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Abstract
We present an open source package for performing evolutionary quantitative
genetics analyses in the R environment for statistical computing. Evolutionary
theory shows that evolution depends critically on the available variation in a
given population. When dealing with many quantitative traits this variation is
expressed in the form of a covariance matrix, particularly the additive genetic
covariance matrix or sometimes the phenotypic matrix, when the genetic matrix
is unavailable and there is evidence the phenotypic matrix is sufficiently similar
to the genetic matrix. Given this mathematical representation of available
variation, the \textbf{EvolQG} package provides functions for calculation of
relevant evolutionary statistics; estimation of sampling error; corrections for this
error; matrix comparison via correlations, distances and matrix decomposition;
analysis of modularity patterns; and functions for testing evolutionary
hypotheses on taxa diversification.
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Introduction
Quantitative genetics deals with the evolution and inheritance of 
continuous traits, like body size, bone lengths, gene expressions 
or any other inheritable characteristic that can be measured on a 
continuous scale, or which can be transformed to a continuous 
scale. This framework has been used in selective breeding and in 
describing the different sources of variation in natural populations, 
as well as understanding the interaction of evolutionary processes 
with this variation32. Quantitative genetics has been successful in 
describing short term evolution, and is also useful in understanding 
diversification at a macroevolutionary level. The core development 
of modern evolutionary quantitative genetics started with the gen-
eralization of the univariate breeders equation to the multivariate 
response to selection equation, derived by Lande and also referred 
to as the Lande equation28,55. The Lande equation relates the evo-
lutionary change in trait means of a given population (Δz) to the 
interaction between the additive genetic variation (G-matrix) of this 
population and the directional selection (β) acting on this popula-
tion. The additive genetic variation of a population is represented 
by a symmetric square matrix called the G-matrix, which contains 
the additive genetic variance of each trait on the diagonal and the 
additive genetic covariance between traits on the off-diagonal ele-
ments. From the Lande equation, Δz = Gβ, we can see that differ-
ent populations may present markedly different responses (Δz) to 
the same directional selection (β) simply because these populations 
have distinct G-matrices. Other evolutionary forces affecting popu-
lations are also influenced by available variation, e. g., based on the 
G-matrix it is possible to test if morphological differentiation of 
extant taxa is compatible with genetic drift or stabilizing selection 
(e.g., 2,35). Thus, describing and understanding changes in stand-
ing variation among populations7,31,34 as well as understanding con-
straints imposed by populations standing variation (e.g., 19,33,51,58) 
are major elements in evolutionary quantitative genetics.

In this article we describe the EvolQG package, developed to  
deal with the evolutionary quantitative genetics questions addressed 
above in the R environment for statistical computing53. Our  
goal was to provide a suite of tools in a single consistent source,  
and to standardize and facilitate the adoption of these tools.

Measurement error estimation
Before estimating a G-matrix, it is important to evaluate the influ-
ence of measurement error in data collection, since measurement 
error can drastically bias further analyses11. Measurement error 
can be estimated by measuring each individual at least twice and 
estimating the amount of variation associated with each individual, 
which is the measurement error, in relation to total variation (i.e., the 
sum of within and between individuals variation) using an analysis 

of variance. The proportion of variance associated with among indi-
vidual variation, and not within individual variation, is called the 
repeatability30. A repeatability of 1 means that no variation is asso-
ciated with measurement error. The function CalcRepeatability() 
performs the calculation described in 30 for a set of multivariate 
traits measured at least twice for each individual.

Matrix estimation
In the rest of this article we assume that the covariance matrix of 
interest has already been estimated by some procedure. This matrix  
can be a simple covariance of all the observed traits, or an estimated 
parameter from a more complicated linear model. The simplest case 
of a linear model approach would be using a multivariate analy-
sis of covariance (MANCOVA) to control for differences in trait 
means that are not of immediate interest in the analyses (e.g., sexual 
dimorphism, geographic variation, etc.). The residual pooled within-
group covariance matrix can be used in subsequent analysis34. The 
EvolQG function CalculateMatrix() uses R’s lm() model object 
to calculate variance-covariance matrices adjusting for the proper 
degrees of freedom in a simple fixed-effects MANCOVA. More 
complicated methods may be used to obtain G-matrices, such as 
an animal model or a mixed model32,57, and these can be used for 
further analysis using EvolQG.

EvolQG also provides a simple Bayesian model for phenotypic 
matrix estimation using a conjugate inverse Wishart prior, imple-
mented in the function BayesianCalculateMatrix(). The default 
behavior is to use a prior covariance matrix with the observed vari-
ances (from the data) on the diagonal and zeros in the off-diagonal 
elements. This method uses a type of regularization prior which 
provides a “shrinkage” posterior estimate which has some attractive 
properties when compared to the maximum likelihood estimate, 
such a lower mean squared error and a well behaved inverse29,44,59. 
The maximum a posteriori estimate is calculated analytically, and 
optionally the function also provides a sample from the posterior 
distribution and the median of these samples. These samples can be 
used in other Bayesian methods described in the next sections, or to 
calculate confidence intervals for any analysis using the covariance 
matrices.

Ideally all the analysis we describe should be performed on 
G-matrices, but accurate G-matrix estimation can be hard, requiring 
large sample sizes, many families and known genealogies60. One 
alternative we advocate for, which is usually more feasible, is to use 
the phenotypic covariance matrix (the P-matrix) as a proxy of the 
population’s G-matrix8,56. Conditions on where this approximation is 
reasonable depend on the structure of developmental and environ-
mental effects, and testing for similarity is an empirical question 
that should be undertaken before using the P-matrix as a proxy for 
the G-matrix, ideally by direct comparison (e.g., 13). As a general 
rule, high similarity between populations’ P-matrices is a good 
indicator of high similarity between P and G, and of a stable shared 
G-matrix pattern, since the similarity between populations must 
come from either a common genetic structure, or the unlikely sce-
nario of a different genetic structure buffered by an exactly com-
pensating environmental structure in each population that leads to 
high similarity between phenotypic covariation.

      Amendments from Version 2

We now make clear that the functions related to matrix error 
estimation should only be used with phenotypic co-variance 
matrices.

See referee reports

REVISED
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Some of the methods described below are not applicable to 
covariance matrices, only to correlation matrices. Correlations are 
standardized measures of association that are bounded between 
[–1, 1], and, unlike covariances, can be directly compared for 
pairs of traits with different scales. In most instances, correlation 
matrices can be obtained directly from covariance matrices by 
using the R function cov2cor().

Matrix error and repeatabilities
A G-matrix will always be estimated with error20,37,41, and it is 
important to take this error into account in further analyses. In 
some circumstances we want to compare two or more G-matrices, 
calculating the matrices correlations (see section Matrix Compari-
son). However, due to error in estimating these matrices, their cor-
relations will never be one, even if the actual population parameter 
values are identical8. Thus, matrix repeatabilities are used to cor-
rect matrix correlations by taking sampling error into account. The 
basic premise of all the methods is that taking repeated samples 
from the same population and comparing the resulting matrices 
would still give correlations that are lower than 1. We estimate the 
maximum correlation between matrices taken from the same popu-
lation and correct the observed correlation by this maximum value. 
The corrected correlation between two observed matrices will be 
given by the original correlation divided by the geometric mean 
of their repeatabilities. If the repeatability of both matrices is one, 
the observed correlation does not change under the correction, and 
lower repeatabilities yield larger corrections. Estimating error for 
G- and P-matrices require different methods. The objective when 
estimating error is usually to create a sample of matrices that reflects 
our uncertainty regarding the estimated matrix. Because G-matrix 
are estimated using mixed models or animal models32,57 this model 
structure must be taken into account, and sampling strategies that 
work in P-matrices will severely underestimate error in G-matrices. 
Given these restrictions, we can generate a distribution of 
G-matrices in several ways: (i) mixed model packages often 
provide the functionality of bootstrapping over the exchangeable 
units in the design (i.e. permuting sires in a half-sib or full-sib 
design) and generate error estimates using these samples; (ii) Houle 
& Meyer23 use an asymptotic approximation for the the parametric 
sampling distribution of the estimated G-matrix to generate sam-
ples and estimate error, a method called MVN-REML available in 
the program WOMBAT40; (iii) in a fully Bayesian context, samples 
from the posterior distribution of the G-matrix can be used. These 
samples can then be used to calculate repeatabilities or confidence 
intervals for derived quantities. Using any of these sampling meth-
ods the repeatability can be estimated as the average comparison 
value for all pairs of sampled matrices or as the average comparison 
of the estimated matrix and the sampled matrices.

