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ABSTRACT

Estrogen receptor (ER)-positive breast cancers overall have a good prognosis, 
however, some patients suffer relapses and do not respond to endocrine therapy. The 
purpose of this study was to determine whether there are any correlations between 
high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy 
(MRS) metabolic profiles of core needle biopsy (CNB) specimens and the molecular 
markers currently used in patients with ER-positive breast cancers. The metabolic 
profiling of CNB samples from 62 ER-positive cancers was performed by HR-MAS MRS. 
Metabolic profiles were compared according to human epidermal growth factor receptor 
2 (HER2) and Ki-67 status, and luminal type, using the Mann-Whitney test. Multivariate 
analysis was performed with orthogonal projections to latent structure-discriminant 
analysis (OPLS-DA). In univariate analysis, the HER2-positive group was shown to have 
higher levels of glycine and glutamate, compared to the HER2-negative group (P<0.01, 
and P <0.01, respectively). The high Ki-67 group showed higher levels of glutamate 
than the low Ki-67 group without statistical significance. Luminal B cancers showed 
higher levels of glycine (P=0.01) than luminal A cancers. In multivariate analysis, the 
OPLS-DA models built with HR-MAS MR metabolic profiles showed visible discrimination 
between the subgroups according to HER2 and Ki-67 status, and luminal type. This 
study showed that the metabolic profiles of CNB samples assessed by HR-MAS MRS 
can be used to detect potential prognostic biomarkers as well as to understand the 
difference in metabolic mechanism among subtypes of ER-positive breast cancer.

INTRODUCTION

Since it became known that a large subset of breast 
cancers depends on estrogen receptor (ER) signaling, 
leading to the clinical application of endocrine therapies 

(e.g., tamoxifen, aromatase inhibitors), breast cancers have 
been classified into ER-positive and ER-negative cancers 
[1–5]. With appropriate endocrine therapy, patients with 
ER-positive cancers have significantly better outcomes 
than those with ER-negative cancers [1–4]. Subsequent 
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gene expression profiling studies of ER-positive breast 
cancers demonstrated that this group is still heterogeneous 
in ER expression levels and proliferation-related genes 
[6, 7], which is associated with clinical outcomes and 
treatment response. Currently, ER-positive cancers are 
subclassified into luminal A and luminal B types based 
on human epidermal growth factor receptor 2 (HER2) 
overexpression and Ki-67 labeling index using a cut-
off of 14% [8]. Luminal B cancers, high proliferative 
ER-positive cancers, have a poor prognosis compared 
to luminal A [9, 10]. This “intrinsic gene” molecular 
subclassification of ER-positive cancers has been widely 
used by clinicians to predict prognosis and to select 
treatment options for patients with these cancers [8, 11].

In addition to the genetic alteration of cancer, 
metabolic alteration of cancer is also important to 
understand the cancer biology and to find potential 
biomarkers that can be targeted therapeutically [12, 13]. 
Metabolic alterations are the consequence of genetic 
alterations in metabolic pathways and are directly linked 
to cell phenotype [14]. Accordingly, the metabolite levels 
of the cells provide functional changes associated with cell 
metabolism [12, 15, 16]. Metabolomics is defined as the 
study of all of the metabolites of a cell, tissue or organism 
for a comprehensive understanding of metabolism [12, 
14, 16, 17]. Recent metabolomic studies have shown that 
ex vivo high-resolution magic angle spinning magnetic 
resonance spectroscopy (HR-MAS MRS) can be used 
for the identification and quantification of numerous 
metabolites in a tissue sample [12, 16, 18–23]. Compared 
to other metabolomic approaches, HR-MAS MRS 
requires less sample treatment and does not damage tissue 
integrity after the experiment, thus allowing reuse of the 
tissue sample for other diagnostic examinations. In HR-
MAS MRS studies using human breast tissue, surgical 
specimens or core needle biopsy (CNB) specimens were 
used [18–23]. Metabolic profiles of CNB samples are 
applicable to preoperative decision-making for the best 
treatment approach for breast cancer patients, whereas 
metabolic profiles of surgical samples are not. Previous 
HR-MAS MRS studies using CNB samples have reported 
that metabolic profiles of CNB samples may be helpful in 
the diagnosis and characterization of breast cancer, and 
monitoring of responses to neoadjuvant chemotherapy in 
locally advanced breast cancer [20, 21, 24].

