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Abstract: Sunitinib is a broad-spectrum multitargeted tyrosine kinase inhibitor mainly used as
second-line therapy for non-resectable gastrointestinal stromal or first-line treatment option of
metastatic renal cell carcinoma (mRCC), and as an “off-label” option in pediatric oncology. It has
been previously reported that sunitinib elevates the mean corpuscular volume of erythrocytes (MCV)
in treated subjects. The aim of this study was to assess time-dependent changes of this effect and
evaluate its possible clinical relevance. In this study, 179 adult and 21 pediatric patients with solid
tumors treated with sunitinib were retrospectively analyzed. The laboratory and treatment-related
data were collected for each treatment period. The regression model with a broken-line relationship
was used to fit time dependence of the MCV. In the adult group, the MCV was increasing during the
first 21.6 weeks (median) of treatment in a median level of 99.8 fL, where it stabilized. MCV increase
was faster in the patients who suffered from treatment-related adverse events (21.3 vs. 24.6 weeks,
p = 0.010). In the pediatric cohort, the MCV dynamics were similar to adults. In conclusion, MCV
changes during sunitinib treatment in pediatric and adult patients may be of clinical utility in
monitoring sunitinib treatment course.

Keywords: sunitinib; mean corpuscular volume; MCV; toxicity

1. Introduction

Sunitinib is an oral anticancer drug from a class of tyrosine kinase inhibitors that
target multiple intracellular molecular signaling pathways, including vascular endothe-
lial growth factor receptors (VEGFR) pathway, platelet-derived growth factor receptors
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(PDGFR) pathway, stem cell growth receptor (c-KIT) pathways, FMS-like tyrosine kinase 3
(FLT3), colony-stimulating factor 1 receptor (CSF-1R) pathway, and “rearranged during
transfection” (RET) receptor pathway [1]. Since 2006, it has been approved for the treat-
ment of metastatic renal cell carcinoma (mRCC) [2,3] and gastrointestinal stromal tumor
(GIST) [4,5].

A recent meta-analysis on therapeutic alternatives to first-line sunitinib monotherapy
in mRCC patients demonstrated the benefit of using combined immune therapy with
checkpoint inhibitors [6]. A careful approach should be taken in patients with dysregulated
immune activation such as pre-existing autoimmune diseases or hematopoietic/solid organ
transplant or compromised immune function (long-term immunosuppression, chronic viral
infections), and/or significant medical co-morbidities (organ dysfunction, elderly or frail
patients, metastatic brain disease) [7]. However, these patients and possibly those with
favorable risk may still benefit from sunitinib monotherapy [8]. Furthermore, the benefit of
a selective sequential treatment strategy has been proposed [7].

Although studies on pediatric patients have been conducted mostly with GIST and
RCC in a limited number of pediatric patients [9–11], it remains an “off-label” option for
a “targeted” pharmacotherapy approach in high-risk pediatric CNS tumors and other
pediatric malignancies that have a specific molecular microenvironment favoring the use
of sunitinib in the therapeutic protocol [12].

Sunitinib and its main metabolite N-desethyl-sunitinib are indolinone derivatives with
lipophilic properties, high distribution volume (Vd = 2030 l and 3080 l, respectively) and
half-life of 40–60 h and 80–110 h, respectively [13]. Therefore, approximately 10–14 days
are required for reaching steady-state concentration in most patients, including those with
renal insufficiency, as both the drug and its metabolite are mainly excreted in feces [14,15].
A therapeutic drug monitoring data summary from a recent review study proposed cumula-
tive concentration of sunitinib and N-desethyl-sunitinib of 50–100 ng/mL as an appropriate
target therapeutic window as concentrations over 100 ng/mL may lead to increased toxic-
ity [16]. Nevertheless, no routine rapid diagnostic (STAT-based) method for therapeutic
drug monitoring is currently available to guide dosing.

It has been reported that sunitinib and several other tyrosine kinase inhibitors influence
the erythrocyte mean corpuscular volume parameter (MCV) [17,18]. Initial considerations
about this phenomenon included possible relative folate and cobalamin deficiency [19,20].
However, more recent studies provided data that this effect is related to the inhibitory
activity of tyrosine kinase inhibitors towards c-KIT, which is extensively expressed by
progenitor cells in the bone marrow [21–23]. This theory is supported by results of stud-
ies where imatinib, sunitinib, and pazopanib (c-KIT inhibitors) treatment is associated
with a statistically significant rise in the MCV, whereas sorafenib, erlotinib, and vemu-
rafenib (no c-KIT inhibitory activity) showing no such association [12,17,18,24]. Therefore,
we were motivated to conduct a structured retrospective study to assess whether this
pharmacotherapy-induced epiphenomenon may be clinically informative.

