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Abstract

Staphylococcus sciuri (S. sciuri) is a rare pathogen in humans, but it can cause a wide array of human infections. Recently a S.
sciuri isolate (HBXX06) was reported to cause fatal exudative epidermitis (EE) in piglets and thus considered as a potential
zoonotic agent. To investigate the pathogenicity of this bacterium, we cloned exfoliative toxin C (ExhC), a major toxin of the
S. sciuri isolate and performed functional analysis of the recombinant ExhC-his (rExhC) protein using in vitro cell cultures and
newborn mice as models. We found that rExhC could induce necrosis in multiple cell lines and peritoneal macrophages as
well as skin lesions in newborn mice, and that the rExhC-induced necrosis in cells or skin lesions in newborn mice could be
completely abolished if amino acids 79-128 of rExhC were deleted or blocked with a monoclonal antibody (3E4), indicating
aa 79-128 portion as an essential necrosis-inducing domain. This information contributes to further understandings of the
mechanisms underlying S. sciuri infection.
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Introduction

Staphylococcus sciuri (S. sciuri) is a rare pathogen in humans, but it

can cause a wide array of human infections, such as endocarditis

[1], peritonitis [2], septic shock [3], urinary tract infection [4],

pelvic inflammatory disease [5] and wound infections [6,7].

Recently a S. Sciuri isolate (HBXX06) that carry exfoliative toxin C

(ExhC) was reported to cause an outbreak of fatal exudative

epidermitis (EE) in piglets [8]. EE in pigs, also known as greasy pig

disease, is an acute and communicable skin disease characterized

by appearance of generalized exfoliation of epidermis accompa-

nied by extensive exudation and crust formation [8–11].

Exfoliative toxins, major toxins produced by the causative agents,

are responsible for the characteristic skin lesions [8,9,11].

Staphylococcal scalded skin syndrome (SSSS) in humans caused

by Staphylococcus aureus (S. aureus) strains shared similar clinical signs

and histopathology with EE in pigs, exhibiting blister formation

and exfoliation of the skin caused by the skin splitting at the

granular layer of the epidermis [12–16]. Thus, EE may be used as

a disease model to elucidate the mechanisms of Staphylococcus

infections in humans.

Exfoliative toxins are critical virulence factors responsible for

the pathogenesis of EE in pigs. Currently, at least six exfoliative

toxins, ExhA through D, ShetA and ShetB, have been identified

and purified from different strains [10,11,17], and their existence

is related to the species of Staphylococci [11,18,19]. These toxins

have been characterized as proteins of approximately 27 kDa or

30 kDa [14,20,21]. Target molecules for exfoliative toxins ExhA-

D in swine have been identified as the extracellular domains of

desmoglein (Dsg) 1, a cell-cell adhesion molecule in desmosomes

[22]. In addition, ExhA and ExhC are able to cleave mouse Dsg

1a and 1b [9], which may allow the use of mice as animal models

for exploring the biological activities of Staphylococcal exfoliative

toxins. Previous reports showed that exfoliative toxins from S.

hyicus could cause rounding effects in mammalian cells and skin

lesions in newborn mice [9,23]. However, the exact mechanisms

underlying the cell death caused by exfoliative toxins are not clear.

In this study, we showed that recombinant ExhC (rExhC)

caused necrosis in multiple cell lines and peritoneal macrophages

as well as skin lesions in newborn mice, and that the rExhC-

induced necrosis in cells or skin lesions in mice could be

completely abolished if amino acids 79-128 of rExhC were deleted

or blocked with a monoclonal antibody (3E4), indicating the

amino acids 79-128 portion of ExhC as an essential necrosis-

inducing domain.

Results

Recombinant ExhC-his proteins caused skin lesions in
newborn mice

In our previous report, we showed that ExhC was the only

exfoliative toxin in the genome of pathogenic S. sciuri isolate

(HBXX06) [8]. To explore the biological activity of ExhC, we

amplified the ExhC (837 bp) from the genome of S. sciuri isolate

(HBXX06) by PCR using specific primers (Figure 1A). Sequencing

analysis of the PCR product indicated that the S. sciuri ExhC

(GenBank ID: JF755400) was identical to that of S. hyicus

(GenBank ID: AF515455) [10]. We made a pET28a(+)-ExhC

expression construct, and expressed the rExhC protein using E. coli
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expression system. The rExhC protein was purified with Ni-NTA

columns and examined by SDS-PAGE and Western Blot. As

shown in Figure 1B, the rExhC was successfully expressed and

purified as examined by SDS-PAGE. In addition, the rExhC could

be detected with anti-his tag monoclonal antibody (Figure 1C) or

rabbit anti-S. sciuri isolate (HBXX06) serum (Figure 1D), suggest-

ing that ExhC is an immunogenic component of the S. sciuri

isolate.

