
ment. Preparation of sufficient quantities of safe and efficacious
vaccines against potential outbreak pathogens is an extremely
effective strategy. However, a lack of access to dedicated long-
term funding has hampered vaccine development for outbreak
pathogens in recent decades.48 As well as limiting the number
of new vaccines being developed, the number of facilities with
the capacity to biomanufacture vaccines is also limited, which
is a significant issue for outbreak preparedness.49 In addition,
WHO recognised that generally applicable platform technolo-
gies for rapid vaccine development are required and have set
out to identify and prioritise the leading platforms.

To address these issues, the Coalition for Epidemic Pre-
paredness Innovations (CEPI) was launched in January 2017,
bringing together funders including the Wellcome Trust, the
Bill and Melinda Gates Foundation, and the governments of
Norway, Germany, Japan and others.50 The initial fund is
$460 million, with the European Commission also pledging co-
funding of €250 million and further funding due to be con-
firmed from the Government of India by the end of 2017. The
fund will initially focus on the Nipah, Lassa and MERS viruses,
aiming to bring two candidate vaccines through development
against each disease. CEPI also aims to promote technical and
institutional platforms to improve responsiveness to future epi-
demics. The approach undertaken by CEPI will advance

vaccine development for diseases where research to date has
been limited. This is in large part due to the lack of market
potential for such vaccines in conjunction with the huge costs
involved over a long period of time to provide a vaccine, from
pre-clinical development through to licensure, estimated at
upwards of $200 million to $500 million per vaccine.51 There-
fore, the funding required to license a vaccine for each of the
priority diseases highlighted by the WHO blueprint would run
into many billions of dollars, and opportunities to assess the
efficacy of these vaccines in humans would be rare.

Prioritising vaccine development for the greatest threats

Although Ebola virus disease (EVD) has been described since
1976, the outbreak that began in 2014 was larger than all the
previous episodes combined, potentially due to a mutation in
the glycoprotein that occurred immediately prior to the rapid
increase in the number of EVD cases.52,53 Although not suffi-
ciently advanced to be deployed immediately during the out-
break itself, several vaccines against ebolaviruses had already
been manufactured to Good Manufacturing Practice (GMP)
standards providing a rare opportunity to undertake phase I
trials very rapidly and then assess efficacy against disease.

The 2014 outbreak provided a much-needed impetus to
improve pandemic preparedness for emerging pathogens. To
this end, the three identified viruses as targets for vaccine devel-
opment, by CEPI have known potential to cause outbreaks with
high mortality: MERS-CoV, Nipah virus and Lassa virus.

Nipah virus

Nipah Virus (NiV) is a recently-recognised and highly patho-
genic zoonotic paramyxovirus that can cause severe disease in
man with high associated fatality rates (up to 100%).54 Out-
breaks have occurred in Malaysia, Singapore and India with
almost annual occurrence in Bangladesh. Human-to-human
transmission is common in Bangladesh and has also been docu-
mented in India.55 Several species of pteropid fruit bats are
known to be host reservoirs of NiV, with accumulating evi-
dence that both NiV and other paramyxoviruses can circulate
worldwide in bats.54-56 The high fatality rate, direct infection
from natural reservoirs, infection following amplification in
susceptible domestic livestock such as pigs, documented
human-to-human transmission, and the potential ability to
transverse the globe, all emphasise the pandemic potential of
NiV.56