When working with P-matrices things are simpler, and repeatabili-
ties are straight forward to calculate using EvolQG. We provide a 
number of methods for estimating repeatability in P-matrices, and 
their results can be passed on to the functions that calculate matrix 
correlations (section Matrix Comparison):

AlphaRep(): Cheverud8 describes an analytical expression for the 
repeatability of a correlation matrix. This expression is asymptoti-
cally convergent, so it should be used only when sample sizes are 
large, at least larger than the number of traits.

BootstrapRep(): We may estimate the repeatability of the covari-
ance (or correlation) structure of a given data set using a bootstrap 
procedure, sampling individuals with replacement from the data 
set and calculating a covariance (or correlation) matrix from each 
sample. The mean value of the correlation between the random 
sample matrix and the original estimated matrix is an estimate of 
the repeatability. This method has the advantage of not assuming 
any distribution on the data, but does provide inflated estimates of 
repeatabilities for small data sets. Even so, upwardly biased matrix 
repeatabilities are not so problematic, because they lead to con-
servative corrections of matrix correlations. However, users should 
be aware of this bias and should not interpret a high repeatability 
obtained from a small data set as indicating that the parameter is 
well estimated.

MonteCarloRep(): We can use the observed covariance matrix 
as the Σ parameter in a multivariate normal distribution, and pro-
duce samples from this distribution, using a fixed sample size. The 
covariance (or correlation) matrix for each sample is compared 
to the observed matrix, and the mean of these comparisons is an 
estimate of the repeatability34. This method has the advantage of 
being easy to apply to matrices coming from linear models with 
many fixed effects, and not requiring the original data; but can 
also lead to inflated repeatabilities for small samples.

Both MonteCarloRep() and BootstrapRep() are based on generic 
functions (MonteCarloStat() and BootstrapStat()) which can be 
used for general sampling from covariance matrices using normal 
distributions or to generate bootstrap samples from a set of indi-
viduals, respectively. These functions can be used to generate con-
fidence intervals for P-matrices for any of the evolutionary statistics 
described below, or any user defined function.

Sometimes the question we are trying to answer does not involve 
matrix comparisons, so other methods of assessing and correcting 
for error are needed.

Rarefaction(): Rarefaction consists of taking progressively 
smaller samples with replacement from the original data set, 
calculating some statistic on each data set and comparing this with 
the full data set. These comparisons gives a general idea of how 
the inferences would change if we had smaller sample sizes, and 
how robust our data set is with respect to sampling, given that an 
appropriately large initial sample is available. The default opera-
tion is to calculate the covariance or correlation matrices and 
compare them using any of the matrix comparison methods (see 
section Matrix Comparison). The generic Rarefaction-Stat() 
can also be used to generate rarefaction curves for any user defined 
function.

ExtendMatrix(): Marroig et al.37 showed that sampling error on 
covariance matrix estimation can have a dramatic effect on the recon-
struction of net selection gradients using the multivariate response 
to selection equation28. One way to improve estimates is the simple 
procedure of “extending” the eigenvalues of the covariance matrix, 
where all the eigenvalues lower than a certain threshold are substi-
tuted by the smallest eigenvalue above the threshold. This substi-
tution causes minimal changes in the distribution of phenotypes, 
but improves dramatically the estimates of net selection gradients. 

Page 4 of 24

F1000Research 2016, 4:925 Last updated: 08 NOV 2016



Alternatives to the extension method involve using regularized 
estimators for the covariance matrix, like Bayesian or shrinkage  
estimators29,59, available from package corpcor. See 37 for a thor-
ough examination of the performance and consequences of the 
extension and shrinkage methods on simulated and real data sets.

Evolutionary statistics
Hansen & Houle19 provide a suite of statistics that have fairly good 
biological interpretations for a given G- or P-matrix. Marroig et al.38 
is a comprehensive example of how these statistics may be used for 
interpreting morphological data.

The function MeanMatrixStatistics() calculates most of these 
statistics and their distributions, as shown below. MonteCarloStat() 
and BootstrapStat() can be used to generate confidence intervals 
for these statistics when using P-matrices. Also, the previously 
available R package evolvability5 implements some of these 
functions and provides confidence intervals.

In the following, E[·]β represents the expected value over many 
random β vectors with unit norm, < ·, · > represents the dot 
product between two vectors, cos(·, ·) is the cosine between two 
vectors, G is an arbitrary covariance matrix, G−1 is the inverse G, 
tr(G) is the trace of G, and ॥ · ॥ the Euclidean norm of a vector. 
MeanMatrixStatistics() calculates: 

• Mean squared correlation (r2): Given a correlation 
matrix, the elements below the diagonal are squared and 
averaged resulting in a measure of integration, that is, 
overall association between traits (also see the section 
Modularity and Integration and 49).

• Coefficient of variation of eigenvalues (ICV): A measure 
of integration that is suitable for covariance matrices, as 
it takes the amount of variation into account. Notice that 
at least for mammals, mean squared correlations and ICV 
generally have high correlation, but can lead to different 
conclusions if the traits included in the analysis have very 
different variances (due to scale, for example). If σλ is 
the standard deviation of the eigenvalues of a covariance 
matrix, and λ̄  is the mean of the eigenvalues, the ICV is: 

      
–ICV

σλ=
λ

• Percent of variation in first principal component: If 1λG  is 
the leading eigenvalue of G, we calculate this percentage 
as: 

   

11%
( )

PC
tr

λ
=

G

G

• Evolvability (Figure 1): The mean projection of the 
response to random selection gradients with unit norm 
onto the selection gradient. This projection is a measure of 
a population’s available variation in the direction of a par-
ticular selection gradient, averaged across all directions19.

               
[ ],e E

−

β
= < β β >G

• Flexibility (Figure 1): The mean cosine of the 
angle between random selection gradients and the 

corresponding responses. Flexibility measures on 
average how the response to selection aligns with the 
selection gradient38.

             
–

[ )],f E cos β= β β(G

• Respondability (Figure 1): Mean norm of the response to 
random selection gradients with unit norm. It also esti-
mates how fast the population mean will change under 
directional selection19,38.

  
r E G−

β
 = β 

• Conditional Evolvability: Measures the mean response 
to selection in the direction of a given β when other 
directions are under stabilizing selection19.

         
( ) 11 ,c E

−− −

β

 = < β β > G

• Autonomy: Measures the proportion of variance in the 
direction of a given β that is independent from varia-
tion in other directions. Therefore, mean Autonomy can 
also be calculated as the mean ratio between Conditional 
Evolvability (c̄) and Evolvability (ē)19.

              
( ) ( )1 11 , ,a E

β
β β β β

− −− = < > < >  G G

• Constraints: The mean correlation between the response 
vector to random selection gradients and the matrix’s 
first principal component38. If 1ΛG is the first principal 
component of G, constraints are measured as:

               ( )1,E cos GG
β

 β Λ 

Matrix comparison
A G-matrix describes how the variation in particular populations 
is structured, but frequently the relevant question is how similar 
or dissimilar two populations are with respect to this standing 

Figure 1. Graphical representation of evolvability (ē), 
respondability (r̄) and flexibility (f̄ ) for a single selection 
gradient (β) and the corresponding response (Δz) in the two 
dimensions defined by traits x and y.
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variation. Because no two populations are identical, different 
patterns of variation are the norm. Depending on the evolutionary 
question at hand, different methods of comparing variation may 
be required. One possible application of matrix comparisons is 
when we wish to apply the Lande equation to micro and macro-
evolution, because doing so requires some additional assumptions, 
such as a relative stability of the G-matrix over generations24. 
Comparing extant covariance matrices is a test of this required 
stability (e.g. 34). For a thoughtful discussion on the biological 
relevance of statistical significance in matrix comparisons, see 
the discussion in 16.

Matrix correlations
One approach to estimate the similarity or dissimilarity between 
matrices is to calculate the correlation between these matrices. 
EvolQG provides several functions for pairwise matrix correlation.