Since newborn mice are sensitive to ExhC [9], we used newborn

mice as a model to examine the biological activity of rExhC. As

shown in Fig. 1E & F, newborn mice displayed blistering and

exfoliation of the skin 6 hours after subcutaneous injection with

500 mg of purified rExhC while no clinical signs were observed in

controls. Consistently, histological examination also showed that

the exfoliated epidermis and necrosis in the dermis only existed in

the skin tissue of rExhC-treated mice but not in controls

(Figures 1G & 1H). These data suggest that the rExhC is a potent

toxin causing tissue damages and can be used to elucidate the

functions of ExhC.

rExhC induced necrosis in cells
To analyze the functions of rExhC, we cultured BHK-21 cells

with or without rExhC. We found that cells treated with rExhC

underwent intensive cell death (Figure 2A) whereas controls grew

well (Figure 2B), and that the rExhC-induced cell death was dose-

dependent as examined by flow-cytometry using Annexin-V and

PI staining (Figures 2C & 2D). To determine if rExhC could

induce cell death in other cell types, L-929, RAW264.7 and B16

cells as well as mouse peritoneal macrophages were cultured with

rExhC. Interestingly, all these cells were sensitive to rExhC-

induced cell death (data not shown), which suggests that rExhC

may induce cell death in both cell lines and primary cell culture.

To analyze the rExhC-induced cell death, we examined apoptosis

and necrosis by measuring DNA fragmentation, caspase cleavage

and supernatant DNA contents in the cell culture after rExhC

treatment. We found that neither fragmented DNA nor cleaved

caspase 3 or 9 was detected in rExhC-treated cells (Figure S1A–C).

In addition, rExhC-induced cell death was not abrogated by

pancaspase inhibitor zVAD-fmk (Figure S1D). However, DNA

Figure 1. Recombinant ExhC-his proteins caused skin lesions in newborn mice. A. ExhC was amplified from genomic DNA of S. sciuri isolate
(Lane 1) with distilled water as a control (Lane 2) using specific primers. M stands for DNA Marker. B. SDS-PAGE analysis of the purified rExhC. Lane 1
was loaded with cell extracts of empty vector, lane 2 with cell extracts of rExhC, lane 3 with flow-through buffer solution, lanes 4 & 5 with wash buffer,
and lane 6 with purified rExhC. M represents standard protein markers. C and D. The expression of rExhC was examined by Western blot using anti-his
McAb (C) and polyclonal antibodies against S. sciuri (D). Lane 1 was loaded with purified rExhC, lane 2 with cell extracts of rExhC, and Lane 3 with
empty-vector transformed cell extracts. E–H. Recombinant ExhC-his proteins cause exfoliation of skins in newborn mice. E & F. newborn mice were
injected subcutaneously with PBS as controls (E) or rExhC (F). Six h later, the gross lesions were examined. G & H. Histological examination of skin
lesions in controls (G) or rExhC-injected mice (H). Arrows in F and H indicates the lesions in the skin of mice. Results are representative of two
independent experiments with the similar results. Original amplification is 6200.
doi:10.1371/journal.pone.0023145.g001
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contents in the supernatant of rExhC-treated cells were signifi-

cantly greater than that of medium control (p,0.01) (Figure 2E).

These data indicates that rExhC primarily induces necrosis rather

than apoptosis in mammalian cells.

A critical role of rExhC 79-128 aa portion in rExhC-
induced necrosis in cells

Since rExhC induced necrosis in mammalian cells, it would be

important to clarify the necrosis-inducing portion of this molecule.

We made truncated pET-28(+)-rExhC constructs encoding 1-78,

1-128, 1-178 and 1-228 aa of rExhC respectively (Figure 3A) and

expressed the rExhC proteins using E. coli expression system. The

purified truncated rExhC proteins were examined by SDS-PAGE

and Western Blot with an anti-his tag monoclonal antibody. As

shown in Figures 3B & C, the truncated rExhC proteins were

successfully expressed and purified. Then we cultured BHK-21

cells with rExhC, truncated rExhC (T1-rExhC, T2-rExhC, T3-

rExhC or T4-rExhC) or medium controls and examined the

necrotic effects of these truncated rExhC proteins on cells by

microscopy and ELISA. Interestingly, we found that the rExhC,

T1-rExhC, T2-rExhC and T3-rExhC proteins caused severe cell

death whereas cells treated with T4-rExhC or medium controls

grew well (Figure 3D). Consistent with this observation, the DNA

contents in the supernatant of cell cultures with rExhC, T1-

rExhC, T2-rExhC or T3-rExhC were significantly greater than

that of the cells treated with T4-rExhC or medium controls

(p,0.01) (Figure 3E), suggesting that the amino acids 79-128

portion of rExhC is a necrosis-inducing domain (Figure 3F).

