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Purpose: Ferroptosis plays a crucial role in the development and progression

of abdominal aortic aneurysm (AAA). The aim of this study was to identify

differentially expressed genes associated with ferroptosis in AAA through

bioinformatics analysis combined with experimental validation.

Materials and methods: Firstly, the mRNA expression profile datasets

GSE57691 and GSE47472 from Gene Expression Omnibus database were

screened, and principal component analysis was carried out. Next, the

R software (version 4.0.0) was used to analyze potentially differentially

expressed genes associated with AAA and ferroptosis. Subsequently, protein–

protein interaction analysis, gene ontology enrichment analysis, and Kyoto

Encyclopedia of Genes and Genomes pathway enrichment analysis were

performed on the selected candidate genes. Finally, quantitative real-time

polymerase chain reaction (qRT-PCR) was used to detect the expression levels

of the first five selected abnormal ferroptosis-related genes in clinical samples

obtained from patients with AAA and healthy controls.

Results: Based on the information contained in the two datasets, a total of

20 differentially expressed ferroptosis-related genes (three upregulated genes

and 17 downregulated genes) were selected. Protein–protein interaction

analysis demonstrated interaction between these genes, while gene ontology

enrichment analysis of ferroptosis genes with differential expression indicated

that some enrichment items were associated with oxidative stress. The

qRT-PCR results showed that the expression levels of interleukin-6 (IL-6),

peroxiredoxin 1 (PRDX1), and stearoyl-CoA desaturase (SCD) were consistent

with the bioinformatics prediction results obtained from the mRNA chip.
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Conclusion: Bioinformatics analysis identified 20 potential ferroptosis-related

differentially expressed genes in AAA. Further verification by qRT-PCR showed

that IL-6, PRXD1, and SCD might affect the process of AAA by regulating

ferroptosis. Our results might assist in further understanding the pathogenesis

of AAA and guiding treatment.
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Introduction

Abdominal aortic aneurysm (AAA) is a cardiovascular
disease characterized by segmental progressive dilation of
the abdominal aorta (1). The rupture of an aneurysm leads
to very serious consequences (2). At present, the main
treatment options for AAA are open surgery or endovascular
aneurysm repair (3). Epidemiological studies have shown that
the incidence of AAA is 1.9–18.5% in males and 0–4.2% in
females (4, 5). Risk factors associated with AAA (e.g., sex,
aging, smoking, hypertension, and history of coronary heart
disease) have been extensively explored (4). An increasing
number of studies have also reported that various biological
functions, including ferroptosis, autophagy, and inflammation,
are involved in the occurrence and development of AAA
(1, 6–8). Ferroptosis plays a key role in the pathogenesis of AAA.

The term ferroptosis refers to cell death caused by
uncontrolled lipid peroxidation (9). Ferroptosis has been
strongly associated with a variety of cardiovascular diseases
(6). For example, activating transcription factor 3 (ATF3)
might be involved in atherosclerotic plaque formation through
ferroptosis (10). In addition, BRD4770 prevents aortic
dissection by inhibiting ferroptosis (11). The role of ferroptosis
in AAA has been reported; for example, cigarette smoke was
shown to induce ferroptosis in vascular smooth muscle cells
in AAA (6). However, research on ferroptosis-related genes
in AAA is currently limited. The identification of ferroptosis-
related genes involved in AAA might provide useful biomarkers
and targets for further research on this disease.

Biros et al. published a dataset (GSE57691) that included
differentially expressed genes between patients with AAA
and healthy individuals (12). They identified 840 and 1,014
differentially expressed genes in small AAA (diameter:
≤55 mm) and large AAA (diameter: >55 mm), respectively.
Moreover, some differentially expressed genes were selected
for verification. In their previous study, 1,047 differentially
expressed genes were identified in carotid artery samples
obtained from patients with AAA and aortic samples extracted
from organ donors by constructing the dataset GSE47472 (13).
Additionally, quantitative polymerase chain reaction (qPCR)
was used to demonstrate the differential expression of genes

filtered by bioinformatics analysis. In this study, other directions
were explored according to the results reported by Biros et al.
By combining the GSE57691 and GSE47472 datasets from the
Gene Expression Omnibus (GEO) database, we analyzed the
differentially expressed genes associated with ferroptosis in
AAA. Initially, we identified 20 candidate genes. Subsequently,
protein–protein interaction (PPI) and gene ontology (GO)
enrichment analyses were performed on the candidate genes.
Finally, we identified key genes among the candidate genes and
examined their expression levels in clinical samples of AAA.