RandomSkewers(): The Random Skewers (RS) method makes 
use of the Lande equation28, Δz = Gβ, where Δz represents the 
vector of response to selection, G the G-matrix and β the direc-
tional selection vector, or selection gradient. In the RS method, the 
two matrices being compared are multiplied by a large number of 
normalized random selection vectors, and the resulting response 
vectors to the same selection vector are compared via a vector 
correlation (the cosine between the two vectors). The mean value 
of the correlation between the responses to the same selective 
pressure is used as a simple statistic of how often two populations 
respond similarly (in the same direction) to the same selective 
pressure: 

( ) ( ), ,RS A B E cos A B
β

β β =  
  
(1)

Where E[·]β is the expected value over random selection vectors β. 
Significance in the random skewers comparison can be determined 
using a null expectation of correlation between random vectors. If 
the observed correlation between two matrices is above the 95% 
percentile of the distribution of correlations between random 
vectors, we consider the correlation significant and infer that there 
is evidence the two populations behave similarly under directional 
selection. Other implementations of the RS method sometimes 
resort to other forms of calculating significance, such as generat-
ing random matrices and creating a random distribution of corre-
lations between matrices. Generating this distribution is difficult 
to do because generating random matrices with the properties of 
biological covariance structures is hard, see the RandomMatrix() 
function for a quick discussion on this problem. But perhaps more 
important than the significance test, the RS method measure the 
overall similarity of the responses predicted by the two matrices 
under directional selection, a property that is at the core of applica-
tions of quantitative genetics theory to evolutionary problems. In 
this sense, a significant similarity measure by Random Skewers 
might still be low for a given application, when small differences 
in the direction of response are important. The RS values range 
between -1 (the matrices have opposite structures) and 1 (the matri-
ces share the same structure), and zero means the matrices have 
distinct structures.

MantelCor(): Correlation between matrices can be done using a 
simple Pearson correlation between the corresponding elements. 
Significance of this comparison must take the structure into 

account, so it is calculated by a permutation scheme, in which a 
null distribution is generated by permutation of rows and col-
umns in one of the matrices and repeating the element-by-element 
correlation (i.e. Mantel test). The observed correlation is sig-
nificant when it is larger than the 95% quantile of the permuted 
distribution. This method should only be used in correlation matri-
ces, and cannot be used on covariance matrices because the vari-
ances might be very different, leading to large differences in the 
scale of the covariances. This scale difference can lead to a mas-
sive inflation in the correlation between matrices. The correlation 
between matrices range between -1 and 1, and higher correlations 
indicate matrices have more similar structures, null correlations 
indicate the matrices have distinct correlation structures. Correla-
tions near zero can also occur if the elements of the matrices have 
nonlinear relations between them, as in all Pearson correlations. 
Negative correlations indicate the pattern of association between 
traits is reversed in the two matrices.

KzrCor(): The Krzanowski shared space, or Krzanowski correla-
tion, measures the degree to which the first principal components 
(eigenvectors) span the same subspace3,26, and is suitable for cov-
ariance or correlation matrices. If two n × n matrices are being 
compared, the first 1

2

nk = −  principal components from one matrix 
are compared to the first k principal components of the other matrix 
using the square of the vector correlations, and the sum of the 
correlations is a measure of how congruent the spanned sub-
spaces are. We can write the Krzanowski correlation in terms of 
the matrices’ principal components ( A

iΛ  being the ith principal 
component of matrix A): 

       2

1 1

1
( , ) ( , )

k k
A B
i j

i j

KrzCor A B cos
k = =

= Λ Λ∑∑                  (2)

The Krzanowski correlation values range between 0 (two subspaces 
are dissimilar) and 1 (two subspaces are identical).

PCAsimilarity(): The Krzanowski correlation compares only 
the subspace shared by roughly the first half of the principal 
components, but does not consider the amount of variation each 
population has in these directions of the morphological space62. 
In order to take the variation into account, we can add the eigen-
value associated with each principal component into the calcula-
tion, effectively weighting each correlation by the variance in the 
associated directions. If iλA  is the ith eigenvalue of matrix A, we 
have:

          

2

1 1

=1

( , )
( , )

n n A B A B
i j i ji j
n

i ji

cos
PCAsimilarity A B

Α Βλ λ
= =

λ λ Λ Λ
=

∑ ∑
∑

     

(3)

Note the sum spans all the principal components, not just the first 
k as in the Krzanowski correlation method. This method gives 
correlations that are very similar to the RS method, but is much 
faster. The PCA similarity values range between 0 (the shared 
subspaces have no common variation) and 1 (the shared subspaces 
have identical variation).

Matrix decomposition
Some methods attempt to characterize how a set of matrices differ, 
going beyond simple correlations. EvolQG provides efficient 
implementations of some of these methods. 
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SRD(): The RS method can be extended to give information 
into which traits contribute to differences in terms of the pattern 
of correlated selection due to covariation between traits in two 
populations36. The Selection Response Decomposition does this 
by treating the terms of correlated response in the Lande equation 
as separate entities. Writing out the terms in the multivariate 
response to selection equation:

          

11 12 1 1

21 22 2 2

1 2

11 1 12 2 1

21 1 22 2 2

1 1 2 2

n

n

n n nn n

n n

n n

n n nn n

A A A

A A A

A A A

A A A

A A A
z

A A A

A




  








  β
  

β  β = =  
    β  

 β + β + + β
 

β + β + + β = = ∆ 
  β + β + + β 

                   

(4)

Separating the terms in the sums of the right hand side:

  

11 1 12 2 1

21 1 22 2 2

1 1 2 2

( )

( )

( )

n n

n n

n n nn n

A A A

A A A

A A A




   


β β β

β β β

β β β

                        (5)

Each of these row vectors 1( )A
i ij j j nr Aβ β == …  are the components 

of the response to the selection gradient β on trait i. The term 
A

ii
β

i
 represents the response to direct selection on trait i, and the 

terms (A
ij
β

j
)

i/=j
 represent the response to indirect selection due to 

correlation with the other traits. Given two matrices, A and B, we 
can measure how similar they are in their pattern of correlated 
selection on each trait by calculating the correlation between the 
vectors r

i
 for each trait for random selection vectors of unit norm. 

The mean SRD score for trait i is then: 

         ( , ) ,( )A B
i i iSRD A B E cor r rβ β

β
 µ =                         (6)

And the standard deviation of the correlations gives the variation 
in SRD scores: 

( )( )2
( , ) ,A B

i i i iSRD A B E cor r r SRDβ β

β
σ µ = −  

(7)

When the same trait in different matrices share a correlated  
response pattern, µSRD is high and σSRD is low; if the correlated 
response pattern is different, µSRD is low and σSRD is high. See 36 
for details and examples.

RSprojection(): Aguirre et al.3 used a modification of the Random 
Skewers method to examine differences in the magnitude of vari-
ation in different directions in a set of covariance matrices. This 
method is most useful when a posterior sample of covariance 
matrices is available, as this sample allows us to identify directions 
in the morphospace that show relevant differences in the amount of 
variation between any two matrices. The function RSprojection() 
uses a set of posterior samples to identify the directions that 
represent the most significant differences in variance, and to 
compare the amount of variation in each matrix for each of these 
directions. The posterior samples of covariance matrices can 

be obtained using any Bayesian linear model package, such as 
MCMCglmm17, or, for simple cases, BayesianCalculateMatrix(). 
This method identifies directions where there is a significant 
difference in the amount of variation, so it is most useful when the 
matrices being compared have similar scales, since matrices with 
identical structure might have different amounts of variation in all 
directions simply because the total amount of variation is larger in 
one of the matrices.

EigenTensorDecomposition(): Hine et al.21 proposes using 
covariance tensors for characterizing covariance matrix variation, 
based on Basser & Pajevic4. Covariance tensors can be further 
decomposed into orthogonal eigentensors and eigenvalues; each 
covariance matrix in the sample can thus be represented as a 
combination of such eigentensors, in a manner analogous to 
Principal Component Analysis. Considering the non-Euclidean 
(Riemannian) nature of the space of symmetric positive-definite 
matrices (Figure 2), the implementation of this procedure in 
EvolQG relies on estimating a geometric mean matrix (which 
minimizes the sum of Riemannian distances among observations43; 
implemented as MeanMatrix()) and mapping such observations 
into an actual Euclidean space using the function 

  
− −

=
1 1

2 2( ) ( )f LogX M XM
                      

(8)

where M refers to the estimated geometric mean matrix and Log 
refers to the matrix logarithm operator. Only then a covariance 
tensor can be estimated, considering that the estimation of 
orthogonal eigentensors assumes that observations are contained 
within an Euclidean space, equipped with definitions for both 
angle and distance. The function EigenTensorDecomposition() 
implements these steps; furthermore, given an eigentensor decom-
position estimated using this function, it is possible to project other 
covariance matrices of the same size as the original sample onto 
the obtained eigentensors (ProjectMatrix()), and also reconstruct 
covariance matrices based on their scores over eigentensors 
(RevertMatrix()), which may be useful for observing the direc-
tion associated with each eigentensor as actual covariance matrices. 
This function uses the inverse operation to equation 8, that is 

  
− =

1 1
1 2 2( ) ( ) )f ExpX M X M

                       
(9)

where Exp refers to the matrix exponential operator. This opera-
tion maps the matrix X back onto the non-Euclidean space of 
symmetric positive-definite matrices. If a posterior sample of 
covariances matrices is available, this function can be used to 
implement the hypothesis-testing method described in Aguirre 
et al.3 using covariance tensors, but this test also requires a null 
distribution of matrices that has to be tailored to the data at hand. 
Also, since the covariance tensor is calculated using the covaria-
tion between elements in the covariance matrix, these methods 
require two levels of replication in the data: individuals within 
populations for the calculation of the covariance matrices, and 
several populations for the calculation of the covariance tensor. 
This requirement should be kept in mind when interpreting the 
results, as small samples at either level can lead to poorly estimated 
parameters and misleading results.