Inhibition of rExhC-induced necrosis by blocking amino
acids 79-128 of rExhC with a monoclonal antibody

Since rExhC induced necrosis in cells via amino acids 79-128

domain, we hypothesized that aa 79-128 of rExhC might contain

epitopes, and that the antibody raised against aa 79-128 domain

would inhibit rExhC-induced necrosis. To test this hypothesis, we

developed monoclonal antibodies and examined the neutralizing

effects of these antibodies on rExhC-induced cell death. As shown

in Figure 4A, all the truncated rExhC proteins were expressed

with E. coli expression system as examined by Western Blot using

anti-his monoclonal antibody. Interestingly, we found that one

monoclonal antibody (clone #: 3E4-IgG1) recognized only those

truncated rExhC proteins containing aa 79-128 of rExhC as

demonstrated by Western Blot (Figure 4B), indicating that aa 79-

128 of rExhC contained an epitope that could be recognized by

this monoclonal antibody (Figure 4C). Next, we cultured BHK-21

cells with rExhC in the presence of the monoclonal antibody (3E4)

or IgG1 controls. Strikingly, the rExhC-induced cell death could

be effectively inhibited by the monoclonal antibody (3E4)

Figure 2. rExhC induced necrosis in cells. A and B. BHK-21 cells were cultured with (A) or without (B) rExhC for 24 h and observed with a
microscope. C and D. BHK-21 cells were treated with indicated amounts of rExhC for 24 h before stained with FITC-labeled annexin-V and PI, and
were analyzed by flow cytometry. The significance of the differences between rExhC-treated and control cells in terms of positive cells rate was
performed by ANOVA (p,0.001). E. BHK-21 cells were cultured with 15 mM rExhC or 0.1% NP-40 as a positive control or medium only as a negative
control at the indicated times and the DNA contents in culture supernatants were determined using a DNA detection ELISA kit. Results are from one
representative of three independent experiments and presented as means 6 SEM. Statistical analysis was performed using ANOVA.
doi:10.1371/journal.pone.0023145.g002
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(Figures 5A & B) but not by IgG1 control (Figure 5C) while the

3E4 antibody alone did not affect cell growth (Figure 5D). In

addition, rExhC-treated cells survived much better after treatment

with the 3E4 antibody than those treated with IgG1 controls

(p,0.01) (Figure 5E). These data suggest that monoclonal

antibody 3E4 can effectively inhibit rExhC-induced necrosis in

cells via blocking aa 79-128 of rExhC.

Inhibition of rExhC-induced skin lesions in newborn mice
by a monoclonal antibody

Since the monoclonal antibody (3E4) inhibited rExhC-induced

necrosis in cells, it would be tempting to investigate whether the

toxic effect of rExhC on the skin of newborn mice could also be

inhibited by 3E4-Ab. We treated newborn mice with different

doses of 3E4-Ab or IgG1 control via intraperitoneal injection one

hour before the mice were subcutaneously injected with rExhC.

Five hours after rExhC injection, low-dose 3E4-Ab-treated mice

(Figure 6A), IgG1 (Figure 6D) and PBS (Figure 6E) controls

developed severe skin lesions. In contrast, mice treated with a

medium dose or a high dose of 3E4-Ab displayed slight or no skin

lesions after rExhC treatment (Figures 6B & C), which indicates a

protective role of 3E4-Ab in rExhC-induced skin lesions.

Meanwhile, the mice treated with 3E4-Ab only looked healthy

(Figure 6F), which suggests that the highly purified 3E4 had no

visible side-effects.

To quantitatively analyze the toxic effects of rExhC, the scores

of rExhC-induced skin lesions were recorded according to the size

of skin lesion areas as described in Experimental procedures.