Profiling intrinsic gene expression and metabolite 
content in the same breast cancer tissue could reveal 
differences and similarities in the metabolic composition 
between groups of samples at different gene expression 
levels and provide increased insight into functional 
changes that are potential targets for pharmacological 
or nutritional intervention [25]. Although recent studies 
have compared metabolic profiles between triple-negative 
breast cancers and ER-positive breast cancers [18, 26], no 
HR-MAS MRS studies, to our knowledge, have examined 
the association between metabolic and molecular markers 
only in ER-positive breast cancers. The comparison 

between metabolic profiles and expression levels of HER2 
and Ki-67, which are used in molecular classification 
of ER-positive breast cancer tissue, may help identify 
potential biomarkers associated with clinically aggressive 
subgroups. Therefore, the purpose of this study was to 
determine whether there are any correlations between 
HR-MAS MRS metabolic profiles of CNB specimens and 
molecular markers currently used in patients with ER-
positive breast cancers.

RESULTS

The median age of the study population was 51.5 
years (range, 32-84 years; interquartile range [IQR], 45-60 
years). The median tumor size was 1.6 cm (range, 0.5-4.2 
cm; IQR, 1.2-2.2cm). The most common histologic type of 
ER-positive cancers was invasive ductal carcinoma (n=57) 
and other cancers included three mucinous carcinomas and 
two invasive lobular carcinomas.

All study patients received proper management 
after surgery and underwent postoperative surveillance 
with US or mammography after initial treatment. The 
follow-up period ranged from 35-72 months (median, 42 
months; interquartile range, 39.5-68 months). None of the 
patients had a breast cancer recurrence during the follow-
up period.

As shown in Table 1, relative quantification showed 
that several metabolite levels of CNB tissue samples 
were significantly different between the groups. The 
HER2-positive group was characterized by higher levels 
of Gly and Glu, compared to the HER2-negative group 
(P<0.01 and P<0.01 respectively). The HER2-positive 
group showed higher level of Cho, without reaching 
statistical significance (P=0.04). The high Ki-67 group 
showed higher level of Glu than the low Ki-67 group, 
with borderline significance (P=0.02). Luminal B cancers 
showed significantly higher levels of Gly (P =0.01) 
than luminal A cancers (Figure 1). Luminal B cancers 
showed higher levels of PC and Tau (P=0.03, and P 
=0.05, respectively) and lower levels of Ile (P =0.04) than 
luminal A cancers (Figure 1), although the differences did 
not reach statistical significance.

For multivariate analysis, OPLS-DA separation 
models were produced with the HR-MAS MRS data 
according to HER2 and Ki-67 status, and luminal type. 
The OPLS-DA models showed visible discrimination 
between the groups, although some samples crossed over 
the reference line (Figure 2). Corresponding OPLS-DA 
loading S plots showed that Gly, PC, Cho, and Tau were 
contributing metabolites for prediction of the groups of 
ER-positive cancers. In addition, Leu contributed to 
discrimination of HER2-negative, low Ki-67, and luminal 
A groups from corresponding groups, although the level 
of Leu showed no statistical significance in univariate 
analysis. OPLS-DA prediction models of this study 
showed high sensitivities with a range of 94.4 -100% for 
prediction of HER2, Ki-67, and luminal type (Table 2).
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DISCUSSION

Patients with ER-positive breast cancers are 
generally thought to have a good prognosis, but some 
experience recurrence while others have cancers that are 
unresponsive to endocrine therapy [8, 25]. Metabolic 
profiling of ER-positive cancers may help to detect 
biomarkers that can be used to identify aggressive 
subgroups. Recent studies have performed metabolic 
profiling of ER-positive breast cancers using surgically 
obtained tissue [18, 25–27]. However, metabolic profiles 
of surgical samples cannot be obtained preoperatively 
for planning of therapeutic strategies. On the other 
hand, metabolic profiles of cancer samples obtained by 
US-guided CNB, standard procedure for preoperative 
diagnosis of breast cancers [28], are applicable to 
preoperative decision-making for the best treatment 
approach. In addition, several studies have reported that 
some protein and phosphoprotein levels were significantly 
higher in CNB compared with surgical samples suggesting 
a potential degradation of phosphorylation during surgical 
manipulation, or with cold ischemia of surgical samples 
[29, 30]. We have previously investigated HR-MAS MRS 
data of CNB breast cancer samples, and the results showed 
that several metabolites were found to correlate with IHC 
status of tumor [20]. In that study, ER-negative cancers 
showed significantly higher levels of Cho than ER-positive 
cancers. However, the study population of this past study 