Materials and methods

Ferroptosis-related gene datasets and
microarray data

The GSE57691 dataset was present on the GPL10558
platform (Illumina HumanHT-12 V4.0 expression beadchip)
and included 20 patients with small AAA (mean maximum
aortic diameter: 54.3 ± 2.3 mm) and 29 patients with large
AAA (mean maximum aortic diameter: 68.4 ± 14.3 mm).
The GSE47472 dataset was also derived from the GPL10558
platform (Illumina HumanHT-12 V4.0 expression beadchip)
and contained carotid artery specimens obtained from
14 patients with AAA (mean maximum aortic diameter:
62.6 ± 18.0 mm). The mRNA expression profiles of these two
datasets were obtained from the GEO.1 There are 259 genes in
the human ferroptosis database.2 The overall research process
of the present study is shown in Figure 1.

Analysis of differentially expressed
ferroptosis-related genes

To obtain a standardized expression matrix for microarray
data, we downloaded information from the dataset and

1 http://www.ncbi.nlm.nih.gov/geo/

2 http://www.zhounan.org/ferrdb/legacy/operations/download.html
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FIGURE 1

Workflow of data preparation, processing, analysis, and validation.

annotated probes according to the annotation files. Principal
component analysis was used to test the repeatability of the
data in the GSE and SVA R package was used to remove batch
effects. Data was standardized using the “Limma” toolkit in
the R software (version 4.0.0). A | log2 (fold change)| > 0.5
and a P-value < 0.05 were used as the criteria for differential

gene expression. The heatmap and volcano plot were drawn
using the “Heatmap” and “ggplot2” packages in the R software
(version 4.0.0).

Protein–protein interaction and
correlation analyses of differentially
expressed ferroptosis-related genes

The Cytoscape software (version 3.8.1) and Search Tool for
the Retrieval of Interacting Genes (STRING) database3 were

3 https://string-db.org/
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TABLE 1 Demographic and clinical characteristics of the included
patients with abdominal aortic aneurysm and controls.

Characteristic Patients (n = 5) Healthy
controls (n = 5)

Age, years 50.4 ± 9.07 44.8 ± 1.33

Sex, male:female 4:1 2:3

Hypertension, n (%) 5 (100%) 2 (40%)

Diabetes mellitus, n (%) 2 (40%) 0 (0%)

Hyperlipidemia, n (%) 1 (20%) 0 (0%)

Smoking history, n (%) 3 (60%) 1 (20%)

used to conduct the PPI analysis of differentially expressed
ferroptosis-related genes. Firstly, the STRING database was
used to construct a PPI network containing the differentially
expressed ferroptosis-related genes. The PPI file is then

TABLE 2 Primer sequences used for qRT-PCR.

Primer Sequences (5′→3′)

GAPDH-F AAGAAGGTGGTGAAGCAGGC
GAPDH-R TCCACCACCCAGTTGCTGTA
PRDX1-F GACTGGGACCCATGAACATTCC
PRDX1-R TGAACGAGATGCCTTCATCAGC
TXNIP-F GGGTGTCTGTCTCTGCTCGAA
TXNIP-R TGGCCATTGGCAAGGTAAGTG
NOX4-F GTTTCAAAGCTGGTCTGCCATTCTA
NOX4-R GATGAAGCCCTGCAGAAGCAA
SCD-F TACCGCTGGCACATCAACTTC
SCD-R CGGCCTTGGAGACTTTCTTCC

qRT-PCR, quantitative real-time polymerase chain reaction.

imported into Cytoscape (version 3.8.1) and mapped onto the
PPI. Finally, the node degree of each node and the average
node degree of each protein in the network were defined to