2. Materials and Methods

A retrospective study was performed in adult patients treated with sunitinib (n = 179,
overall) between 2008 and 2021 at the Masaryk Memorial Cancer Institute (MMCI) and
selected according to the following inclusion criteria: application of sunitinib as a single
agent in patients not treated with any TK inhibitor for a sufficient “washout” period (at least
6 months, to prevent possible alteration of the MCV baseline). Every sunitinib treatment
period separated by a washout period for one patient was considered independently.
Patients with an insufficient number of blood collections for the evaluation of selected
parameter dynamics and those without sufficient data about the treatment (incomplete
patient history data, patients with treatment interruptions due to various clinical reasons)
were not included in this study. A cohort of pediatric patients treated with sunitinib in an
individual “off-label” regimen at the Department of Pediatric Oncology Hospital Brno for
various types of malignancies between years 2012 and 2019 was selected with the same
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inclusion and exclusion criteria as described for adults. As pediatric patients did not have
standardized treatment protocols, the dosing was mostly adjusted according to the age,
body mass, treatment tolerance, and clinical toxicity. The main goal was also to assess the
dynamics of the MCV as the authors were not aware of any previous report on this topic in
pediatric patients.

In adults, the standard treatment cycle of sunitinib was 50 mg/day in a 6-week course:
4 weeks on, 2 weeks off. Some patients had a dose reduction to 37.5 mg a day or 25 mg a
day, respectively, due to possible drug-related adverse events. Dosage interruptions and
adjustments for toxicity or intolerance were performed according to the manufacturer’s rec-
ommendations. Treatment periods, initial and/or adjusted sunitinib doses, were obtained
from pharmacy reports. In the pediatric cohort, individual dosing regimens were employed
and managed according to body surface area (BSA), age, and treatment tolerance, ranging
from 7 to 32 mg/m2/day.

Collected laboratory data included retrospective results of patients’ complete blood
counts (CBC) with white blood cell differential (WBCD) and basic clinical chemistry tests
and anemia-related chemistry parameters (electrolytes, blood urea nitrogen, creatinine,
liver function tests, vitamin B12, and folic acid) if available. Hematology parameters (CBC,
WBCD) were measured on Sysmex XE 5000 or Sysmex XN 2000 (with verified comparability
of the results between both analyzers), whereas clinical chemistry parameters were assayed
by the Cobas 6000 c501 chemistry and e411/e601 electrochemiluminescence module (folic
acid, vitamin B12). Adverse effects evaluated as treatment-related, and patient treatment
outcomes data were collected from clinical reports of outpatient visits or hospital admission
and discharge reports.

Patient and treatment period characteristics were described using standard summary
statistics, i.e., median and interquartile range (IQR) for continuous variables and frequencies
and proportions for categorical variables. Based on exploratory analysis, MCV time-courses
for individual treatment periods were fitted using a segmented linear regression model
with one breakpoint (Figure 1) [25]. The slope of the regression line in the first segment
represents an MCV increase per week. The sunitinib treatment periods were further divided
into groups depending on whether they were considered sufficient for statistical analysis
of full MCV rise pattern. Treatment periods with at least three MCV measurements and
at least four weeks of ongoing treatment after breakpoint were labeled as a full period
group (n = 144), and the others were labeled as a censored period group (n = 56). The
common regression was provided using a segmented linear mixed regression model with
one breakpoint. All statistical analyses were performed employing the R version 4.1.3 and
a common significance level of 0.05 [26].
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3. Results

The analyzed adult group included 179 retrospectively selected patients. Patient
characteristics are reported in Table 1. A total of evaluated sunitinib treatment periods
were 200, wherein 16 patients (9%) had two or more periods.

Table 1. Patient characteristics.

Characteristic n = 179

Gender
Female 44 (25%)
Male 135 (75%)

Age at treatment start (years)
Median (IQR) 62 (56, 68)

Range 28–81

Diagnosis
metastatic renal cell carcinoma (mRCC) 161 (91%)
gastrointestinal stromal tumor (GIST) 17 (7.3%)

alveolar sarcoma 1 (0.6%)

Included number of treatment periods
1 163 (91%)
2 13 (7.3%)
3 2 (1.1%)
5 1 (0.6%)

Abbreviation: IQR, interquartile range.