Interestingly, mice injected with 3E4-Ab at a dose greater than

1.25 mg/mouse could be significantly protected from the rExhC-

induced skin lesions as compared to the control or low-dose 3E4-

Ab treatment groups (p,0.001) (Figure 6G), which suggests that

Figure 3. A critical role of rExhC 79-128 aa in the induction of necrosis in BHK-21 cells. A. Schematic diagrams showing the structure of full
rExhC and truncated rExhCs (designated T1-rExhC, T2-rExhC, T3-rExhC and T4-rExhC). B. SDS-PAGE analysis confirms the purity of the truncated
rExhCs. C. Western Blot analysis confirms the expression of truncated rExhCs using anti-his McAb. D and E. BHK-21 cells were cultured in medium only
as controls, or cultured with 15 mM of rExhC, T1-rExhC, T2-rExhC, T3-rExhC and T4-rExhC respectively for 8 h, and observed with a microscope (D)
before the DNA contents in culture supernatants were determined using a DNA detection ELISA kit (E). Arrows indicate necrotic cells. Results are from
one representative of three independent experiments. Statistical analysis was performed using ANOVA. **, p,0.01; ns, not significant. F. Schematic
diagrams showing the necrosis-inducing domain of rExhC.
doi:10.1371/journal.pone.0023145.g003
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the monoclonal antibody 3E4 provides protections against rExhC-

induced skin lesions in mice in a dose-dependent manner. In

addition, histological examination of the skin samples demonstrat-

ed that the mice pre-treated with a low- or a medium-dose of 3E4-

Ab or IgG1 or PBS in advance displayed characteristic features of

skin splitting at the granular layer after ExhC treatment

(Figures 6H, 6I, 6K and 6L), but the mice pre-treated with a

high dose of 3E4-Ab (Figure 6J) did not show any detectable

lesions as compared to the control (Figure 6M). These in vivo data

demonstrate that the rExhC-induced skin lesions in newborn mice

can be effectively inhibited by a monoclonal antibody.

Discussion

S. sciuri is widely distributed in nature, and strains can be easily

isolated from a variety of animals and products of animal origin

[24,25] as well as from humans [26,27]. These bacteria are

normally nonpathogenic, but occasionally cause diseases in

animals and humans [1–7]. It has been reported that some

pathogenic strains of S. sciuri are responsible for mastitis in

ruminants such as goats [28] and cows [29], suggesting that some

members of S. sciuri are potentially pathogenic. In our previous

study, we reported that a S. sciuri isolate (HBXX06) was highly

pathogenic to piglets and it harbored ExhC as a major toxin [8].

In this report, we show that the rExhC induces necrosis on cell

lines (BHK-21 cells, L-929, RAW264.7 and B16) and mouse

peritoneal macrophages, and also cause the skin lesions in

newborn mice.

Exfoliative toxins are critical virulence factors for causing EE in

pigs. From S. hyicus, a commonly-seen causative agent for EE, four

exfoliative toxins (ExhA-D) have been characterized [10].

Although certain strain of S. hyicus may have more than one

exfoliative toxin [30], ExhC is the only exfoliative toxin produced

by the S. sciuri isolate (HBXX06) [8]. Our data indicate that the

ExhC from S. sciuri (HBXX06) is identical to that of S. hyicus in

GenBank (AF515455). It was reported that the exfoliative toxins

from S. hyicus and S. aureus are highly close to those found among

the same species as within each species, leading to speculations

that horizontal gene transfer may occur among species of

Staphylococci [10]. Alternatively, it was proposed that ‘‘pathogenic-

ity island’’ encoding staphylococcal virulence factors might be

acquired by non-virulent strains by lysogenization [31]. Therefore,

it was likely that S. sciuri isolate (HBXX06) acquired ExhC via

horizontal gene transfer from the other Exh-carrying Staphylococci,

such as S. hyicus. More efforts are required to investigate the

mechanisms underlying the transmission of virulence factors

among strains of staphylococci.

The present study was primarily focused on the biological

activities of ExhC. Our results indicate that the purified rExhC

protein is biologically active, which is consistent with the previous

observation that ExhA and ExhC could cleave mouse Dsg 1a and

1b [9]. Interestingly, we found that neither cleavage of caspases

nor DNA fragmentation was detected in rExhC-treated cells.

Instead, a large amount of DNA was released from the rExhC-

treated cells. Thus, rExhC cause necrosis rather than apoptosis in

mammalian cells.