included only 28 cases of ER-positive cancers, and we 
did not perform subgroup analysis according to molecular 
subtype. Considering that ER-positive cancers make up 
approximately 70% of breast cancers and that treatment 
outcomes differ according to molecular subtype (luminal 
A vs. B) [31], we attempted to conduct HR-MAS MRS 
metabolic profiling with a larger number CNB samples of 
ER-positive cancers in this study.

HER2 overexpression is associated with more 
aggressive disease and poorer prognosis compared to 
HER2 negativity [32]. Patients with HER2-positive 
cancers have been shown to be effectively treated 
by HER2-targeted therapy (e.g., trastuzumab) [33]. 
Accordingly, HER2 status evaluation is currently used to 
classify ER-positive cancers into luminal A or B type to 
guide therapeutic strategies. In this study aimed at ER-
positive breast cancers, the HER2-positive group and 
luminal B group showed significantly higher levels of 
Gly compared to the HER2-negative group and luminal 
A group, respectively. This is in accordance with a 
recent study in which there was a positive association 
between Gly level in surgical specimens and HER2-
positive cancers [18]. Gly is an amino acid involved in 
the synthesis of proteins, nucleotides and glutathione, 
and higher levels of Gly have previously been found to 
correlate with rapid cell proliferation and poor prognosis 
in breast cancer [22, 27, 34]. In addition, a recent study 
reported that glycine decarboxylase (GLDC), which is 

Table 1: Comparison between the relative metabolite quantification levels of ER-positive breast cancers according to 
the tumor groups

HER2 Ki-67 Molecular subtype*

Negative
(n=52)

Positive
(n=10)

Low
(n=39)

High
(n=23)

Luminal A
(n=36)

Luminal B
(n=26)

Metabolite Median (IQR) Median (IQR) P Median (IQR) Median (IQR) P Median (IQR) Median (IQR) P

Cho 1.16 (0.88-1.71) 1.74 (1.34-2.05) 0.04 1.33 (0.85-1.74) 1.32 (1.00-1.79) 0.60 1.30 (0.83-1.71) 1.48 (1.00-1.92) 0.07

PC 1.15 (0.69-1.49) 1.51 (1.35-1.75) 0.08 1.09 (0.67-1.59) 1.41 (1.18-1.58) 0.27 1.08 (0.58-1.43) 1.41 (1.18-1.62) 0.03

GPC 0.46 (0.35-0.70) 0.43 (0.30-0.57) 0.14 0.46 (0.29-0.71) 0.47 (0.36-0.56) 0.48 0.46 (0.30-0.70) 0.45 (0.36-0.57) 0.42

Gly 6.97 (5.28-8.71) 9.60 (8.51-9.93) <0.01 7.05 (5.14-8.86) 8.54 (6.47-9.68) 0.15 6.89 (5.02-8.63) 8.56 (6.51-9.69) 0.01

Ser 5.57 (4.35-6.79) 5.90 (5.40-6.42) 0.30 5.60 (4.04-6.86) 5.75 (4.66-6.46) 0.32 5.52 (4.11-6.79) 5.81 (4.65-6.49) 0.67

Tau 4.91 (2.92-6.07) 5.87 (5.36-6.85) 0.10 4.96 (2.87-6.08) 5.71 (3.99-6.52) 0.77 4.91 (2.77-5.99) 5.75 (4.11-6.95) 0.05

Leu 3.51 (3.03-4.06) 3.36 (2.98-4.44) 0.86 3.51 (3.04-7.03) 3.41 (2.89-4.33) 0.79 3.58 (3.13-4.06) 3.38 (2.87-4.30) 0.39

Ile 1.65 (1.41-2.10) 1.46 (1.29-1.76) 0.10 1.66 (1.42-2.30) 1.56 (1.36-1.79) 0.20 1.68 (1.43-2.34) 1.57 (1.36-1.76) 0.04