The median initial value of the MCV at the start of the treatment period was 85.4 fL.
The median treatment duration was 77.4 and 28.4 weeks in groups of full and censored
periods, respectively. During treatment discontinuation, the patient’s clinical condition was
most frequently progression of the disease (PD) in 146 periods (73%). A total of 116 periods
(59%) were dose-adjusted. Other characteristics of treatment periods are summarized in
Table 2. The time-courses of the MCV in both groups are shown in Figure 2A.

Table 2. Treatment period characteristics and observed parameters of MCV time-courses.

Characteristic
(Median, IQR)

Overall
n = 200

Full
n = 144

Censored
n = 56

MCV (fL)
initial value 85.4 (81.9, 89.2) 85.1 (81.7, 89.0) 86.4 (82.9, 89.3)

breakpoint value NS 99.8 (96.2, 103.0) NS
MCV shift NS 14.4 (11.5, 16.6) NS

MCV increase
per week (fL) 0.65 (0.48, 0.82) 0.67 (0.52, 0.86) 0.58 (0.46, 0.72)

Breakpoint time (weeks) NS 21.6 (18.8, 25.7) NS

Treatment duration (weeks) 60.2 (37.9, 96.4) 77.4 (53.6, 113.8) 28.4 (25.8, 37.3)

Patient clinical condition at the
moment of treatment

discontinuation
PD 146 (73%) 104 (72%) 42 (75%)
SD 42 (21%) 32 (22%) 10 (18%)
PR 12 (6.0%) 8 (5.6%) 4 (7.1%)

Abbreviations: NS, not specified; MCV, mean corpuscular volume; PD, progressive disease; SD, stable disease; PR,
partial response; IQR, interquartile range.
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The median increase of the MCV after the treatment start was 0.67 fL and 0.58 fL per
week in groups of full and censored periods, respectively. In the group of full periods,
a specific pattern of the MCV was observed. After the initial increase of the MCV, the
MCV level was stabilized (plateau) with continuing treatment and declined when the
treatment was ceased. The breakpoint of MCV increase showed a median of 21.6 weeks
(IQR 18.8–25.7). The MCV value in the breakpoint-time had a median of 99.8 fL. The
median MCV shift was 14.4 fL. The common regression model for the full period group
yielded estimates of the initial increase of the MCV as 0.63 fL per week, the breakpoint of
the MCV increase as 20.6 weeks (Figure 2B).

To compare the possible impact of treatment adjustment, full periods where patients
received a single dose of 25 mg (6 periods), 37.5 mg (19 periods) and 50 mg (25 periods),
respectively, without any dose adjustment, were selected. Subsequently, the dose-related
effect was evaluated in the full periods group with a single dose of 25 mg, 37.5 mg and
50 mg, respectively, throughout the whole treatment period. We observed a statistically
significant difference in MCV breakpoint value and MCV increase per week after treatment
start between dose groups (p = 0.006, p = 0.019). However, initial, final and shift values of
MCV were comparable between those groups (Table 3, Figure 2C).
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Table 3. Observed parameters of MCV time-courses and sunitinib dose-related effect in the group of
full periods.

Characteristic
(Median, IQR)

25 mg
n = 6

37.5 mg
n = 19

50 mg
n = 25 p-Value

MCV (fL)
initial value 87.1 (84.3, 92.1) 88.4 (85.5, 90.7) 85.2 (83.0, 89.7) 0.294

breakpoint value 102.0 (99.5, 102.4) 101.7 (97.4, 104.1) 98.7 (95.6, 101.2) 0.210
MCV shift 12.8 (11.6, 13.3) 13.0 (10.5, 15.2) 13.0 (11.1, 15.9) 0.874

MCV increase
per week (fL) 0.43 (0.39, 0.50) 0.55 (0.41, 0.67) 0.67 (0.55, 0.79) 0.019

Breakpoint time
(weeks) 29.1 (24.3, 45.6) 23.0 (21.7, 24.4) 20.1 (16.7, 22.2) 0.006

Treatment
duration (weeks) 92.6 (87.5, 102.1) 66.0 (50.4, 93.9) 60.7 (45.1, 74.3) 0.074

Abbreviations: MCV, mean corpuscular volume; IQR, interquartile range.