Our data indicate that aa 79-128 portion of rExhC determines

the toxic effects of rExhC because rExhC-induced cell death in

culture cells or the skin lesions in mice can be inhibited if the aa

Figure 4. Anti-rExhC monoclonal antibody recognized aa 79-
128 portion of rExhC. A and B. Western Blot analysis shows that
rExhCs are recognized by anti-his monoclonal Ab (A) and monoclonal
Ab 3E4-IgG1 (B). Lanes 1-5 were loaded with rExhC, T1-rExhC, T2-rExhC,
T3-rExhC and T4-rExhC respectively. C. Schematic diagrams showing the
epitope-containing domain recognized by monoclonal Ab 3E4-IgG1.
doi:10.1371/journal.pone.0023145.g004

Figure 5. rExhC-induced necrosis was inhibited by blocking aa
79-128 portion of rExhC with a monoclonal antibody. BHK-21
cells were cultured with 15 mM rExhC (A) and also in the presence of
15 mM 3E4-Ab (B), 15 mM isotype IgG1 (C) or 15 mM 3E4-Ab only (D) as
controls. Morphological changes were observed with a microscope 6 h
post treatment. Arrows indicate necrotic cells. Twenty-four hours later,
the cell viability was determined trypan blue dye exclusion assay (E).
The significance of the differences between rExhC+3E4-treated and
rExhC-treated cells in terms of survival rate was performed by ANOVA
(p,0.01). Results are representative of three independent experiments
with the similar results. **, p,0.01.
doi:10.1371/journal.pone.0023145.g005
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79-128 portion of rExhC is deleted or blocked with 3E4-Ab. In

comparison to those exfoliative toxins produced by other

Staphylococcus subspecies such as S. hyicus ExhA (GenBank ID:

AAN32970), ExhB (GenBank ID: BAA99411), ExhC (GenBank

ID: AAN32972) and ExhD (GenBank ID: AAN32973), S. aureus

ETA (GenBank ID: NP-510960), ETB (GenBank ID: NP-478350)

and ETD (GenBank ID: BAC22944), S. chromogenes ExhB

(GenBank ID: AAV98626), and S. pseudintermedius ExpB (GenBank

ID: BAJ23893), S. scuiri ExhC contains 33 (11.9%) conservative aa

sites while ten of them are located between 79-128 aa (20%),

which indicates that the 79-128 aa portion is more conservative

than the rest of the molecule. Interestingly, we found that mutant

ExhC with a point mutation in H107, a conservative aa of ExhC,

failed to cause skin lesions in newborn mice but could still induce

necrosis in culture cells (data not shown), suggesting that the

essential amino acids for cell necrosis and skin lesions might be

different. More efforts are required to elucidate the discrepancy

between ExhC-induced cell necrosis and skin lesions.

It was reported that a monoclonal antibody against exfoliative

toxin from S. hyicus could not effectively neutralize the toxins from

S. hyicus [14]. In our study, we developed several clones of

monoclonal antibodies against rExhC, however only 3E4-Ab that

recognized aa 79-128 domain of rExhC could effectively inhibit

the rExhC-induced necrosis in culture cells or skin lesions in

newborn mice. These results suggest that the aa 79-128 portion of

rExhC acts as a critical domain responsible for inducing cell death,

and that the ExhC may have multiple epitopes with variable

functional domains. No doubt, further characterization of ExhC

will help to elucidate the mechanisms of Staphylococcal scalded

skin syndrome (SSSS) in humans because SSSS shares similar

clinical signs and histopathology with EE in pigs.

In summary, we found that ExhC induced necrosis in

mammalian cells and skin lesions in newborn mice, and that

these toxic effects could be completely abolished if the aa 79-128

portion of rExhC was deleted or blocked with a monoclonal

antibody (3E4), indicating the aa 79-128 portion as an essential

necrosis-inducing domain. This information contributes to further

understandings of the mechanisms underlying S. sciuri infection.