Gln 1.90 (1.47-2.24) 2.02 (1.40-2.39) 0.35 1.98 (1.43-2.25) 1.93 (1.42-2.36) 0.98 2.04 (1.60-2.26) 1.89 (1.35-2.33) 0.33

Glu 6.18 (5.03-6.78) 7.46 (6.30-9.15) <0.01 6.07 (4.82-6.73) 6.64 (5.93-8.25) 0.02 6.13 (4.97-6.77) 6.55 (5.88-8.24) 0.19

Cr 1.17 (0.82-1.77) 1.13 (0.74-1.49) 0.34 1.16 (0.75-1.83) 1.17 (0.87-1.72) 0.32 1.12 (0.72-1.80) 1.17 (0.91-1.74) 0.78

m-Ins 1.79 (1.43-2.61) 2.44 (2.09-2.89) 0.05 2.10 (1.43-2.67) 2.03 (1.55-2.55) 0.87 2.08 (1.43-2.80) 2.05 (1.54-2.57) 0.51

Ala 5.52 (4.44-6.64) 6.78 (5.74-7.82) 0.17 5.50 (4.40-6.72) 6.23 (5.02-6.96) 0.80 5.46 (4.45-6.37) 6.26 (4.91-7.21) 0.11

Cho: choline; PC: phosphocholine; GPC: glycerophosphocholine; Gly: glycine; Ser: serine; Tau: taurine; Gly: glycine; Leu: leucine; Ile: isoleucine; Gln: 
glutamine; Glu: glutamate; Cr: creatine; m-Ins: myoinositol; Ala: alanine.
*St Gallen surrogate molecular subtype.
IQR: interquartile range.
Bold indicates statistical significance (P<0.0167).
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Figure 1: The HR-MAS MR spectra (11.7T) obtained using core needle biopsy specimens show the peaks of each 
metabolite. (A) A 48-year-old woman with luminal B type ER-positive invasive ductal carcinoma (tumor size 17 mm, presence of lymph 
node metastasis, HER2-positive, High Ki-67). (B) A 57-year-old woman with luminal A type ER-positive invasive ducal carcinoma (tumor 
size 15 mm, no lymph node metastasis, HER2-negative, Low Ki-67).
Gly, glycine (3.55 ppm, singlet); Tau, taurine (3.24 and 3.41 ppm, triplet); GPC, glycerophosphocholine (3.22 ppm, singlet); PC, 
phosphocholine (3.21 ppm, singlet); Cho, free choline (3.20 ppm, singlet); Cr, creatine (3.03 ppm, singlet); Lys, lysine (3.01 triplet,/1.72 
and 1.89 ppm, multiplet); Gln, glutamine (2.15 and 2.44 ppm, multiplet); Glu, glutamate (2.08 and 2.34 ppm, multiplet); Leu, leucine (1.69 
ppm multiplet/0.91 and 0.94 ppm, doublet); Ala, alanine (1.47 ppm, doublet); Val, valine (0.98 and 1.04 ppm, doublet); Ile, isoleucine (0.99 
ppm, triplet/1.02 ppm doublet).
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Figure 2: OPLS-DA score and loading S-plots of the HR-MAS MRS spectra for HER2, Ki-67 status, and luminal type. 
(A) HER2-positive vs. HER2-negative, (B) high Ki-67 vs. low Ki-67, and (C) luminal A vs. luminal B.
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associated with Gly metabolism, was highly expressed 
in HER2-positive cancers [35]. Although the precise 
mechanism of increased GLDC in HER2-positive cancers 
is unknown, a 20-fold increase in GLDC expression was 
seen in MCF10A cells after oncogenic transformation by 
KRASG12D, PIK3CAE545K, or MYCT58A [36], suggesting 
that HER2-positive cancer may be driven by certain 
HER2 oncogenes. Therefore, based on results from 
previous studies combined with our results, we suggest 
that Gly may have potential as a prognostic biomarker 
that reflects tumor aggressiveness associated with HER2 
overexpression in ER-positive cancers as well as HER2-
positive subtype of breast cancer.