Matrix distances
Another approach to estimate the similarity or dissimilarity 
between matrices is to calculate the distance between a pair of 
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matrices. Matrices distances are different from correlations in that 
correlations are limited to [−1, +1], while distances must only be 
positive. Also, smaller values of distances mean more similarity. 
Two distances are in use in the current evolutionary literature, and 
are implemented in the function MatrixDistance().

• Overlap distance: Ovaskainen et al.48 proposed a distance 
based on probability distributions, where two covari-
ance matrices would have a distance proportional to how 
distinguishable they are. This distance is natural if we 
think of covariance matrices as describing the prob-
ability distribution of phenotypes or additive values in 
the population. The higher the probability of a random 
draw coming from the distribution defined by one of the 
matrices being misclassified as coming from the distri-
bution defined by the other, the lower the distance. For 
two probability distributions f and g, the probability of 
misclassifying a draw from f as coming from g is: 

( ) ( )
, ( )

( ) ( )nR

g x
q f g f x dx

f x g x
=

+∫ (10)

where n is the dimensionality of the space in which 
the distributions are defined. If the distributions are 
indistinguishable, q(f, g) = 1/2, if they are completely dis-
tinguishable q(f, g) = 0. We can then define the distance 
as: 

( , ) 1 2 ( , )d f g q f g= − (11)

Since q(f, g) is symmetrical, d(f, g) is also symmetrical, 
and the square root guaranties that d(f, g) satisfies the 
triangle inequality48. Calculation is straight forward and 
can be done with a simple sampling Monte Carlo scheme, 
see 48 for details.

• Riemann distance: Mitteroecker and Bookstein42 use 
a Riemannian metric in the space of positive definite 
matrices (either covariance or correlation matrices), 
based on exponential mapping43 to quantify transition 
in the ontogenetic trajectory of phenotypic covariance 
matrices. This metric is based on the eigenvalues of the 
product of one matrix to the inverse of the other. If λ

i
 

are the eigenvalues of A−11B (or AB−11), we have: 

             
( ) 2

1

, ,
p

icovcov
i

A B B A log λ
=

 = =  ∑
       

(12)

This distance has the advantage of being invariable 
under changes in the base used to represent the matrices. 
See 42 for a discussion on the biological relevance of 
this distance.

Phylogenetic comparisons
PhyloW(): Given a set of covariance matrices for the terminal 
taxa in a phylogeny, we can estimate the covariance matrix for 
internal nodes by taking means over sister taxa, weighted by sam-
ple size. The mean matrix at the root node is the within-group 
covariance matrix in a MANCOVA with the terminal clades as the 
fixed effects. PhyloW() does this estimation by taking a tree and 
a set of measurements (covariance matrices) and returns means 
weighted by sample size for internal nodes. The implementation 
is generic, so this function can also be used to calculate weighted 
means for any numerical measurement with an addition operation 
implemented in R.

For G-matrices it might not be clear what the appropriate weight 
to use in each node, as the linear mixed models used in G-matrix 
estimation do not assign a clear degree of freedom for the 
covariance matrix. Number of families could plausibly be a good 

Figure 2. Graphical depiction of the eigentensor decomposition of covariance matrices A, B and C. The mean matrix M is estimated 

within the non-Euclidean space of symmetric positive-definite matrices; the transformation 
− −

=
1 1

2 2( ) ( )f X Log M XM  maps A, B and C into an Euclidean 
space centered on M. Only in this Euclidean space are the eigentensors (PM1 and PM2) estimated.
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weighing factor, but one should proceed with caution, or use a more 
direct approach of including the phylogeny in G-matrix estimation.

While using the within-group covariance matrix is a reasonable 
alternative as the estimator of an ancestral covariance matrix, it 
ignores branch lengths, and so should be used carefully when 
matrix differences are correlated to phylogenetic distance. An 
alternative when matrix evolution depends of branch lengths is 
to reconstruct every position of the covariance matrix independ-
ently via maximum likelihood, but this method can result in non 
positive-definite estimates.

PhyloCompare(): Sometimes it is not practical to pairwise 
compare every single population in a study, since for a large 
number of populations these results can be difficult to interpret. In 
these cases, comparing populations in a phylogeneticaly structured 
way can be helpful in detecting major transitions or differences 
between clades. PhyloCompare() takes estimates for all the nodes 
in a tree and compares sister groups by any comparison method, 
providing comparison values for every inner node.

Hypothesis testing
Modularity and integration
Modularity is a general concept in biology, and refers to a pattern 
of organization that is widespread in many biological systems. 
In modular systems, we find that some components of a given 
structure are more related or interact more between themselves 
than with other components. These highly related groups are 
termed modules. The nature of this interaction will depend on the 
components being considered, but may be of any kind, like physi-
cal contact between proteins, joint participation of enzymes in 
given biochemical pathways, or high correlation between quanti-
tative traits in a population. This last kind of modularity is called 
variational modularity, and is characterized by high correla-
tions between traits belonging to the same module and low cor-
relation between traits in different modules61. In the context of 
morphological traits, variational modularity is associated with the 
concept of integration47, that is, the tendency of morphological 
systems to exhibit correlations due to common developmental 
factors and functional demands9,18.

Both modularity and integration may have important evolutionary 
consequences, since sets of integrated traits will tend to respond 
to directional selection in an orchestrated fashion due to genetic 
correlations between them; if these sets are organized in a modular 
fashion, they will also respond to selection independently of one 
another38. At the same time, selection can alter existing patterns of 
integration and modularity, leading to traits becoming more or less 
correlated24,39. The correlations between traits in a G-matrix then 
carries important information on the expected response to selection 
and on the history of evolutionary change of a given population.

TestModularity(): Variational modularity can be assessed by 
comparing a modularity hypothesis (derived from development and 
functional considerations) with the observed correlation matrix. 
If two traits are in the same variational module, we expect the 
correlation between them to be higher than between traits 
belonging to different modules. We test this partition by creat-
ing a modularity hypothesis matrix and comparing it via Pearson 

correlation between the corresponding elements in the observed 
correlation matrix. The modularity hypothesis matrix consists 
of a binary matrix where each row and column corresponds to a 
trait. If the trait in row i is in the same module of the trait in 
column j, position (i, j) in the modularity hypothesis matrix is set 
to one, if these traits are not in the same module, position (i, j) is 
set to zero. Significant correlation between the hypothetical matrix 
representing a modularity hypothesis and the observed correla-
tion matrix represents evidence of the existence of this variational 
module in the population. We also measure the ratio between cor-
relations within a module (AVG+) and outside the module (AVG-). 
This ratio (AVG+/AVG-) is called the AVG Ratio, and measures 
the strength of the within-module association compared to the 
overall association for traits outside the module. The higher 
the AVG Ratio, the bigger the correlations within a module in 
relation to all other traits associations in the matrix (e.g., 50). 
TestModularity() also provides the Modularity Hypothesis 
Index, which is the difference between AVG+ and AVG- divided by 
the coefficient of variation of eigenvalues. Although the AVG Ratio 
is easier to interpret (how many times greater the within-module 
correlation is compared to the between-module correlation) than 
the Modularity Hypothesis Index, the AVG Ratio cannot be used 
when the observed correlation matrix presents correlations that 
differ in sign, and this is usually the case for residual matrices 
after size removal (for example with RemoveSize(), but see 25 for 
other alternatives). In these cases, the Modularity Hypothesis 
Index is useful and allows comparing results between raw and 
residual matrices51.

LModularity(): If no empirical or theoretical information is 
available for creating a modularity hypothesis, such as functional 
or developmental data, we can try to infer the modular partition of 
a given population by looking only at the correlation matrix and 
searching for the trait partition that minimizes some indicator of 
modularity. Borrowing from network theory, we can treat a cor-
relation matrix as a fully connected weighted graph, and define a 
Newman-like modularity index45. If A is a correlation matrix we 
define L modularity as: 

              
( , )

2
i j

ij i j
i j

k k
L A g g

m
δ

≠

 
= − 

 
∑

                      

(13)

The terms g
i
 and g

j
 represent the partition of traits, that is, in 

what modules the traits i and j belong to. The function δ(·, ·) is the 
Kronecker delta, where: 

    

1 if
( , )

0 if

x y
x y

x y

 =
δ =

≠
                       

(14)

This means only traits in the same module contribute to the value of 
L. The term k

i
 represent the total amount of correlation attributed to 

trait i, or the sum of the correlation with trait i: 

             
i ij

j i

k A
≠

= ∑
                                     

(15)

And m is the sum of all ( ).ii
k m k= ∑  The term 2

i jk k
m  plays the role 

of a null expectation for the correlation between the traits i and j. 
This choice for the null expectation is natural when we impose that 
it must depend on the values of k

i
 and k

j
 and must be symmetrical45. 