Materials and Methods

Mice
Eight-week-old inbred BALB/c mice were purchased from Vital

River Lab Animal Technology Company (Beijing, China). All

mice were housed in our animal care facility with food and water

ad libitum for at least 3 days before mating. The newborn mice

Figure 6. rExhC-induced skin lesions in newborn mice were inhibited by a monoclonal antibody. A–E. Newborn mice were treated with
0.25 mg (A), 1.25 mg (B) and 5 mg (C) of 3E4-Ab respectively, or with IgG1 (D)/PBS (E) as controls 1 h before subcutaneously injected with rExhC.
Macroscopical skin lesions were observed 5 h post rExhC treatment. F. Mice were treated with 3E4-Ab only as a control. G. Skin lesions were recorded
at the indicated time points after rExhC treatment in the presence of 0.25, 1.25 and 5 mg of 3E4-Ab respectively. rExhC+IgG1 (1.25 mg) was used as
controls. The significance of the differences between rExhC+3E4-treated mice and rExhC+IgG1-controls in lesions was performed by ANOVA
(p,0.001). H-M. Histological examination of skin tissues that were collected 5 h post rExhC injections. Mice were treated with 0.25 mg (H), 1.25 mg (I)
and 5 mg (J) of 3E4-Ab respectively, or with IgG1 (K) as controls before injection with rExhC. Mice were also treated with rExhC only (L) or 3E4-Ab only
(M) as controls. Original amplification is 6200. Results are representative of two independent experiments.
doi:10.1371/journal.pone.0023145.g006
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(less than 24 h) were used to determine the activity of rExhC and

the protection of monoclonal antibody against ExhC.

Ethics statement
All procedures were approved by the Animal Care and Use

Committee of China Agricultural University (Approval IDs:

XXMB-2007-03-01-1 and XXMBB-2007-03-15-1) and used in

accordance with regulations and guidelines of this committee.

Bacterial strains, cells and culture conditions
The S. sciuri strain (HBXX06) was originally isolated from the

cardiac fluid of a diseased piglet with EE [8] and saved in our

laboratory. The bacterium was grown in brain heart infusion

medium (BHI) for extracting genomic DNA. E. coli DH5a
(Tiangen Biotech) was grown in Lubia-Bertani (LB) medium with

ampicillin (100 mg ml21) for the preparation of plasmids. E. coli

BL21 (DE3) (Tiangen Biotech) was grown in LB medium with

kanamycin (50 mg ml21) for the expression of rExhC. All strains

were grown at 37uC unless otherwise specified. BHK-21 (baby

hamster kidney cell line), L-929 (mouse fibroblast cell line),

RAW264.7 (mouse macrophage cell line) and B16 (mouse

melanoma cell line) cells as well as mouse peritoneal monocytes

were used for functional analysis of rExhC, the cells were grown at

37uC with 5% CO2 in complete Dulbecco’s modified Eagle

medium (DMEM) (GIBCO) supplemented with 10% Fetal Bovine

Serum (HyClone), 1% nonessential amino acids (GIBCO), and

200 U ml21 penicillin and streptomycin.

DNA manipulation
Genomic DNA was extracted from S. sciuri (HBXX06) using

TIANamp Bacteria DNA kit (Tiangen Biotech). Plasmid DNA was

prepared using TIANprep Mini Plasmid kit (Tiangen Biotech).

Restriction enzymes and T4 DNA ligase were purchased from

Takara (Japan). All enzymatic reactions were carried out

according to the manufacture’s instructions. DNA sequencing

was performed by SinoGenoMax Co. (China). All new data have

been deposited in GenBank (GenBank accession ID: JF755400)

Construction of cloning and expression plasmids with
ExhC

The ExhC gene was amplified from S. sciuri genomic DNA using

the forward primers 59- CCATGGCTATGCATTCAAAACTAT-

TAAGTAAAT and the reverse primer 59- GCGGCCGCTTTAAT-

TAATTGTTTGAGATCTCTAATGAG with Nco I and Not I sites as

underlined. PCR was performed with a program containing an initial

step at 94uC for 4 min followed by 30 cycles for the amplification of

ExhC, each cycle consisting of 94uC for 30 s, 50uC for 30 s, and 72uC
for 60 s. The PCR products were purified before inserted into cloning

plasmid pMD19-T simple vector (Takara), and the resulting plasmid,

pMD19-T-ExhC, was used to transform E. coli DH5a. Transformants

were grown on LB agar plates with ampicillin (100 mg ml21) at 37uC
and the colonies were screened by PCR and DNA sequencing analysis.

The pMD19-T-ExhC and pET28a(+) (Novagen) empty plasmids were

digested with Nco I and Not I, respectively. The Linearized ExhC and

pET28a(+) were ligated with T4 DNA ligase (Takara) before

sequencing analysis.

Expression and purification of rExhC
E. coli BL21 (DE3) competent cells were transformed with the

fusion constructs or empty plasmids and grown overnight at 37uC
in LB medium with kanamycin (50 mg ml,1). Transformants were

grown to OD600 of 0.5-0.6 before supplemented with 0.5 mM

IPTG and subsequently cultured at 16uC for 12 h. Bacterial cells

were centrifuged at 6000 g for 5 min and frozen at 220uC till use.