Along with HER2-positivity, a high Ki-67 
proliferation index is associated with worse survival 
outcome in breast cancer patients [37]. Our high Ki-67 
and HER2-positive aggressive subgroups of ER-positive 
cancer showed significantly higher levels of Glu compared 
to the corresponding groups, although Gln levels were not 
significantly different. Gln provides nitrogen for protein 
and nucleotide synthesis and Gln addiction has been 
described as a main feature of cancer cell metabolism 
[38]. Our findings may reflect an early step in increased 
glutaminolysis in which Gln is converted to Glu in the 
cytosol or mitochondria [38]. This finding is in accordance 
with a recent study in which Glu enrichment was found in 
56% of ER-positive cancers and in 88% of ER-negative 
cancers, compared with normal breast tissue. Other 
recent studies have reported increased glutaminolysis 
to be more prominent in ER-negative or triple negative 
cancers compared to ER-positive cancers [18, 39]. Along 
with previous studies, our results indicate that targeting 
the metabolites or enzymes related to glutanimolysis 
metabolism may provide a new therapeutic strategy for 
the aggressive subgroups of ER-positive cancers or ER-
negative cancers.

Choline-containing metabolites including Cho, 
PC, and GPC are associated with cell signaling, lipid 
metabolism and cell membrane synthesis and degradation 
[40]. In our study, Cho and PC levels were higher in the 
HER2-positive and luminal B subgroups of ER-positive 
breast cancer. However, the differences in these metabolite 

levels did not reach statistical significance, which may be 
due to the relatively lower levels of choline-containing 
metabolites of ER-positive cancers compared to ER-
negative cancers [20, 41]. Nonetheless, the tendency of 
higher levels of PC and Cho in the HER2-positive and 
luminal B subgroups of our ER-positive cancer samples 
is in accordance with those from recent metabolomics 
studies using CNB specimens or surgical tissue which 
found significant correlation between choline-containing 
metabolites in breast cancer tissue and the aggressive 
subgroups of breast cancer [18, 20]. These results may 
be a consequence of the up-regulation of choline kinase 
activity, which is associated with tumor aggressiveness 
and drug sensitivity [34, 40, 42, 43]. Down-regulation 
of choline kinase has been shown to decrease cell 
proliferation and to increase the effect of chemotherapy 
in breast cancers [42, 43]. Therefore, we suggest that 
choline-containing metabolites may be biomarkers related 
to the aggressive subgroups of ER-positive cancers.

In our OPLS-DA analysis, higher levels of Leu were 
associated with the less aggressive groups (HER2-negative, 
low Ki-67, and luminal A) of ER-positive cancers, although 
the levels of Leu did not reach statistical significance in 
univariate analysis. In addition, the luminal A group showed 
higher levels of Ile compared to luminal B. Although little 
is known about the relationship between breast cancer and 
branched-chain amino acids (BCAA) including Leu, Ile, 
and valine, a recent study has reported that plasma levels 
of Leu and BCAA (sum of Ile, Leu, and valine levels) were 
significantly correlated with the level of free testosterone 
in premenopausal women [44]. Leu and testosterone levels 
in plasma have been associated with obesity and insulin 
resistance [45, 46], which are identified as risk factors for 
breast cancer [47]. Considering these findings, one possible 
hypothesis for higher levels of BCAA in the less aggressive 
subgroups of our ER-positive cancers is that a subgroup 
with obesity or insulin resistance may be associated with 
better prognosis than a subgroup without. So, higher levels 
of BCAA may be a marker of patient obesity or insulin 
resistance, not a prognostic marker. To our knowledge, 
this study was the first to suggest the Leu level in CNB 
samples as a biomarker for ER-positive cancers. Therefore, 

Table 2: OPLS-DA classification results of HER2, Ki-67 status, and molecular subtype

Sensitivity Specificity Accuracy

HER2-negative vs. HER2-positive 100.0 % 71.2 % 75.8 %

Ki-67 low vs. Ki-67 high 95.8 % 82.1 % 88.7 %

Luminal A vs. Luminal B 94.4 % 92.3 % 93.5 %

Orthogonal projections to the latent structure discriminant analysis (OPLS-DA) classification models were built to separate 
the tumor groups according to the metabolic profiles of the CNB samples. The statistical relevance was verified using 
“Y-scrambling” validation, and the model was validated by prediction of unknown samples using the leave-one-out method.
For calculating diagnostic values, positive results of the OPLS classification models were defined as HER2-positive, high 
Ki-67, and luminal B cancers, respectively.
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additional studies are needed to evaluate whether BCAA 
can be appropriate biomarkers associated with the 
prognosis of ER-positive cancers.