FIGURE 2

Differentially expressed ferroptosis-related genes in AAA and healthy samples. (A) Results of the PCA. In the PCA picture, AAA in GSE47472 is
marked in red, control in GSE47472 is marked in blue, AAA in GSE57691 is marked in green and control in 8 GSE57691 is marked in yellow. (B)
Volcano plot of differentially expressed ferroptosis-related genes. Significantly upregulated and downregulated genes are represented by red
and blue dots, respectively. Criteria used for the identification of differences: P<0.05 and | log FC| > 0.5. (C) Heatmap of 20 differentially
expressed ferroptosis-related genes in AAA and healthy samples. AAA, abdominal aortic aneurysm; FC, fold change; PCA, principal component
analysis.
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generate the threshold of PPI network nodes, which was used
as the screening standard to screen out the proteins with node
degree greater than the threshold. Spearman correlation from
the “Corrplot” package of the R software was used for correlation
analysis of these genes.

Gene ontology and kyoto
encyclopedia of genes and genomes
pathway enrichment analyses of
ferroptosis-related genes

Gene ontology and KEGG pathway enrichment analyses
were performed using the clusterProfiler toolkit in the R
software. The main domains of GO analysis are biological
process (BP) and molecular function.

Patients with AAA and healthy
individuals

From July 2021 to May 2022, we collected clinical samples
from five patients with AAA and five healthy individuals
at The Affiliated Hospital of Qingdao University (Qingdao,
China); these patients formed the case and control groups,
respectively (Table 1). The diagnostic criteria for patients
with AAA were an artery diameter >3 cm or artery dilation
(1.5-fold change) versus the normal artery size, detected

through imaging examination. All participants provided written
informed consent for their participation in the study. The
study was approved by the medical ethics committee of the
hospital.

RNA extraction and quantitative
real-time PCR (qRT-PCR)

The Kz-111-fp high-speed low-temperature grinding
instrument (Servicebio, Qingdao, China) and TRIZOL
reagent (Vazyme, Qingdao, China) were used to grind the
tissues and extract total RNA. Reverse transcription to cDNA
was performed according to instructions provided by the
manufacturer (SparkJade, Qingdao, China). The 2 × SYBR
Green qPCR Mix (SparkJade) was used, and the reaction was
run at 94◦C for 3 min, 94◦C for 10 s, and 60◦C for 30 s and
≥40 cycles. All experimental data are presented as the mean
values obtained from three independent experiments and were
analyzed statistically using the 2−11 cycle threshold method.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
used as internal reference. The primers used for qRT-PCR are
listed in Table 2.

Statistical analysis

The R software (version 4.0.0) was used for the statistical
analysis of the bioinformatics data. The Student’s t-test was

TABLE 3 The 20 differentially expressed ferroptosis-related genes identified in AAA samples compared with healthy samples.

Gene symbol LogFC Changes P-value Adjusted P-value

IL-6 0.850885624 Up 0.15267891 0.119686661

NFS1 0.569253374 Up 0.018340251 0.134909235

SLC2A3 0.586111099 Up 0.00975004 0.08830804

CHMP5 −0.785718442 Down 0.001204301 0.022131658

ASNS −1.009571559 Down 2.96E-08 1.48E-05

LPCAT3 −0.503984405 Down 4.23E-05 0.002450013

SLC2A1 −0.827933287 Down 3.70E-06 0.00046298

MAP3K5 −0.562187827 Down 4.27E-05 0.002450013

PRDX1 −0.534885914 Down 0.000668838 0.015070277

LPIN1 −0.741872954 Down 5.58E-05 0.002924138

ACO1 −0.582423279 Down 0.000318159 0.009160088

NOX4 −0.607734917 Down 0.001827326 0.029096612

DDIT4 −0.72853054 Down 0.001056212 0.020396489

AKR1C3 −0.814884493 Down 1.35E-05 0.001190744

SCD −0.568083484 Down 0.027865333 0.17916661

MTDH −0.574434868 Down 0.000824557 0.017314976

PEBP1 −0.834702749 Down 8.20E-05 0.00375861

NNMT −0.673897508 Down 0.000592542 0.01392957

HSPB1 −0.589272465 Down 0.003014269 0.040507169

TXNIP −0.770900911 Down 0.003280469 0.042649467

AAA, abdominal aortic aneurysm.
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used to evaluate gene expression levels in clinical samples.
P-values < 0.05 denoted statistically significant differences.