There are no clinically approved vaccines against NiV,
however, one therapeutic approach (monoclonal antibody
therapy) has recently completed a phase I clinical trial with
results still to be reported.57 While monoclonal antibody
treatment may be efficacious in a short window post-expo-
sure, this treatment option is not suitable for large-scale use,
and as such, vaccine development is a key research focus for
the prevention of NiV-mediated disease. Advantageously,
there are a number of animal models of NiV infection which
are used in vaccine development programs and are consid-
ered to sufficiently mirror NiV-induced pathogenesis
observed in humans, e.g. the hamster, ferret and African
Green Monkey (AGM) models.58-60
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While vaccine-mediated cellular immunity has been demon-
strated to play a role in protection in preclinical models of NiV
infection,61 the most advanced vaccine modalities demonstrat-
ing clear efficacy across multiple animal models have primarily
induced humoral immunity. A soluble glycoprotein (sG) sub-
unit vaccine from the related henipavirus Hendra virus (HeV)
is an extensively studied vaccine that can protect ferrets and
AGM from experimental challenge with NiV or HeV. Prime-
boost regimens with adjuvanted HeV-sG subunit proteins are
efficacious in stringent NiV challenge models, across a range of
doses (4–100ug), and with pre-challenge neutralising antibody
titres as low as 1:28.62,63 The HeV sG vaccine (Equivac� HeV)
has been licensed to vaccinate horses in Australia against
HeV.64 A number of viral vectored vaccines have also been
tested and show promising immunogenicity and/or efficacy
against NiV-mediated disease. These include poxvirus (canary-
poxvirus ALVAC strain), vesicular stomatitis virus (VSV),
rabies virus (RABV), adeno-associated virus (AAV), Newcastle
disease virus (NDV) and Venezuelan equine encephalitis virus
(VEEV); this topic has recently been comprehensively
reviewed.56,65

Lassa virus

Lassa virus (LASV) is a medically relevant arenavirus which
produces conditions ranging from asymptomatic infection to a
lethal haemorrhagic fever, Lassa fever (LF). Annually, LASV
appears to infect between 300,000 to 500,000 individuals with
mortality rates ranging from 2% to in excess of 50% in out-
breaks.66,67 LF is an endemic zoonosis in parts of West Africa
including Nigeria, Liberia, Sierra Leone and Guinea, with more
recent studies highlighting the spread of LASV into surround-
ing areas e.g. Mali, Benin and Ghana. This epidemiology sug-
gests that efficacy trials of Lassa fever vaccines could be
conducted successfully in countries such as Nigeria and Sierra
Leone.

The common African rat (Mastomys natalensis) is the zoo-
notic reservoir for LASV and is thought to facilitate the ease of
LASV spread to humans. Despite the recurrent and high
disease incidence with associated significant morbidity and
mortality, there are no approved vaccines. Currently, LF treat-
ment relies on supportive care and, where available, the admin-
istration of the antiviral drug ribavirin.68 There continues to be
an unmet need for medical interventions that can curb the
spread of LASV and avert the morbidity and mortality associ-
ated with potential viral dissemination into a large geographical
area due to the zoonotic reservoir.69,70

The first clinically available vaccine for the prevention of an
arenavirus haemorrhagic fever was Candid #1, a live-attenuated
vaccine against Junin virus infection, available through the
Argentine National Immunization Plan.71 Unfortunately, the
development of a LASV vaccine has not progressed as rapidly.
Cellular immunity is thought to be critical for survival of LF
infection, with early T cell activation associated with a better
clinical outcome.72,73 Recent studies focusing on the early stages
of LF in non-human primates (NHP) have confirmed previous
observations that early and strong T-cell responses are associ-
ated with effective control of virus replication and recovery,
while fatal LASV infection of NHP has been associated with a

lack of peripheral T-cell activation.73,74 It has also been demon-
strated that some vaccination strategies primarily aimed to
elicit LASV-specific humoral immunity are not effective, e.g.
gamma-irradiated LASV.75

The development of LASV vaccines has involved a number
of different platform technologies including non-replicating
vaccine approaches, such as inactivated LASV virus, virus-like
particles (VLPs), and DNA vaccines, as well as replication-
competent vaccine strategies (both recombinant and re-assort-
ment viral vectored vaccines). The four replication-competent
LASV vaccine candidates that have been extensively studied are
based on vaccinia virus,76,77 vesicular stomatitis virus,78 Mopeia
virus (MOPV)79 and yellow fever virus (YFV) 17D vectors80

with all of these vaccine candidates tested in different animal
models, including NHPs.