OPLS-DA multivariate models using HR-MAS MRS 
data of pretreatment CNB cancer samples provided visible 
discrimination between the luminal A and luminal B groups, 
which supports the usefulness of molecular subclassification 
of ER-positive cancers widely used in clinical practice. The 
diagnostic accuracy for predicting the luminal type was 
higher than those for predicting the groups classified by a 
single factor (HER2 and Ki-67, respectively). Our results 
suggest that OPLS-DA multivariate analysis using HR-
MAS MRS metabolic profiles of CNB samples may provide 
comprehensive prognostic information reflecting molecular 
features of ER-positive cancers. Therefore, prognostic 
information obtained with HR-MAS MRS metabolic profiles 
may help define a clinical subgroup of ER-positive cancers 
for which aggressive therapy such as additional cytotoxic 
chemotherapy should be considered over conventional 
treatment. In addition, the metabolites that contribute to the 
prediction of luminal type (Gly, PC and Leu) in univariate 
and OPLS-DA analyses can be more powerful targets for 
metabolic drugs. Based on our results, HR-MAS MRS 
metabolic profiles of CNB samples are thought to potentially 
help clinicians develop more personalized treatment 
protocols for ER-positive cancers.

This study had several limitations. First, we could 
not evaluate associations between metabolic profiles of 
samples and long-term outcomes of study patients, because 
no recurrences were observed during the follow-up period. 
Recently, ESR1 gene mutations have been found in 15-
20% of patients with endocrine-resistant metastatic ER-
positive cancers, the majority of which are treated with 
endocrine therapy [48, 49]. Therefore, we think that 
further research evaluating the metabolic profiles of ER-
positive cancers with ESR1 gene mutations will be needed 
to identify potential biomarkers associated with poor 
prognosis of patients with ER-positive cancers. Second, 
we did not evaluate the relationship between the metabolic 
profiles and tumor-stroma ratios of our CNB samples, 

although recent studies have reported that the tumor-stroma 
ratio of breast cancer is associated with the prognosis [50, 
51]. Third, there has been concern that biospecimen type 
(in vivo CNB sample vs. ex vivo surgical sample) may 
affect biomarkers or metabolic profiling. However, we 
did not compare HR-MAS MRS data obtained with CNB 
specimens with the data obtained with surgical specimens. 
Therefore, we cannot exclude the possibility that HR-MAS 
MRS metabolic profiles of the CNB specimen may not 
fully represent the metabolic composition of the tumors 
with heterogeneous histologic features, although a recent 
study reported that most individual proteomic biomarkers 
studied did not differ according to biospecimen type [29]. 
Fourth, we used TSP as an internal reference for metabolite 
quantification. Although TSP has been commonly used as 
a reference substance in HR-MAS MRS experiments [18-
22, 24, 25, 52, 53], it can potentially bind to some proteins 
[54]. Therefore, we tried to compensate for this binding 
effect by taking the protein-bound TSP signal into account 
when setting up the TSP signal as our reference value 
for metabolite quantification. In spite of this effort, we 
could not rule out the possibility of unwanted errors from 
pathological differences between the cancer samples [55]. 
Thus, we used metabolite levels calculated by the relative 
quantification method in our comparison analysis. Finally, 
we used surrogate IHC measurement instead of multi-
gene molecular assays for subtype classification of ER-
positive cancers. Although multi-gene molecular assays 
were recognized as providing accurate and reproducible 
prognostic information, surrogate IHC-based classification 
was more widely applicable at a lower cost and was more 
readily available [8].

In conclusion, metabolic profiles of CNB samples of 
ER-positive breast cancers showed significant correlation 
with HER2, Ki-67, and luminal type. Our results indicate 
that the metabolic profiles of CNB samples assessed by 
HR-MAS MRS can be used to detect potential prognostic 
biomarkers as well as to understand the difference in 
metabolic mechanism among subtypes of ER-positive 
breast cancer.