Results

Retrospective analysis of differential
expression of ferroptosis-related genes
in abdominal aortic aneurysm

Firstly, principal component analysis (PCA) was performed
on the two groups of data (Supplementary Figure 1).
Then we eliminated the batch effect in PCA (Figure 2A).
Subsequently, utilizing the adjusted P-value < 0.05 and | log2

(fold change)| > 0.5 as the standards, we selected 20 genes
from the 259 ferroptosis-related genes (three upregulated genes
and 17 downregulated genes) (Table 3). The 20 differentially
expressed ferroptosis-related genes between the AAA and
normal groups identified in the GSE57691 and GSE47472
databases are shown in volcano (Figure 2B) and heatmap
(Figure 2C) plots. The expression patterns of 20 candidate
genes in AAA and normal samples are shown in a box
plot (Figure 3). Of the three upregulated genes, interleukin-
6 (IL-6) and solute carrier family 2 member 3 (SLC2A3)
had statistically significant changes in expression. Among the
downregulated genes, charged multivesicular body protein 5
(CHMP5), asparagine synthetase (ASNS), aconitase 1 (ACO1),
metadherin (MTDH), etc. exhibited significant changes in
expression.

FIGURE 3

Boxplot of 20 differentially expressed ferroptosis-related genes in AAA and healthy samples. The “score” on the Y-axis represents relative gene
expression. The blue and red boxes represent AAA and healthy samples, respectively. *P < 0.05; **P < 0.01; ***P < 0.001. AAA, abdominal aortic
aneurysm; FC, fold change; ns, non-significant; PCA, principal component analysis.
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Protein–protein interaction network
and identification of hub genes among
the candidate ferroptosis-related
genes

The PPI analysis demonstrated that candidate genes
interacted with each other (Supplementary Figure 2).
Candidate genes that did not interact according to the predicted
results were ignored (Figure 4A). In the PPI network, the top
10 scoring genes constitute the hub framework (Figure 4B).
The hub ferroptosis-related genes were stearoyl-CoA desaturase
(SCD), SLC2A1, DNA damage inducible transcript 4 (DDIT4),
thioredoxin interacting protein (TXNIP), heat shock protein
family B (small) member 1 (HSPB1), phosphatidylethanolamine
binding protein 1 (PEBP1), peroxiredoxin 1 (PRDX1), IL-6, and
NADPH oxidase 4 (NOX4).

Gene ontology enrichment analysis of
candidate ferroptosis-related genes

The results of the GO enrichment analysis (Figures 5A,B)
suggested that the main enriched terms were associated
with response to oxidative stress, multicellular organismal
homeostasis, coenzyme metabolic process, cellular response
to oxidative stress, and response to reactive oxygen species
(BP). However, the enrichment of carbohydrate transmembrane
transporter activity, sugar transmembrane transporter activity,
and other molecular functions was limited. The contents related
to cellular components were not enriched. We also conducted
a KEGG pathway enrichment analysis that did not yield
significant results.

Performance of candidate
ferroptosis-related genes

The receiver operating characteristic (ROC) curve was used
to describe that the logistic regression model constructed with
10 hub genes has excellent sensitivity for the diagnosis of AAA.
The area under the curve value of the candidate ferroptosis-
related genes was 0.922 (Figure 6A); higher values indicate
higher accuracy of the logistic regression model constructed by
the 10 hub genes for predicting the development of AAA.