Efficacy testing in animal models that mimic the major
pathophysiological and immunological features of human
LF are a prerequisite before licensure. Rodents are an obvi-
ous first species to establish immunogenicity, but as LASV
has a rodent host reservoir and the response to LASV varies
depending on mouse strain, age and inoculation route,
rodents are not suitable as a valid LF disease model. Guinea
pigs are the most sensitive model to study lung pathol-
ogy,81,82 while common marmosets (CM) are surrogates to
study liver involvement.83 However, LASV-infected rhesus
and cynomolgus monkeys are considered the gold-standard
models and are the only available and relevant challenge
models for human LF.

The YFV vaccine strain 17D has been genetically manipu-
lated to express the LASV glycoprotein and was designed to
control both diseases, YF and LF, in areas of overlapping inci-
dence in West Africa.84 While it can protect guinea pigs,80 it
has failed to protect marmosets and is genetically unstable.86,87

In addition, while recombinant vesicular stomatitis virus
(rVSV) expressing LASV glycoprotein was protective in non-
human primate challenge, the protection was not sterile and
LASV viremia could be measured post-infection.85

LASV and MOPV are closely related Old World arenavi-
ruses that can exchange genomic segments (reassort) during
coinfection. Clone ML29, encodes the major antigens of
LASV and also MOPV antigens. Preclinically, both marmo-
sets and guinea pigs have survived an otherwise fatal LASV
infection.86,87 Recent studies have demonstrated that SIV-
infected rhesus macaques respond well to ML29 vaccina-
tion, and survive when challenged with a heterologous
lethal arenavirus strain (LCMV-WE) indicating that ML29
is both safe and immunogenic in immuno-compromised
animals.88

Another vaccine vector that proved effective in guinea
pigs against LASV challenge is a Venezuelan equine
encephalitis virus (rVEE) replicon particle expressing GP or
NP.89 Animals were fully protected against LASV challenge
after prime/boost/boost immunization with this vector. One
of the most promising vaccines is vaccinia virus encoding
LASV glycoprotein; nonhuman primates vaccinated with
this vaccine candidate were protected against challenge.90,91

However, despite several promising vaccine candidates in
pre-clinical evaluation, none has yet advanced to a clinical
trial in humans.
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Novel coronaviruses: MERS CoV and SARS CoV

Several novel coronaviruses have emerged over the last decade,
causing outbreaks mainly in the Middle East region and Asia,
in Saudi Arabia, Jordan, Qatar and China in particular. An epi-
demic of Severe Acute Respiratory Syndrome (SARS) was
reported in 2003, which started in China and caused over 8000
cases with between 10 and 50% mortality depending on age.92

The causative agent was identified as a novel coronavirus,
SARS CoV, not previously identified as infectious to humans,93

with bats and civets as natural reservoirs.94,95 Middle Eastern
Respiratory Syndrome (MERS) was first reported in 2012 in a
man who became ill in Saudi Arabia.96 The isolation of another
novel coronavirus followed, known as MERS CoV, which has
subsequently caused nearly 1900 cases and 670 deaths.97 Drom-
edary camels are a reservoir, although transmission also occurs
from human to human.98

Strategies for producing effective coronavirus vaccines have
focussed on expression of either the spike protein or nucleocap-
sid proteins or, in some cases a combination of both, in a range
of vectors including rabies viruses, VSV and VEE (reviewed
in99,100). A report from a recent workshop in Riyadh on coun-
termeasures for MERS CoV bringing together funders, public
health experts and researchers concluded that progress with
vaccine development is still hindered by the lack of animal
models for evaluating efficacy.100 Small animals do not natu-
rally express a functional form of the dipeptidyl peptidase 4
(DPP4) receptor; however, transgenic mice expressing human
DPP4 are susceptible to infection.101,102 Despite this advance,
mouse models are likely to be less useful for the assessment of
immune correlates than larger animal models such as rhesus
macaques and common marmosets, which exhibit the severe
clinical syndromes observed in humans.103,104 MVA and ChAd
viral vectors for MERS have reached GMP manufacture, while
a DNA vaccine is now being tested in clinical trials.105,106

Progress with development of chimpanzee adenovirus
vectors for outbreak pathogens