Recombinant proteins were purified on Nickel-nitrilotriacetic acid

agarose (Ni-NTA) column (Qiagen) under native conditions per

manufacturer’s instructions. The purified proteins were concen-

trated using Amicon Ultra-15 centrifugal filter (10 kd cutoff,

Millipore) and reconstituted with 16phosphate-buffered saline

(PBS) to remove imidazole. The purified proteins were examined

by SDS-PAGE, and the protein concentrations were determined

by a Biophotometer (Eppendorf North America).

SDS-PAGE and Western Blot analysis
SDS-PAGE was performed using 12% or 15% polyacrylamide gels

[32]. Samples of rExhC were mixed with Laemmli buffer and boiled

for 5 min. Gels were stained with Coomassie brilliant blue R-250. For

Western Blot, samples were resolved on SDS-PAGE gel before

transferred onto nitrocellulose membranes (Millipore). Membranes

were probed with mouse anti-his (c-term) monoclonal antibody

(Invitrogen) or rabbit polyclonal antibodies against S. sciuri HBXX06.

The blots were subsequently incubated with HRP-conjugated goat

anti-mouse IgG or HRP-labeled goat anti-rabbit IgG secondary

antibodies (DingGuo Biotech). The blots were developed using the

chemiluminescence blot detection reagents (Vigorous Biotech).

Examination of rExhC activity
The in vivo activity of rExhC was examined by subcutaneous

injection of newborn mice with 500 mg of purified rExhC or with

PBS as control. Gross lesions in the skin were examined every hour

post rExhC treatment. The skin tissues were collected for

histological examination at the end of the experiment. The in

vitro activity of rExhC was examined with cell cultures. BHK-21

cells were cultured in 96-well culture plates at a density of 26104

cells per well for 12 h before treatment with 15 mM rExhC. The

morphological changes of treated cells were observed with a

microscope.

Flow cytometry
BHK-21 cells (26105) were cultured for 6 h and then incubated with

0, 0.3, 3 or 15 mM rExhC. Twenty-four hours after rExhC treatment,

cells were harvested and stained with FITC-labeled annexin-V and

propidium iodide (PI) per manufacturer’s instructions (Biosea Biotech).

Cells were analyzed on a FACs-Calibur flow cytometer (BD

Biosciences) using the CellQuest program (BD Biosciences).

Assessment of internucleosomal DNA fragmentation
For internucleosomal DNA fragmentation assay, DNA was

extracted using TIANamp Genomic DNA blood kit (Tiangen

Biotech) according to the manufacturer’s instructions. In brief, at

specific time points after rExhC treatment, both the floating and

adherent cells were pooled. DNA was extracted from these cells

and dissolved with 50 mL TE buffer (pH 8.0). These samples were

electrophoretically resolved on 1% agarose gel. Fragmented DNA

was visualized under ultraviolet light.

Western Blot analysis for caspase cleavage
BHK-21 cells were cultured with 15 mM rExhC or medium only

as a control for 24 h. The cells were harvested and lysed (50 mM

HEPES, 150 mM NaCl, 1% Triton X-100, 5 mM EDTA, 50 mM

b-glycerophosphate, 20 mM NaF, 2 mM phenylmethylsulfonyl

fluoride, 10 mg/ml leupeptin and 10 mg/ml aprotinin). The cell

lysates were centrifuged and the protein content was determined.

Equal amounts of protein were separated by 12%SDS-PAGE.

Proteins were transferred to a nitrocellulose membrane and then

immunoblotted with anti-caspase-3 or anti-caspase-9 antibodies
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(Santa Cruz Biotechnology). The blots were subsequently incubated

with HRP-conjugated goat anti-rabbit IgG secondary antibodies

(DingGuo Biotech). The blots were developed using the chemilumi-

nescence blot detection reagents (Vigorous Biotech).

DNA release assay
DNA release was quantitatively measured using a DNA

detection ELISA kit (Roche Applied Science). Briefly, BHK-21

cells were labeled with 10 mM BrdU for 24 h. The BrdU-labeled

cells (16104) were cultured in 96-well plates at 37uC with 5% CO2

for 4 h before treatment with 15 mM rExhC or 0.1% NP-40 as a

positive control for necrosis. The culture supernatants were

collected at 0.5, 1, 2, 4, 8 and 16 h post treatment and examined

for DNA contents using ELISA kit per manufacturer’s instruction.