In the logistic regression model constructed using 10 hub
genes, the decision curve analysis described that the net benefit
could be higher than the marked line in all threshold probability
intervals (0 to 1) by intervening hub genes (Figure 6B).
This suggests that the logistic regression model constructed
using these 10 hub genes has clinical significance. Therefore,
intervention using this logistic regression model may improve
the prognosis of patients with AAA. However, due to the lack

FIGURE 4

PPI analysis of candidate differentially expressed
ferroptosis-related genes. (A) PPI networks of candidate genes.
(B) PPI subnetwork of the top 10 hub candidate genes. PPI,
protein–protein interaction.

of existing clinical interventions for comparison, it is difficult
to examine its potential superiority. The calibration curve
showed a good fit and supported the establishment of the model
(Figure 6C).

Validation of differentially expressed
ferroptosis-related candidate genes in
abdominal aortic aneurysm clinical
samples

To further examine the expression of differentially expressed
ferroptosis-related genes in AAA, we examined the top five
differentially expressed candidate genes and detected their
expression in clinical samples by qRT-PCR (Figure 7). Our
results showed that IL-6, SCD, and PRDX1 in the clinical
samples of AAA demonstrated statistically significant changes
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FIGURE 5

Gene ontology (GO) enrichment analysis of 20 differentially expressed ferroptosis-related genes. Bubble diagram of GO enrichment term (A)
and chord diagram of GO enrichment term (B). Some candidate genes are not shown in chord diagram because the enrichment is too
scattered.
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FIGURE 6

Testing of the model. ROC, DCA, and calibration curve were used to detect 10 hub genes. (A) ROC curves of the ferroptosis-related gene
signature that was a candidate for differential expression. (B) DCA of the candidate ferroptosis-related gene signature. (C) Calibration curve of
the model. DCA, decision curve analysis; ROC, receiver operating characteristic.

in expression. Although TXNIP and NOX4 showed a trend
consistent with our expectations, the observed change was not
statistically significant.

Discussion

Abdominal aortic aneurysm is a cardiovascular disease
characterized by aortic dilation. This leads to weakening of
the wall of the aorta and an eventual rupture. In studies, the
incidence of AAA rupture was positively correlated with the

diameter of aortic wall enlargement, and AAA rupture was
an important cause of death (14). Currently, inflammation,
oxidative stress, smooth muscle cell apoptosis, and extracellular
matrix degradation have been associated with the development
of AAA (15). Inflammation is a characteristic pathological event
related to AAA (16). In a recent study, Ni et al. found that
Notch1 is involved in the development of AAA by regulating
NLR family pyrin domain containing 3 (NLRP3) inflammasome
and macrophage activation (16). Nuclear factor-κB (NF-κB)
signaling, a classic pathway that regulates inflammation, also
promotes inflammation in AAA (17). Lin et al. reported that
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FIGURE 7

Verification of the expression of the first five hub candidate
genes in clinical samples: IL-6, PRDX1, SCD, TXNIP, and NOX4.
P-values were calculated using the Student’s t-test. *P < 0.05;
**P < 0.01; ***P < 0.001. IL-6, interleukin-6; PRDX1,
peroxiredoxin 1; SCD, stearoyl-CoA desaturase; TXNIP,
thioredoxin interacting protein; NOX4, NADPH oxidase 4; ns,
non-significant.

long non-coding RNA SRY-box transcription factor 2 (Sox2)
overlapping transcript plays an important role in the oxidative
stress response of vascular smooth muscle cells in AAA (18).
This also provides evidence that oxidative stress is involved in
the occurrence and development of AAA. Studies discovered
traces of ferroptosis in the complex pathological process of
AAA; iron overload promotes the progression of AAA (19).
Moreover, the effect of cigarette extract on promoting smooth
muscle cell death in AAA was mitigated by ferroptosis-specific
inhibitors (20). This suggests that ferroptosis is involved in
AAA; nevertheless, its specific role remains obscure.