The possible prognostic impact of observed MCV changes was evaluated in the
context of toxicity and treatment outcome. Documented treatment of adverse events were
sorted according to their origin to related organ system (cardiovascular, dermatological,
hematotoxicity, etc.). The most common adverse events were gastrointestinal adverse
events (118 periods, 41%) and hematotoxicity (64 periods, 32%). No adverse events were
reported in 42 periods (21%). A statistically significant difference between periods with
any reported adverse event and with no adverse events was observed in MCV increase per
week value (median 0.69 vs. 0.53 fL, p = 0.020) and breakpoint value (21.3 vs. 24.6 weeks,
p = 0.010), suggesting a faster MCV increase rate in those who suffer from treatment-related
adverse events.

With regards to treatment outcome and the possible utility of MCV as an independent
predictor of survival, we divided the group of full periods according to the disease state
during treatment discontinuation from any possible clinical reason. Two groups were
further evaluated—progression of the disease (PD) and stable disease/partial remission
(PR + SD). As expected, no complete remission (CR) in an adult patient was observed. No
statistically significant difference was observed between these two groups (Table 4).

Table 4. Observed parameters of MCV time-courses and relation to patient clinical condition at the
moment of treatment discontinuation in the group of full periods.

Characteristic
(Median, IQR)

PD
n = 103

PR + SD
n = 40 p-Value

MCV (fL)
initial value 85.2 (82.2, 89.3) 85.1 (80.6, 88.4) 0.310

breakpoint value 100.0 (96.2, 103.3) 98.7 (96.3, 102.1) 0.736
MCV shift 14.4 (11.1, 16.5) 14.5 (12.1, 16.7) 0.516

MCV increase
per week (fL) 0.68 (0.52, 0.86) 0.66 (0.53, 0.82) 0.867

Breakpoint time (weeks) 21.9 (18.0, 25.7) 21.5 (20.0, 25.4) 0.641

Treatment duration (weeks) 76.7 (51.8, 108.5) 77.6 (60.5, 118.2) 0.471
Abbreviations: MCV, mean corpuscular volume; PD, progressive disease; SD, stable disease; CR, partial response;
IQR, interquartile range.

The analyzed pediatric group included 21 retrospectively selected patients with vari-
ous clinical conditions (Table 5).
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Table 5. Patient (left) and treatment period (right) characteristics and observed parameters of MCV
time-courses of pediatric cohort.

Patients Treatment Periods

Characteristic n = 21 Characteristic
(Median, IQR) n = 24

Gender MCV (fL)
Female 8 (38%) initial value 80.2 (76.6,85.2)
Male 13 (62%) breakpoint value 92.2 (88.0, 98.0)

Age at treatment start (years) MCV shift 12.4 (8.4, 16.5)

Median (IQR)
Range

7.7 (4.5, 13.3)
4 months–22.9 years

MCV increase per week (fL) 0.69 (0.45, 1.07)

Breakpoint time (weeks) 20.0 (12.5, 23.7)

Diagnosis Treatment duration (weeks) 39.0 (23.25, 57.6)

carcinoma 1 (4.8%) Patient clinical condition at the moment
of treatment discontinuationmesenchymal tumors 5 (24%)

neuroblastoma and primary PD 11 (46%)
CNS tumors 3 (14.3%) SD 5 (21%)

sarcomas 7 (33%) PR 1 (4.2%)
vascular neoplasia 5 (24%) CR 7 (29 %)

Included number of treatment
periods

1 18 (86%)
2 3 (14%)

Abbreviations: MCV, mean corpuscular volume; PD, progressive disease; SD, stable disease; PR, partial response;
CR, complete response; IQR, interquartile range.

The median initial value of the MCV at the start of the treatment period was 80.2 fL. The
median treatment duration was 39.0 weeks. During treatment discontinuation, a patient’s
clinical condition was most frequently progression of the disease (PD) in 11 periods (46%).
More patients with SD and CR were observed compared to adult patients, but these patients
often received concomitant conventional chemotherapy in various treatment protocols.
Other characteristics of treatment periods are summarized in Table 5. The time-courses of
the MCV in both groups are shown in Figure 3.
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The median increase of the MCV after the treatment start was 0.69 fL per week.
Statistical modeling of MCV time-courses yielded a similar pattern of the MCV as observed
in the adult group. The breakpoint of MCV increase showed a median of 20 weeks (IQR
12.5–23.7) similar to that of the adult group. The median of MCV shift was 12.4 fL.
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4. Discussion

Macrocytosis results from either abnormal development of a cell or its membrane
composition or increased reticulocyte count. These events may be present coincidentally.
Initial observations published by Gillessen and Billemont [19,27] and supported by another
case report by Reed et al. [20] suggested a connection between absolute or relative vitamin
B12 deficiency and sunitinib-related macrocytosis. However, these observations were
performed on a limited number of patients.