In May 2017, the first cases in an outbreak of EVD were
reported in the Bas Uele Province in the Democratic Republic

of the Congo (DRC).107 This area shares a border with the Cen-
tral African Republic and is particularly remote and difficult to
access. As the causative species has been identified as Zaire ebo-
lavirus, the rVSV-ZEBOV vaccine is being considered at the
time of writing, for deployment in a ring vaccination design to
protect contacts and frontline healthcare workers (HCWs).108

This fresh outbreak is the 8th to occur in the DRC and high-
lights the potential utility of vaccination to protect HCWs, par-
ticularly where remote locations present significant logistical
challenges for responding to and containing outbreaks. Main-
taining the current momentum for developing vaccines against
outbreak pathogens is crucial, and as such, simian adenoviruses
are uniquely fit for purpose as an effective vaccine platform,
not in small part due to their predictable safety profile, stability,
manufacturability, but most importantly owing to their immu-
nogenicity. Therefore, a single-antigen pathogen-specific ChAd
vector vaccine could be suitable as a single dose approach for
rapid induction of protective immunity in an outbreak, but for
durable protection for potential first responders a ChAd prime,
MVA boost approach could be more effective.

Novel vaccines against outbreak pathogens are under devel-
opment in a range of simian adenovirus serotypes including
ChAd3, ChAd63 and ChAdOx1 (reviewed in109) and for the
human vectors AdHu26 and AdHu5. Application of a pipeline
approach to developing vaccines for outbreak pathogens can
greatly accelerate the output of candidate vaccines as the key
processes, such as generation of constructs, production of virus
stocks, defining preclinical immunogenicity, and GMP manu-
facture can be substantially standardized. An approach that is
currently being adopted for at least twelve potential outbreak
pathogens using standardized preclinical processes (Table 5),
with several advancing to GMP manufacture and clinical test-
ing. The latter include vaccines against MERS-CoV, Rift Valley
fever virus, Zika virus and Chikungunya virus.

The key bottlenecks for this approach are the identification
of vaccine antigens and the availability of appropriate animal
models of disease. For preparations to be made to counter
future threats, some knowledge of emerging pathogens is
required, and yet detailed epidemiological surveillance for
many infectious diseases remains limited in regions where inci-
dence is greatest.110 Recent data suggests that around 60% of

Table 5. Status of chimpanzee adenovirus vector (ChAd) vaccine development for a range of outbreak pathogens at the Jenner Institute, University of Oxford (as May
2017). The genetic background for all vectors is ChAdOx1 (a species E modified chimpanzee adenovirus based on isolate Y25).23 Antigens are inserted at the E1 locus via
Gateway� recombination. For preclinical immunogenicity testing, mice typically receive a single-dose of 108 infectious units (intramuscular).

Pathogen

ChAd
construct
made

Immunogenicity
demonstrated

in mice

Neutralising
antibody activity
demonstrated

Animal
efficacy

demonstrated

GMP
production
funded

Phase I/II
evaluation
commenced

Pandemic Influenza virus @ @ @ @ @ @
Rift Valley Fever virus @ @ @ @ @
MERS CoV @ @ @ @ @
Zika virus @ @ @ @
Chikungunya virus @ @ @ @
Crimean Congo Haemorrhagic Fever virus @ @
Lassa virus @ @
Zaire ebolavirus @ @
Sudan ebolavirus @ @
Zaire C Sudan ebolavirus C Marburg @ @
Yersinia pestis @ @
Nipah virus @ @
SARS CoV @ @

GMP, good-manufacturing practice.
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emerging infectious diseases are zoonotic with the majority
originating in wildlife, requiring surveillance among livestock
animals and wildlife species, as well as in humans.111 Although
Ebola outbreaks have occurred sporadically since 1976, the
pace of vaccine development for Ebola has been slow with most
vaccines undergoing preclinical evaluation for more than
5 years before the start of Phase I clinical trials. The 2014–15
outbreak provided much needed momentum for public health
experts and the research community to improve preparedness
for future epidemics.112 In order to continue to improve our
preparedness for future outbreaks, epidemiological surveillance
and vaccine development will need to accelerate substantially.
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