Biological process analysis showed that the candidate
ferroptosis-related genes were mainly enriched in oxidative
stress. This finding appears reasonable because oxidative stress
has been suggested as a possible key factor in the development
of ferroptosis (21–23). Ferroptosis involves abnormal iron
homeostasis and lipid peroxidation metabolism. The metabolic
disorder of cells catalyzed by iron destroys the redox balance and
eventually leads to cell death. Ferroptosis has been investigated
as a key factor in numerous cardiovascular diseases (24). In
atherosclerosis, it has been linked to the regulation of nuclear
factor erythroid 2-related factor 2-kelch like ECH associated
protein 1 (NRF2-KEAP1) and p53 (25–30). Recently, it has
been reported that BRD4770 delays the progression of aortic
dissection by inhibiting ferroptosis (11). However, the specific
role of ferroptosis in the occurrence and development of
AAA remains to be further investigated. Our research provides
possible directions for the exploration of ferroptosis in AAA.
Through bioinformatics analysis, we identified 20 genes that
might play a role in ferroptosis in AAA. GO analysis showed that
these genes were mainly involved in oxidative stress response,
and iron homeostasis has been associated with oxidative stress

(21). An abnormal aerobic environment controls the toxicity
of iron and leads to ferroptosis (21). Nonetheless, it has also
been reported that oxidative stress is involved in the occurrence
and development of AAA (31–34). Based on this evidence,
the present research might provide a reference for ferroptosis
induced by peroxide stress response in AAA. To the best of our
knowledge, this direction is rarely explored.

In clinical samples, we found that the expression levels
of IL-6, PRDX1, and SCD were consistent with the biological
information of the mRNA chip. IL-6 is involved in inflammatory
processes in numerous diseases (35). It is highly expressed
in AAA tissues, induces leukocyte aggregation, and promotes
AAA inflammation by regulating the expression of chemokines
(36–38). Wang et al. recently reported that IL-12p35 regulates
IL-6 through the signal transducer and activator of transcription
4 (STAT4) pathway in the inflammatory process of AAA.
They also confirmed that IL-6 plays a role in inflammation
in AAA (39). However, another study showed that IL-6 has
a limited contribution to inflammation in AAA (37). Hence,
the function of IL-6 in AAA might not be limited to its
role in inflammation. Sheng et al. found that IL-6 regulates
ferroptosis through the Mir-10a-5p/IL-6R axis (40). Moreover,
Zhang et al. suggested that the effect of elabela on ferroptosis
was associated with IL-6 (41). This evidence implies that IL-
6 regulates ferroptosis in cells. However, there are no distinct
reports concerning the involvement of IL-6 in ferroptosis in
AAA. Our study might serve as a basis for further research
on the regulation of ferroptosis in AAA by IL-6; nevertheless,
further follow-up experiments are warranted to confirm our
hypothesis. PRDX1 was originally identified as a peroxide-
scavenging enzyme; however, its functions are not limited to
antioxidation, molecular chaperones, and signal transduction
(42–44). Recent studies suggested that PRDX1 is involved
in oxidative stress-induced ferroptosis in cells. Lovatt et al.
demonstrated that loss of PRDX1 induced ferroptosis in corneal
endothelial cells, and this process was associated with PRDX1-
mediated lipid peroxidation (45). This evidence supports our
current conclusion that PRDX1 is resistant to ferroptosis;
nevertheless, the specific mechanism involved in this process
is unclear. Moreover, PRDX1 is a biomarker for AAA (46).
Therefore, our conclusion might provide a basis for the further
exploration of the relationship between ferroptosis and PRDX1
in AAA. It has been shown that SCD controls the quantity of
monounsaturated fatty acids, which in turn are involved in cell
growth, metabolism, and signal transduction (47). Research has
revealed that SCD is highly expressed in pancreatic and bladder
cancers, and protects cancer cells from ferroptosis (48, 49). Thus
far, the roles of SCD have not been studied in AAA. Our results
might provide directions for additional research on these topics.

The present study has some limitations. Firstly, the clinical
sample size included in this investigation was small. Secondly,
although we determined the expression levels of differentially
expressed ferroptosis-related genes in AAA, we did not discuss
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the specific mechanisms of these candidate genes in animal
models or AAA cells. These mechanisms need to be examined
by further experiments in the future.

Conclusion

In summary, we identified 20 potential genes associated
with ferroptosis in AAA through bioinformatics analysis.
Among them, IL-6, PRDX1, and SCD might participate in the
occurrence and development of AAA by regulating ferroptosis.
The present findings might enhance our understanding of AAA
and, to some extent, guide treatment.
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