So, traits in the same module with correlations higher than the null 
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expectation will contribute to increase the value of L, while traits 
in the same module with correlation less than the null expectation 
will contribute to decrease L. With this definition of L, we use an 
optimization procedure to find the partition of traits (values of g

i
) 

that maximizes L. This partition corresponds to the modularity 
hypothesis inferred from the correlation matrix, and the value of 
L is a measure of modularity comparable to the AVG Ratio. The 
igraph package10 provides a number of community detection algo-
rithms that can be used on correlation matrices using this function.

RemoveSize(): If the first principal component of a covariance 
or correlation matrix corresponds to a very large portion of its 
variation, and all (or most) of the entries of the first principal 
component are of the same sign (a size principal component, 
see 33), it is useful to look at the structure of modularity after 
removing this dominant integrating factor. This removal is done 
using the method described in 6. Porto et al.51 show that modular-
ity is frequently more easily detected in matrices where the first 
principal component variation was removed and provide biological 
interpretations for these results.

Drift
Selection is frequently invoked to explain morphological diversi-
fication, but the null hypothesis of drift being sufficient to explain 
current observed patterns must always be entertained. We can test 
the plausibility of drift for explaining multivariate diversification 
by using the regression method1, or the correlation of principal 
component scores1,35. Since both these tests use drift as a null 
hypothesis, failure to reject the null hypothesis is not evidence 
that selection was not involved in the observed pattern of diver-
sification, only that the observed pattern is compatible with drift. 
Also, these methods assume that the matrices involved share some 
degree of similarity, and should ideally be proportional to each 
other. We would be very weary of using these methods if the 
matrices are too dissimilar, or if the results change radically if 
different matrices are used as the ancestral matrix. Also, these 
tests rely on two levels of replication, taxa and traits. As a general 
guideline, at least 20 traits and at least 8 taxa should be sampled 
for using these methods with any confidence, and results should 
be analyzed in conjunction with other lines of evidence.

DriftTest(): Under drift and without gene flow, we expect that 
the current between group variance for many populations will be 
proportional to the ancestral population’s covariance structure, 
which is approximated by the pooled within-group covariance 
matrix. This test assumes matrices remain proportional to the 
ancestral matrix, but this might not always be the case14. Condi-
tions for the validity of these assumptions are reviewed in 52, 
and matrices for the extant groups should always be tested for 
similarity. Under these conditions, if B is the between group 
covariance matrix, and W is the within group covariance matrix, 
t is the time in number of generations and N

e
 is the effective 

population size, we have: 

             ( )/ eB t N W∝                                   (16)

If we express all these matrices in terms of the eigenvectors of W, 
so that W is diagonal, we can write B as the variance of the scores 

of the means on these eigenvectors. The relationship between B and 
W can be expressed as a log regression, where B

i
 is the variance 

between groups in the projected means and W
iλ  are the eigenvalues 

of W: 

            ( ) ( ) ( )/ W
i e ilog B log t N log= + β λ                    (17)

where β is the regression coefficient. Under drift we expect β to be 
one. If β is significantly different from one, we have evidence that 
drift is not sufficient to explain currently observed diversification.

MultivDriftTest(): This drift test verifies the plausibility of drift 
in a multivariate context when only two populations are available, 
one ancestral (or reference) and one derived. Let z

0
 represent a vector 

of means from m traits in an ancestral population. After t genera-
tions, the expected traits mean for n populations under drift would 
correspond to z

0
 with variance given by B = (t/N

e
)W, where B 

represents the expected between group covariance matrix, W is 
the genetic covariance matrix from the ancestral (or reference) 
population, and N

e
 is the effective population size22,27,28. So, given 

the ancestral population mean and G-matrix, we can use this 
model to estimate the B-matrix expected under drift. We can then 
use this B-matrix as the Σ parameter in a multivariate normal dis-
tribution and sample n populations from this distribution. Using 
this sample of random populations, we can assess the amount of 
divergence expected by drift, estimated as the norm of the difference 
vectors between ancestral (or reference) and simulated population 
means. Then, we can compare the observed amount of divergence 
between the ancestral and derived populations, calculated as the 
norm of the difference vector between them, taking into account 
the standard error of traits means. An observed divergence higher 
than the expectations under drift indicates that genetic drift is not 
sufficient to explain currently observed divergence, suggesting a 
selective scenario.

PCScoreCorrelation(): This test of drift relies on the correlation 
between principal component scores of different populations. Under 
drift alone, we expect the mean scores of different populations in 
the principal components of the within-group covariance matrix 
to be uncorrelated35. Significant correlations between the scores 
of the means on any two principal components is an indication of 
correlated directional selection12.

Random matrices
RandomMatrix(): Generating realistic random covariance 
matrices for null hypothesis testing is a challenging task, because 
random matrices must adequately sample the space of biologi-
cally plausible evolutionary parameters, like integration and 
flexibility. Most common covariance and correlation matrix sam-
pling schemes fail at this, producing matrices with unrealistically 
low levels of integration, unless the level of integration is supplied 
a priori (as in 15). The function RandomMatrix() implements 
the method described in 46, which provides correlation matrices 
with a reasonable range of evolutionary characteristics. However, 
the adequacy of the generated matrices in hypothesis testing has 
not been well established, and we recommend these random 
matrices be used only for informal tests requiring an arbitrary 
covariance or correlation matrix.
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Summary
We have described a suite of functions dedicated to analyzing 
multivariate data sets within an evolutionary quantitative genetics 
framework. These functions focus on the central role that covari-
ance and correlation matrices play in this framework; therefore, 
we provide functions that perform both descriptive statistics and 
hypothesis testing related to such matrices within an evolutionary 
context. 

We have intentionally neglected to include techniques like 
phylogenetic regression or more extensive linear model functional-
ity. Our reasons for this are twofold: the difficulty in transposing 
these methods efficiently to multiple traits, and the many differ-
ent robust packages for performing some of these analyses, such 
as phytools, phylolm, pgls, nlme, MCMCglmm and others.

Some of the material implemented here is available in other sources 
or through custom implementations. We have attempted to create a 
single consistent source for these techniques. This is by no means 
an exhaustive effort, and we hope to expand it given demand from 
the community and further developments in the field. We hope 
to contribute to standardization and wide adoption of these tools, 
and, since we opted for an open source implementation under R, 
this also allows the involvement of the R community in using, 
debugging and complementing these tools, in an effort to contrib-
ute to an open scientific environment in which, for example, truly 
reproducible results are the norm rather than the exception.

Software availability
The most recent version of the EvolQG package can be installed 
from GitHub using the package devtools:

> library(devtools)
> install_github("lem-usp/evolqg")

A less up-to-date version is also available from CRAN:

> install.packages("evolqg")

1. Software available from: http://cran.r-project.org/web/
packages/evolqg/

2. Latest source code: https://github.com/lem-usp/EvolQG

3. Archived source code as at time of publication: http://
dx.doi.org/10.5281/zenodo.5512163

4. License: The MIT License (https://opensource.org/
licenses/MIT)
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Thank you for the opportunity to review the article “EvolQG - An R package for evolutionary quantitative
genetics.” I am reviewing the version of 27 June 2016 (V.2). My overall impression of the paper and the
associated package, which I have gone through in some detail, is that it makes a useful contribution to the
study of the evolution of complex traits. Having many of these techniques available in an easily useable
form will be a a boon to many researchers. I have some reservations that echo those of reviewers of
previous and current versions of this manuscript.
 
I think that a useful revision to the paper might be to clearly distinguish between applications and
treatments of the P and G matrices. For morphological characteristics, I concur that there are good
reasons to believe that P and G will be roughly proportional to one another (there are issues with what that
might mean for evolutionary analyses), but handling errors in either case are rather different. The
BootStrapRep() and MonteCarloRep() functions will work as described for a phenotypic correlation
matrix, but not for a genetic correlation matrix, which would require some kind of resampling or simulation
procedure that considered relatedness among individuals. This is not easy even in simple circumstances
like those found in experimental studies (full-sib designs and the like) and very taxing in the kinds of
pedigree based studies of wild organisms that are becoming the norm in the field.
 