Table 3: Correlation of molecular and pathologic characteristics of 62 ER-positive breast cancers in this study

Tumor size Lymph node metastasis

<2cm
(n=46)

≥ 2cm
(n=16)

Negative
(n=40)

Positive
(n=22)

HER2-negative (n=52) 39 13 32 20

HER2-positive (n=10) 7 3 8 2

Ki-67 low (n=39) 32 7 21 18

Ki-67 high (n=23) 14 9 19 4

Luminal A (n=36) 29 7 20 16

Luminal B (n=26) 17 9 20 6

Data present number of cancers.
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MATERIALS AND METHODS

Patient and sample preparation

The institutional review board of Severance 
Hospital, Yonsei University College of Medicine, approved 
this prospective study, and written informed consent was 
obtained from all patients. Between December 2011 and 
December 2013, we initially enrolled 97 patients with 100 
breast lesions assessed by the Breast Imaging Reporting 
and Data System as final assessment categories 4c or 5 
[56], and larger than 1 cm in diameter on mammography 
or ultrasound (US). Finally, 61 patients with 62 breast 
lesions fulfilled the following inclusion criteria: (a) having 
a breast lesion pathologically diagnosed as ER-positive 
cancer by CNB, (b) not pregnant at the time of diagnosis, 
and (c) no history of breast cancer or previous breast 
surgery including breast implants. All patients were treated 
with surgery and seven patients underwent neoadjuvant 
chemotherapy (NAC) prior to surgery.

For pathologic diagnosis of each patient, US-
guided CNB was performed with a 14-gauge dual-action 
semiautomatic core biopsy needle (Stericut with coaxial 
guide; TSK laboratory, Tochigi, Japan) by one of four 
radiologists (with 7-15 years of experience in breast 
imaging) before treatment (surgery or NAC prior to 
surgery). The radiologists targeted the homogeneously 
solid area for biopsies of large and heterogeneous 
lesions. An average of six (range 5-8) tissue samples 
were acquired by US-guided CNB. Leaving out one core 
sample of each lesion, the rest of samples were taken 
for histopathologic diagnosis and immunohistochemical 
(IHC) analysis. The core sample was put in a cryogenic 
vial and immersed in liquid nitrogen immediately after 
biopsy for HR-MAS MRS. These samples were kept in a 
freezer (MVE Cryosystem, Chart BioMed, CA, USA) at 
-162°C for one to five months before the HR-MAS MRS 
experiment.

Pathologic analysis

For primary breast cancers, final histopathologic 
results of CNB and surgical specimens were reviewed 
to determine final diagnosis, tumor size, and molecular 
subtype determined by ER, progesterone receptor [PR], 
HER2, and Ki-67 status. Axillary lymph node status 
was determined by surgical histopathologic results and 
preoperative fine-needle aspiration biopsy results.

ER and PR positivity were defined using a cutoff 
value of > 1% positively stained nuclei [57]. HER2 
staining using the Hercep Test TM (DAKO, Glostrup, 
Denmark) was interpreted as 0, 1+, 2+, or 3+ according to 
the guidelines of the American Society Clinical Oncology/
College of American Pathologists [58]. Tumors scored as 3+ 
were considered HER2-positive cases whereas tumors with 
0 to 1+ were regarded as negative cases. Tumors scored 
as 2+ required further investigation using fluorescence in 

situ hybridization to assess HER2 gene amplification. Ki-67 
staining was scored by counting the number of cells with 
positively stained nuclei and was expressed as a percentage 
of the total number of tumor cells. Ki-67 results were 
classified into low (<14%) and high (≥14%) [59].

HR-MAS MRS

Frozen CNB samples were thawed in the nuclear 
magnetic resonance (NMR) laboratory, weighed, and 
placed in a HR-MAS nanoprobe® (Agilent, Walnut Creek, 
CA, USA). The samples (mean weight 10 mg) were 
cut to fit a 40-μl NMR nanotube, and they were placed 
in the cell with the remaining volume filled with D2O 
containing 2 mM trimethylsilyl propionic acid (TSP) for 
chemical shift referencing. HR-MAS MR spectra were 
acquired with an NMR spectrometer (Agilent, VNMRS 
600) operating at a proton NMR frequency of 600 MHz 
(11.74 T). An inverse-detection type probe equipped with 
a single Z gradient coil was used and the temperature was 
set to 26°C after calibration with methanol. The spectral 
acquisition parameters were as follows: CPMG (Carr-
Purcell-Meiboom-Gill) pulse sequence to impose a T2 filter 
{[recycle delay-90°-(τ-180°-τ) 80-acquisiton] (pw90=6.0 
us, τ =469.0 us)}, spinning rate of 2 kHz, 19.231 K complex 
data points, 9615.4 Hz sweep width, 2.0-s acquisition time, 
1.0-s relaxation delay, 1.5-s saturation time, 256 number 
of transients, and total acquisition time of 16 min 18 sec.