Preparation of truncated rExhC
The truncated ExhC were amplified from pMD19-T-ExhC

using the same forward primer (F: 59-CCATGGCTATGCATT-

CAAAACTATTAAGTAAAT-39) and reverse primers (T1-R: 59-

GCGGCCGCCGGAACTGTATAGCCATAGTATT or T2-R:

59-GCGGCCGCAGCAGCTTTAATGACATCG or T3-R: 59-

GCGGCCGCATCAGCATGTCTACCTGGA or T4-R: 59-

GCGGCCGCATATGGGGAGTTTTTGATTT). The Nco I
and Not I sites are underlined. These truncated rExhC were

named T1-rExhC (1-228 aa), T2-rExhC (1-178 aa), T3-rExhC (1-

128 aa) and T4-rExhC (1-78 aa). The construction of cloning and

expression plasmids, expression and purification of truncated

rExhC proteins were performed as described above.

Functional analysis of truncated ExhC
BHK-21 cells (26104) were cultured in 96-well culture plates for

12 h before treatment with 15 mM rExhC, T1-rExhC, T2-rExhC,

T3-rExhC and T4-rExhC respectively or with PBS as controls.

The morphological changes of treated cells were observed with a

microscope. The necrotic effects of truncated rExhC were

examined using BHK-21 cells as described above.

Establishment of B hybridoma clones
Five eight-week old female inbred BALB/c mice were immu-

nized with recombinant ExhC-his fusion protein in emulsified

Complete Freund’s adjuvant at a dose of 40 mg per mouse by

subcutaneous and intradermal injections (Sigma-Aldrich). Booster

immunizations were performed by subcutaneous injection with

rExhC in emulsified incomplete Freund’s adjuvant (Sigma-Aldrich)

at a dose of 40 mg per mouse. Three days after the fourth

intraperitoneal injection with rExhC, splenocytes were isolated and

fused with SP2/0 myeloma cells as previously described [33]. An

indirect ELISA was used to screen for hybridoma clones that

produced a monoclonal antibody against ExhC. Ascite fluids were

obtained from the mouse peritoneal cavity [34]. Monoclonal

antibodies were purified as previously described [16]. The purified

antibodies were examined by SDS-PAGE and the concentrations

were determined by a Biophotometer.

Inhibition of rExhC-induced cell death by a monoclonal
antibody

BHK-21 cells (56104) were seeded on 48-well cell culture plates

and cultured for 12 h. Two hundred ml of rExhC (500 mg ml21) was

incubated with 10 ml 3E4-Ab (50 mg ml21) at room temperature for

20 min before added to the cell culture. The plates were incubated

at 37uC with 5% CO2 for 24 h before the viability of cells was

determined using trypan blue dye exclusion assay [35]. An isotype

IgG1 was used as a control in culturing with rExhC.

Inhibition of rExhC-induced skin lesions by a monoclonal
antibody

Groups of newborn mice (n = 9) were injected intraperitoneally

with 3E4-Ab at different doses (5, 1.25, or 0.25 mg per mouse)

while 1.25 mg of IgG1 control or equal volume of PBS was given

as controls. One hour after antibody treatment, mice were

subcutaneously injected with rExhC (500 mg per mouse). The

skin lesions were observed and recorded every hour after rExhC

injection. The skin lesions were scored as follows: 100% stands for

a lesion area greater than 1 CM2; 75% for the lesion area between

0.5 and 1 CM2; 50% for the lesion area between 0.25 and

0.5 CM2; 25% for the lesion area less than 0.25 CM2 and 0 for no

lesion. Five hours after rExhC injection, skin tissues were collected

for the histopathological examination as previously described [36].

Statistical analysis
The significance of the differences between treatment groups

and controls in DNA contents, cell survivals and lesion scores was

determined by the Mann-Whitney and ANOVA accordingly.

Supporting Information

Figure S1 rExhC induced caspase-independent cell
death. A. BHK-21 cells were cultured with 15 mM rExhC or

medium only as a negative control for 1, 2, 4, 8 and 16 hours,

followed by internucleosomal DNA fragmentation assay as

described above. Ladder indicates DNA ladder, and Ctrl indicates

control. B&C. BHK-21cells were incubated with 15 mM rExhC or

medium only as a control. Twenty-four hours after rExhC

treatment, the cell lysates were prepared and subjected to SDS-

PAGE on 12% gel and immunoblotted with anti-caspase-3, anti-

caspase-9 or anti-actin antibodies. D. BHK-21 cells were treated

with vehicle or rExhC alone or pretreated with pancaspase

inhibitor zVAD-fmk (50 mM) for 2 h and then incubated with

rExhC (15 mM) for 8 h. Morphological changes were observed

with a microscope. Arrows indicate necrotic cells.

(TIF)
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