 A work-around that I would accept only for analysis of legacy results from the literature would be to
include a way to include effective sample sizes (Cheverud 1996, 1988). This would give an estimate of
the number of effectively independently estimated breeding values worth of information in a sample and
would be a better reflection of the errors in the genetic quantities. In the absence of this, adding explicit
ways of working with the posterior distributions or estimated matrix of errors from the estimate of the G
matrix would be welcome in your package. At the very least, you should make the distinction between
these cases clearer in the text.
 
I think the random skewers procedure should be revisited in one respect. The Marroig and Cheverud
(2007) procedure describes drawing random selection gradient values from a uniform distribution and
then standardizing the resulting vector to unit length. This is meant to provide random directions in the
phenotypic space. This procedure, however, does not achieve this as the distribution of random points
before standardization is from a hypercube of the same dimensionality as the number of traits. This will
lead to an uneven distribution of points around the hypersphere on which the unit length vectors of
standardized simulated selection gradients would occupy. In effect, the extra space in the corners of the
hypersphere cause patches of excess vectors. This could cause considerable mischief if, for example, the
first principal component of a covariance matrix was oriented directly at  corner of the hypercube. It might
be worth modifying the procedure to draw random Gaussian variables, which are then standardized to
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first principal component of a covariance matrix was oriented directly at  corner of the hypercube. It might
be worth modifying the procedure to draw random Gaussian variables, which are then standardized to
unit length following Muller (1959) and Marsaglia (1972). This would ensure truly random simulated
directional selection.
 
I would like to second Prof. Houle’s point that there are many aspects of the different techniques that do
not have much to do with evolution in an explicit way. Many of the matrix comparisons don’t have much to
do with the degree to which responses to evolution might differ given a difference in the matrices. We
could easily extend this critique to the parts of the package linking covariation to development.
Phenotypic covariance/correlation matrices underdetermine the developmental processes through which
covariation is generated and without some kind of independent assessment of developmental process.
LModularity() arbitrarily assumes a lot about how organisms work. Without some extra information about
the perturbations to developmental process, we have no idea what the biological meaning resulting
clusters of traits might be or whether they relate to development at all.
 
That said, I do think most of the techniques contained in the package will be very useful for many people.
On balance, I regard EvolQG as a welcome contribution to the toolkit available to scholars interested in
the evolution of complex traits. I would like to see the issues dealing with the errors in G and P to be
clarified and the correction to the sampling in the random skewers to be implemented.
 
Some smaller comments:
 
“The Krzanowski shared space, or Krzanowski correlation, measures the degree to which the first
principal components (eigenvectors) span the same subspace”
 
This sentence and the section in which it is nested is a little opaque. Please reword so that it is clear how
many principal components we need to consider.
 
“transposing these methods efficiently to multiple traits, and the many different robust packages for
performing some of these analyses..”
 
“Transposing” does not strike me as the right word here. Please reword.

References
1. Cheverud J: A Comparison of Genetic and Phenotypic Correlations. . 1988;  (5). Evolution 42 Publisher

 Full Text
2. Cheverud J: Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus)
and saddle-back (S. fuscicollis) tamarins. . 1996;  (1): 5-42 Journal of Evolutionary Biology 9 Publisher Full

 Text
3. Marsaglia G: Choosing a Point from the Surface of a Sphere. .The Annals of Mathematical Statistics
1972;  (2): 645-646  43 Publisher Full Text
4. Muller M: A note on a method for generating points uniformly on n-dimensional spheres. 

. 1959;  (4): 19-20  Communications of the ACM 2 Publisher Full Text

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:
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Thank you for the careful review! We respond to some of the specific comments below:

I think that a useful revision to the paper might be to clearly distinguish between
applications and treatments of the P and G matrices. For morphological characteristics, I
concur that there are good reasons to believe that P and G will be roughly proportional to
one another (there are issues with what that might mean for evolutionary analyses), but
handling errors in either case are rather different. The BootStrapRep() and
MonteCarloRep() functions will work as described for a phenotypic correlation matrix, but
not for a genetic correlation matrix, which would require some kind of resampling or
simulation procedure that considered relatedness among individuals. This is not easy
even in simple circumstances like those found in experimental studies (full-sib designs
and the like) and very taxing in the kinds of pedigree based studies of wild organisms that
are becoming the norm in the field.

This is correct, and we have modified the text to make this clear.

A work-around that I would accept only for analysis of legacy results from the literature
would be to include a way to include effective sample sizes (Cheverud 1996, 1988). This
would give an estimate of the number of effectively independently estimated breeding
values worth of information in a sample and would be a better reflection of the errors in
the genetic quantities. 
 
I believe this is already possible in the package, if I understood correctly. Both BootstrapRep and
MonteCarloRep have sample size arguments. 

In the absence of this, adding explicit ways of working with the posterior distributions or
estimated matrix of errors from the estimate of the G matrix would be welcome in your
package. At the very least, you should make the distinction between these cases clearer
in the text.

As much as we would like to provide general methods for G matrix error estimation, the current
available mixed model packages in R for ML estimation make this difficult. We recommend using
MCMCglmm or some other Bayesian framework to incorporate uncertainty, and the posterior
samples can be trivially used with the functions in the package.

I think the random skewers procedure should be revisited in one respect. The Marroig and
Cheverud (2007) procedure describes drawing random selection gradient values from a
uniform distribution and then standardizing the resulting vector to unit length. This is
meant to provide random directions in the phenotypic space. This procedure, however,
does not achieve this as the distribution of random points before standardization is from a
hypercube of the same dimensionality as the number of traits. This will lead to an uneven
distribution of points around the hypersphere on which the unit length vectors of
standardized simulated selection gradients would occupy. In effect, the extra space in the
corners of the hypersphere cause patches of excess vectors. This could cause
considerable mischief if, for example, the first principal component of a covariance matrix
was oriented directly at  corner of the hypercube. It might be worth modifying the

procedure to draw random Gaussian variables, which are then standardized to unit length
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procedure to draw random Gaussian variables, which are then standardized to unit length
following Muller (1959) and Marsaglia (1972). This would ensure truly random simulated
directional selection.
 
We generate random vectors using normal distributions for the elements to avoid this problem.
Since the multivariate normal is spherically symmetrical, there are no privileged directions. 

 No competing interests were disclosed.Competing Interests:

 20 July 2016Referee Report

doi:10.5256/f1000research.9735.r14607

 David Houle
Department of Biological Science, Florida State University, Tallahassee, FL, USA

This article has been improved in response to the previous comments of the reviewers.  The authors have
added several important and difficult-to-implement new analyses to the package, especially those
discussed in Aguirre et al. 2014. The text  has been altered to make clearer the limitations of some of the
procedures.  

On the other hand, many of my more general comments about the shortcomings of the package still hold,
and I refer the reader to my first set of comments. 

One problem has, however, gotten worse, and that is how the package discusses the estimation of errors
in G matrices and other variance component matrices. The text and code does not properly distinguish
between sampling error of estimates of G matrices and sampling error of  simple statistics based directly
on the data.   Consequently at many points the package could be used to produce misleading estimates
of error in evolutionary statistics. 

The section on matrix error and repeatability is the locus of this problem.  The opening paragraph in this
section is about error in the G matrices, but none of the methods in that section actually apply to G
matrices.  In particular  the text equates the REML-MVN method (Houle and Meyer, 2015) with this
package's MonteCarloRep, but this is incorrect.  REML-MVN requires you to have an estimate of the
sampling variance-covariance of matrix elements, but the software implements the assumption that the
only parameter that is needed to construct an estimate of error is the sample size.  This works for a P
matrix of multivariate normal data, but is NOT the REML-MVN method. 

Similarly, the bootstrap routine seems only to bootstrap at the level of individuals.  Bootstrapping over
individuals will always severely underestimate the error in G. For a designed experiment like a full and
half-sib estimation of G, one could get proper estimates of error in G by bootstrapping over sires, which
are the exchangeable units in that design.  A pedigree cannot be effectively bootstrapped as individuals
are not exchangeable.  For a G matrix, you need additional estimates of error from either the posterior
distribution of matrices, the variance-covariance matrix of estimates from a ML procedure, or  samples
drawn from such a distribution.   Consequently the statement at the start of the Evolutionary Statistics
section that  and  can be used to generate confidence intervals for"MonteCarloStat() BootstrapStat()
these statistics" is incorrect. To properly deal with this problem all of the routines should allow the user to
furnish samples of matrices from the sampling distributions (e.g. samples from the posterior distribution),

and then produce measures of uncertainty from those.  
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and then produce measures of uncertainty from those.  

It would be ideal for the package to implement the ability to utilize such samples in every procedure.