Following acquisition, the spectra were processed 
and analyzed using ACD software (Advanced Chemistry 
Development, Toronto, Ontario, Canada) followed by 
post-processing steps of Fourier transformation, phasing 
and baseline correction. TSP was calibrated to 0.00 ppm, 
and spectral region from 0.5 to 7.6 ppm was chosen 
as the final input data analysis. Signals of chemical 
contamination (e.g., ethanol), water, and lipids were 
excluded ahead of the analysis. The peak amplitude of 
each metabolite was measured by fitting a Voigt (e.g., 
Gauss+Lorentz) line-shape function. Relative metabolite 
quantification was carried out based on the comparison 
between the integrated TSP signal and the signal of 
interest in the sample spectrum.

Follow-up

Curative breast surgery was performed on all study 
patients and seven patients underwent NAC prior to 
surgery. Adjuvant endocrine therapy and/or chemotherapy 
were performed according to the pathologic characteristics 
of the cancers [60]. All patients were examined with 
mammography and US every 6 months for the first 2 years 
after surgery and annual mammography and US thereafter. 
Locoregional recurrence limited to the ipsilateral breast 
or chest wall and/or regional lymph node recurrence 
(axillary, infraclavicular, or supraclavicular lymph nodes), 
contralateral breast cancer, and distant metastasis to other 
body organs were regarded as breast cancer recurrence) [61].
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Data and statistical analysis

Pathologic characteristics of the included tumors 
were collected from a review of patient medical records, 
and are listed in Table 3. Tumor size was determined 
as the maximum diameter of invasive tumor on final 
pathologic results (n=55). However, tumor size measured 
with US was used for patients treated with neoadjuvant 
chemotherapy (n=7). For statistical analysis, tumors were 
grouped by status of HER2, and Ki-67, and St Gallen 
surrogate molecular subtype (luminal A or luminal B) 
[20, 22]. The Kolmogorov–Smirnov test was used to 
check for normal distribution of relative quantification 
levels of metabolites of CNB samples. The relative 
quantification levels of the metabolites (alanine [Ala], 
creatine [Cr], free choline [Cho], phosphocholine [PC], 
glycerophosphocholine [GPC], glutamine [Gln], glutamate 
[Glu], leucine [Leu], isoleucine [Ile], myo-inositol 
[m-Ins], taurine [Tau], serine [Ser] and glycine [Gly]; 
Supplementary Table 1) were compared according to the 
tumor groups using the Mann-Whitney test. Statistical 
analysis was performed with SAS for Windows, version 
9.0 (SAS Institute, Cary, NC, USA). A P value of less than 
0.0167 (Bonferroni corrected P=0.05/3) was considered to 
indicate a significant difference between groups.

For multivariate analysis, Matlab (MathWorks, 
Natick, MA), SIMCA-P+ 12.0 (Umetrics, Sweden), and 
Excel (Microsoft, Seattle, WA) programs were used. 
Orthogonal projections to latent structure discriminant 
analysis (OPLS-DA) were conducted to separate the tumor 
groups with metabolic profiles of CNB samples by building 
the statistical models. The statistical relevance was verified 
using “Y-scrambling” validation, and the resulting R2 and 
Q2 values were calculated. The R2 value represents the 
“goodness of fit” which reflects how close the calculated 
data are to the original data. By repeated fitting, the R2 
value can be artificially increased, leading to a decrease 
in the Q2 value, the predictability. Therefore, statistical 
soundness can be checked by randomly permutating the 
group designation of the original data and seeing if the 
calculation can correctly differentiate the groups with this 
deliberately generated model. The model was validated 
by prediction of unknown samples using a leave-one-out 
method [62]. An a priori cut-off value of 0.5 was applied 
to evaluate the prediction results [63]. Signals contributing 
to group discrimination were detected by an S-plot and the 
corresponding spectral data were extracted from Chenomx 
(Spectral database; Edmonton, Alberta, Canada) software 
and an in-house data repository. Any signals related to 
contamination (e.g. ethanol and methanol) were removed 
from the statistical analysis of spectral data.
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