Our results showed that significant elevation of the MCV can be observed in the
vast majority of patients receiving sunitinib for a period of at least four cycles, which is
in concordance with studies by Price et al. [23], Kloth et al. [17], and Bourlon et al. [22].
Vitamin B12 and/or folic acid deficiency was not observed in most cases in our patients
who had results of these parameters available during sunitinib treatment (data not shown).
Therefore, we incline to the alternative explanation proposed by Schallier et al. [18] and
Galanis et al., [24] that this effect is more likely mediated by sunitinib inhibitory activity on c-
KIT signaling that is an important molecular event in hematopoiesis. This is also consistent
with available white blood cell differential morphology results in our adult patient cohort
during sunitinib treatment not showing any specific abnormalities associated with severe
vitamin B12 and/or folic acid deficiency or with severe myelodysplasia (hypersegmentation
of neutrophil, Howell-Jolly bodies etc., hyposegmentation of neutrophils). However, more
prospective studies need to be conducted to clarify the underlying pathophysiology of
this phenomenon that would include regular vitamin B12, folic acid, and iron metabolism
parameters together with evaluation of blood smear microscopy for possible abnormalities
in blood cell morphology. Concurrent analysis of both TK inhibitors that target c-KIT
(e.g., axitinib, pazopanib also used in the treatment of RCC) and those that do not provide
clinically relevant data.

Our observations on MCV dynamics in patients treated with sunitinib are also con-
sistent with those by Kloth et al. [17] in a similar number of subjects (179 vs. 213). We
calculated regression models of MCV dynamics in our cohort as we assumed that the MCV
might have been a valuable parameter for therapeutic monitoring using a surrogate marker.
In studies by Kloth et al. and Bourlon et al., a statistically significant positive correlation was
shown between macrocytosis and progression-free survival time, the latter further showing
that patients with treatment-related hypothyroidism have more favorable outcomes than
those with normal thyroid functions [17,22]. A more recent study by Kucharz et al. [28]
observed longer progression-free survival in those subjects who reached a MCV >100 fL
after three cycles, an observation that we did not find (data not presented). Taken together,
we did not observe a statistically significant relation between observed MCV parameters
and treatment outcomes.

Regarding treatment toxicity, we observed a very similar array of adverse events
to those published in the literature and safety product sheet, with gastrointestinal and
hematotoxicity being the most common [29,30]. Interestingly, the MCV increase rate was
higher in those subjects suffering from any adverse events than in those that did not have
any adverse events reported. Novel approaches emerge in the treatment of RCC including
immune therapy or sequential therapies that phase out TK inhibitor monotherapy in
RCC patients. It follows that new surrogate biomarkers may be of help in identifying
agent-specific toxicities in combination, i.e., sunitinib-containing therapies.

Studies on the pediatric population treated with sunitinib yielded limited results
mostly due to the complexity of the treatment context, a limited number of patients, and
ethical concerns as well [9–11]. Despite that, we were able to collect limited but relevant
data demonstrating that the pharmacological mechanism behind this epiphenomenon may
not differ between adult and pediatric populations. Of note, sunitinib-induced elevation of
the MCV was apparently not affected by concomitant anti-cancer polychemotherapy in
pediatric patients.

Our study has the following limitations. This was a retrospective study on a limited
number of patients. We did not specifically address the pathophysiology of B12/folate-
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dependent red blood cell morphology as we did not have retrospective specimens available.
The pediatric part of the study had even fewer patients included; therefore, fewer observa-
tions were available. Due to the retrospective nature of this study, the respective specimen
sampling was not fully standardized with respect to sampling times, adverse events, or
clinical toxicity evaluations.

5. Conclusions

We describe a phenomenon of MCV elevations occurring in the course of treatment
with a multitargeted tyrosine kinase inhibitor sunitinib. This is an apparent drug-related
epiphenomenon where the underlying pharmacological mechanism may go through c-KIT
signaling pathway inhibition. We present a regression model of this phenomenon for
standard dosing that may serve as an additional but perhaps valuable surrogate marker
for therapeutic drug monitoring and treatment adherence indicator for pediatric and adult
patients. Adult patients that develop any adverse events appear to have a faster MCV
increase rate than those reporting no adverse event, hence, suggesting its possible clinical
utility as an indicator of therapeutic toxicity.
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