References
1. Houle D, Meyer K: Estimating sampling error of evolutionary statistics based on genetic covariance
matrices using maximum likelihood. . 2015;  (8): 1542-9  | J Evol Biol 28 PubMed Abstract Publisher Full

 Text
2. Aguirre JD, Hine E, McGuigan K, Blows MW: Comparing G: multivariate analysis of genetic variation in
multiple populations. . 2014;  (1): 21-9  |  Heredity (Edinb) 112 PubMed Abstract Publisher Full Text

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 31 Oct 2016
, Universidade de São Paulo, BrazilDiogo Melo

Thank you for the second careful review! We agree completely with the problems regarding
G-matrix error and have modified the text to make these limitations clear. As much as we would
like to provide general methods for G matrix error estimation, the current available mixed model
packages in R for ML estimation make this difficult. We recommend using MCMCglmm or some
other Bayesian framework to incorporate uncertainty. 

 No competing interests were disclosed.Competing Interests:

Version 1

 16 November 2015Referee Report

doi:10.5256/f1000research.7623.r10610

 David Houle
Department of Biological Science, Florida State University, Tallahassee, FL, USA

This paper describes the functions implemented in the R package “evolvqg.”  This package implements a
large set of methods for characterizing and comparing variance-covariance matrices. A compendium of
such methods is useful, but the user should be aware of shortcomings in this package. 
 
First, the authors justify grouping these methods together under the umbrella of “evolutionary quantitative
genetics.” Under this label, the very diversity of methods is a bit misleading - the majority of implemented
methods have no explicit relationship to evolution, and this is not clear in the paper. To a large degree this
confusion reflects the state of the field. A great many ad hoc methods are proposed and widely applied,
such as the popular Mantel test. For example, this package implements methods for quantifying

repeatability of the phenotypic covariance and correlation matrices, which is a fine thing to do, but has
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1.  

2.  

repeatability of the phenotypic covariance and correlation matrices, which is a fine thing to do, but has
little relevance to the genetic matrices that underlie evolution. For those matrices, any procedure for
estimating them will partition out the non-genetic factors as part of the hierarchical model fitting.
Repeatability is usually the least of our estimation problems. Other methods that are in this
not-really-evolutionary category include, matrix correlations, the ‘modularity’ analyses. 
 
A related issue is that this package does not include state-of-the-art techniques. In particular, the advent
of MCMC methods (plus other methods for getting sampling variation of matrices: Houle and Meyer 2015)
provides proper measures of uncertainty for the evolutionarily relevant G matrices. The previously
available R package “evolvability” uses the posterior distributions for G matrices as well as selection
gradients, when available, to place confidence intervals on the Hansen and Houle measures of
evolvabilities. The “evolqg” package under review here primarily implements methods developed and
used by the Marroig group, lacking some of the most promising approaches and metrics developed by
others (e.g. Hine . 2009, Houle and Fierst 2013; Aguirre . 2014). Programming time is of course aet al et al
limitation, and no one is under obligation to implement everything. However, it is deficient scholarship that
this paper makes no mention of these approaches, or of the availability of software that does these
analyses.  
 
Based on their descriptions here, the phylogenetic comparison methods implemented in this package
seem to be quite deficient. AncestralStates is contradictorily described as dealing with multivariate data,
but reconstructs each character independently. It appears to implement an interface to a univariate
method, and is not actually a multivariate approach. PhyloW and PhloCompare compute “weighted”
estimates of matrices at internal nodes, but the proper weight to apply to a G matrix is not clear at all. This
appears to only deal with sampling variance at the individual level, neglecting the more important sources
of matrix variation. This disconnect appears to rest on the author's assumption that “As a general rule,
high similarity between populations’ P-matrices is a good indicator of high similarity between P and G”.
This is certainly not a general rule, as P and G matrices for traits with low heritability can be very different
from each other. The classic examples are life history traits.

For drift models, this implementation shares a major deficiency with previous work, in assuming that the
expectation is that matrices will remain proportional. This is indeed the large-sample expectation, but any
actual population will deviate from that expectation in ways that depend on the unknown parameters of
the underlying system – the number of loci, their relative mutability, the underlying M matrix, and of course
the effective population size of each part of the genome. For example, Griswold . 2007 show thatet al
even when the underlying M matrix is spherical, realizations based on this will have substantial deviations
from sphericity. There is no general treatment of this problem, so all results from such analyses need to
be treated with caution. A failure to reject a departure from proportionality is meaningful, but rejections of
proportionality do not necessarily indicate that drift is not responsible.
 
Finally, like much of the software being made freely available, there is no description of what the authors
did to validate their implementation of these techniques, and no comparisons with previous analyses to
indirectly validate them. One or both of these should really be standard with new software. I know that it is
not standard, and do not want to single these authors out on that account. The user, however, should be
aware of all unvalidated software, and should perform their own checks. Unfortunately, this is only easy
for simple procedures for which a package is not really necessary.
 
Some very specific issues:

Errors: “The proportion of variance not associated with the individuals is called the repeatability.”
 

The description of Mantel tests is misleading, as a high correlation does not mean that matrices are
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2.  

3.  

The description of Mantel tests is misleading, as a high correlation does not mean that matrices are
the “same,” nor does a negative correlation mean that matrices are “opposite.”
 
The description of the PCA similarity algorithm is opaque. What is “pondering”? 
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 13 Jun 2016
, Universidade de São Paulo, BrazilDiogo Melo

- This paper describes the functions implemented in the R package “evolqg.”  This
package implements a large set of methods for characterizing and comparing
variance-covariance matrices. A compendium of such methods is useful, but the user
should be aware of shortcomings in this package. 

Thank you for your insightful comments. One of the reasons we chose F1000research for this
article is our perception that something is amiss in the current system of peer-review, where good
reviewers are burdened and swamped by manuscripts and authors tend to often ignore their
criticisms and take the short road to the next journal inline instead of dealing with the criticisms and
polish their manuscripts. The fully open system implemented by F1000 seems like a good way out
of this trap we express our gratitude to Drs. Houle and Grabowsky for taking their time to criticize
this package.

We respond to comments individually after each of your considerations.

- First, the authors justify grouping these methods together under the umbrella of
“evolutionary quantitative genetics.” Under this label, the very diversity of methods is a
bit misleading - the majority of implemented methods have no explicit relationship to
evolution, and this is not clear in the paper. To a large degree this confusion reflects the
state of the field. A great many ad hoc methods are proposed and widely applied, such as
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evolution, and this is not clear in the paper. To a large degree this confusion reflects the
state of the field. A great many ad hoc methods are proposed and widely applied, such as
the popular Mantel test. For example, this package implements methods for quantifying
repeatability of the phenotypic covariance and correlation matrices, which is a fine thing
to do, but has little relevance to the genetic matrices that underlie evolution. For those
matrices, any procedure for estimating them will partition out the non-genetic factors as
part of the hierarchical model fitting. Repeatability is usually the least of our estimation
problems. Other methods that are in this not-really-evolutionary category include, matrix
correlations, the ‘modularity’ analyses. 

This is a fair comment, and indeed an argument could be made to separate the different aspects of
evolutionary research that are presented here into different packages. We chose to keep these
different methods in a single source since we feel a consistent workflow is very beneficial to
research on evolution and covariation. For example, many of the latter hypothesis-testing methods
presented in our paper should only be used if some level of matrix similarity is detected, and the
matrix similarities, in turn, should not be interpreted without matrices' repeatabilities. Furthermore,
while the development of multivariate evolutionary theory and the theory of integration and
modularity were separate, Lande's, Cheverud's and Wagner's work since the 80s have linked
these fields very intimately, to a point that it is hard for us to think of these fields as separate. From
our point of view, the influence of covariation in evolution, and the genetic and developmental
origin of these variational associations make integration and modularity central to modern
evolutionary theory, even though admittedly there are a number of researchers who consider
morphological integration and comparative quantitative genetics as two separate fields. We feel
this integrative approach links the developmental and intra-populational causes of genetic
covariation to their evolutionary consequences, leading to a more complete and robust
understanding of micro- and macro-evolution.
Finally, the inclusion of methods that are mostly "statistical" and not "evolutionary" should make it
easier for researchers to check the quality of their data and its appropriateness for further analyses.

- A related issue is that this package does not include state-of-the-art techniques. In
particular, the advent of MCMC methods (plus other methods for getting sampling
variation of matrices: Houle and Meyer 2015) provides proper measures of uncertainty for
the evolutionarily relevant G matrices. The previously available R package “evolvability”
uses the posterior distributions for G matrices as well as selection gradients, when
available, to place confidence intervals on the Hansen and Houle measures of
evolvabilities. The “evolqg” package under review here primarily implements methods
developed and used by the Marroig group, lacking some of the most promising
approaches and metrics developed by others (e.g. Hine et al. 2009, Houle and Fierst 2013;
Aguirre et al. 2014). Programming time is of course a limitation, and no one is under
obligation to implement everything. However, it is deficient scholarship that this paper
makes no mention of these approaches, or of the availability of software that does these
analyses.  

While we challenge the reviewer's assertion that we fail to mention these methods (see the second
paragraph of our Summary section; and the method described in Houle and Meyer is implemented
by the function MonteCarloStat()), the point is well taken. Another reason for choosing
F1000Research was the ease of updating the manuscript as we add new functionality to the
EvolQG package. In this spirit of continuous development, we added in the revised version of the
package three of the methods described in Aguirre et al. 2014, including the eigentensor
decomposition described by Hine et al. 2009, using fast and flexible implementations in R.
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- Based on their descriptions here, the phylogenetic comparison methods implemented in
this package seem to be quite deficient. 

We would argue that the available methods in the literature are deficient in dealing with multivariate
correlated traits, and we provide the rather simple available methods.

- AncestralStates is contradictorily described as dealing with multivariate data, but
reconstructs each character independently. It appears to implement an interface to a
univariate method, and is not actually a multivariate approach.

We clearly stated that AncestralStates is not a multivariate approach. Indeed AncestralStates is
just a wrapper to facilitate reconstructing multiple traits independently. If the reviewer has a
suggestion on how to implement this taking the multivariate covariance structure into account for
many traits we would be very interested, but this remains an active research topic, and we have not
found a satisfactory solution for this problem. Since this seems to be more misleading than helpful,
we have removed this function from the package and manuscript.

- PhyloW and PhyloCompare compute “weighted” estimates of matrices at internal nodes,
but the proper weight to apply to a G matrix is not clear at all. This appears to only deal
with sampling variance at the individual level, neglecting the more important sources of
matrix variation. 

This is another unambitious method, and was intended only to calculate within-group phenotypic
covariance matrices in a phylogenetically structured way. The use with G-matrices coming from
more complex linear models would indeed be non-trivial, and we now make this explicit in the
description.

- This disconnect appears to rest on the author's assumption that “As a general rule, high
similarity between populations’ P-matrices is a good indicator of high similarity between P
and G”. This is certainly not a general rule, as P and G matrices for traits with low
heritability can be very different from each other. The classic examples are life history
traits.

We would argue that in the case of low heritability the P-matrices between populations would also
be dissimilar. The point here is not that P and G are always similar, but that similar Ps between
populations are a fair indication of similar Gs and Ps, at least in the groups we have worked with. In
mammals, this conclusion is supported empirically by the comparisons of 5 different G-matrices
with P-matrices of several groups, which indicate similar responses to random selection on
average (Porto, 2009). In any event, we add a caveat on the function description that structurally
similar matrices are a key component of the methods implemented here.

- For drift models, this implementation shares a major deficiency with previous work, in
assuming that the expectation is that matrices will remain proportional. This is indeed the
large-sample expectation, but any actual population will deviate from that expectation in
ways that depend on the unknown parameters of the underlying system – the number of
loci, their relative mutability, the underlying M matrix, and of course the effective
population size of each part of the genome. For example, Griswold et al. 2007 show that
even when the underlying M matrix is spherical, realizations based on this will have

substantial deviations from sphericity. There is no general treatment of this problem, so
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substantial deviations from sphericity. There is no general treatment of this problem, so
all results from such analyses need to be treated with caution. A failure to reject a
departure from proportionality is meaningful, but rejections of proportionality do not
necessarily indicate that drift is not responsible.

This is indeed a problem, and we try to remedy this by ensuring the matrices share some minimum
level of similarity before using these drift models. Proa et al. 2013 analysed the type I error rate in
the DriftTest method, and found that if matrices are similar the test is well behaved. This similarity
must be tested on a case by case basis. Error rate analysis of the other tests is an open problem.
Another option is to repeat the analysis using different matrices from the terminal taxa that
represent extremes of variability, and check if the results are robust to this. We make these caveats
and problems clear in the revised manuscript.
This paragraph now reads:
"Since both these tests use drift as a null hypothesis, failure to reject the null hypothesis is not
evidence that selection was not involved in the observed pattern of diversification, only that the
observed pattern is compatible with drift. Also, these methods assume that the matrices involved
share some degree of similarity, and should ideally be proportional to each other. We would be
very weary of using these methods if the matrices are too dissimilar, or if the results change
radically if different matrices are used as the ancestral matrix. Also, these tests rely on two levels of
replication, taxa and traits. As a general guideline, at least 20 traits and at least 8 taxa should be
sampled for using these methods with any confidence, and results should be analyzed in
conjunction with other lines of evidence."

With regards to Griswold et al. 2007, we believe that verifying the extant matrices are similar
somewhat sidesteps these problems, and in any event their simulations do not include stabilizing
selection on covariance patterns, which is very likely to exist if matrices are stable in evolutionary
timescales. It’s important to realize that the methods we describe are for identifying drift on species
means, not covariances. Evolution of covariance patterns is a different matter altogether.

- Finally, like much of the software being made freely available, there is no description of
what the authors did to validate their implementation of these techniques, and no
comparisons with previous analyses to indirectly validate them. One or both of these
should really be standard with new software. I know that it is not standard, and do not
want to single these authors out on that account. The user, however, should be aware of
all unvalidated software, and should perform their own checks. Unfortunately, this is only
easy for simple procedures for which a package is not really necessary.

We agree entirely, and feel that the bar for scientific software should be high, and so we took
additional steps in this direction. While no implementation is bug free, we compared all results from
our initial set of functions between different implementations done by members of our lab and
available implementations in the literature. Also, all development for the package was done in a
test driven development framework, and all functions have unit tests for the most or all of their
functionality, that is run every time the package is built. This insures modifications do not alter
previous results. The implementations in the package follow a modular design for most
functionality, minimizing code duplication and reducing the chance of bugs. We also have a fast
and constantly maintained issue and bug tracker in github, where users can ask questions, request
new functionality, and report bugs.

- Some very specific issues:
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1.  

2.  

3.  

4.  

- Errors: “The proportion of variance not associated with the individuals is called the
repeatability.”

Changed to something clearer. Now reads: "The proportion of variance associated with among
individual variation, and not within individual variation, is called the repeatability"

- The description of Mantel tests is misleading, as a high correlation does not mean that
matrices are the “same,” nor does a negative correlation mean that matrices are
“opposite.” 

We chose a more cautious wording of these general guidelines. Now reads: "The correlation
between matrices range between -1 and 1, and higher correlations indicate matrices have more
similar structures, while null correlations indicate the matrices have very distinct correlation
structures. Correlations near zero can also occur if the elements of the matrices have nonlinear
relationships between them, as in all Pearson correlations. Negative correlations indicate the
pattern of association between traits is reversed in the two matrices."

- The description of the PCA similarity algorithm is opaque. What is “pondering”?

Sorry, this was a rather hard false cognate with portuguese for us to catch, and now reads:  "In
order to take the variation into account, we can add the eigenvalue associated with each principal
component into the calculation, effectively weighting each correlation by the variance in the
associated directions"
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 Mark Grabowsky
Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, The Faculty of
Mathematics and Natural Sciences, University of Olso, Oslo, Norway

This Software Tool is an open source R package for performing a wide variety of evolutionary genetic
analyses. It comes at a particularly useful time when large data sets required to use these analytical
techniques are more and more available. I predict this package will be used to a greater and greater
extent over time.

The team, with lead author Diogo Melo, has made a number of major innovations in the field of
evolutionary quantitative genetics and this software tool is well within their purview.

The group describes the potential application of the new software well, cites the sources for the
development of the different methods included, and briefly explains each function with an adequate level
of discussion. I found the section on Phylogenetic Comparisons most interesting, and would have liked
more discussion of these points.

Issues:
It would be nice to include data for which the tools could be tried out on and examples of the output
included in the text.
 
I also worry about the power of some of these tests, and would appreciate if the authors were to
think about adding in caveats where available. There are a few papers out currently that address
these issues (e.g. Haber, 2011). For example, I have both heard and performed some analyses
using another version of the DriftTest() function and it appears about 20 traits are required to ever
reject the null hypothesis. As this package is sure to be used by researchers who are less
acquainted with these issues they may be unaware of issues with sample sizes, etc.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 13 Jun 2016
, Universidade de São Paulo, BrazilDiogo Melo

Thank you for your kind comments. We have included some additional caveats in relation to the
power and level of replication required for some of the tests. With regards to examples, we fell a
package vignette tutorial is much more suited to this, and we are working on more documentation
to be distributed with the package. 
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