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Twisted complex superfluids in 
optical lattices
Ole Jürgensen, Klaus Sengstock & Dirk-Sören Lühmann

We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a 
complex order parameter. This unconventional superfluid phase spontaneously breaks the time-
reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent 
lattice sites. We discuss the entire phase diagram of the extended Bose—Hubbard model for a 
honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, 
pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-
neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and 
give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two 
components, we find twisted superfluid phases with strong correlations between the species already 
for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite 
degeneracy ranging continuously from a supersolid to a twisted superfluid.

The time-reversal symmetry of the Schrödinger equation allows us to describe superfluid ground states 
with real wave functions in accordance with Feynman’s no-node theorem1. This principle holds unless 
the Hamiltonian breaks this symmetry either explicitly or spontaneously, which is typically the case for 
higher orbitals or spin-orbit coupling2. Recently, experiments with binary mixtures of ultracold bosonic 
atoms in a honeycomb optical lattice have observed a multi-orbital superfluid3. Most strikingly, 
time-of-flight measurements have revealed a complex superfluid order parameter. The complex phase 
angle of the superfluid order parameter twists between neighboring lattice sites without accumulating a 
total flux. Furthermore, a phase transition between a normal and this so-called twisted superfluid was 
observed. The origin of this unconventional superfluid phase lacks a conclusive theoretical understand-
ing. In fact, previous theoretical studies4,5 have found no indication for a transition to the twisted super-
fluid phase. Here, we show that correlated pair tunneling can drive the quantum phase transition to the 
twisted superfluid ground state. This quantum phase is remarkable in several ways. It spontaneously 
breaks the time-reversal symmetry, combines off-diagonal long-range order with diagonal short-range 
order and is crucially based on beyond-mean-field correlations. Interestingly, the twisted multi-orbital 
superfluid has a strong connection to mechanisms discussed for superconducting materials. Two-orbital 
order parameters have also been experimentally observed6–9 in high-temperature superconductors and 
play a central role for the understanding of this phenomenon. A spontaneous time-reversal symmetry 
breaking associated with complex order parameters has been observed in the pseudo-gap phase of the 
high-temperature superconductor Bi-2212 with ARPES8, as well as in Sr RuO2 4 using a muon spin relax-
ation measurement10 and UPt3 via the polar Kerr effect11–13. In this respect, the twisted superfluidity 
interlinks many-body quantum gas systems with superconducting materials.

The Hubbard model is a primary description for strongly correlated electrons in lattices. It accounts 
for the single-particle tunneling between neighboring sites with amplitude J and the interaction U of 
a pair of particles on the same lattice site. Its counterpart for bosonic particles is the Bose—Hubbard 
model. For weak interactions the ground state is a superfluid phase (SF), whereas for strong interac-
tions a localization of the particles is favored forming the Mott insulator phase (MI)14–16. Theoretically, 
extended Bose—Hubbard models with off-site interactions17 have been studied predicting pair superfluid 
phases18–25 , charge-density-wave insulators19,26–36 and supersolid phases19,28–33,35–40. The latter two phases 
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exhibit a density modulation with respect to neighboring lattice sites and break the inversion symmetry 
of the lattice Hamiltonian spontaneously in the thermodynamic limit26,27.

We study an extended Bose—Hubbard model with nearest-neighbor interaction and pair tunneling 
on a honeycomb lattice using cluster-Gutzwiller theory. This method takes into account short-range 
correlations exactly and simultaneously describes the thermodynamic limit of infinite two-dimensional 
lattices. The extended Hubbard processes give rise to several novel correlated quantum phases. First, 
we discuss the driving mechanism behind the twisted superfluid phase and the spontaneous breaking 
of the time-reversal symmetry. Second, we show how nearest-neighbor interaction supports dimerized 
density waves, where the particles are delocalized on dimers and the translational symmetry is broken. 
This insulator is surrounded by a dimerized supersolid exhibiting the same density modulation. Third, 
we extend our study to a quantum gas mixture of two spin components. Remarkably, the two-species 
twisted superfluidity persists even at small pair-tunneling amplitudes allowing its experimental realiza-
tion with ultracold atoms3. The twisted superfluid is characterized by strong correlations between the two 
components and exhibits an infinite ground-state degeneracy.

Results
We study the extended Bose—Hubbard model with two additional processes arising from the interaction 
of particles on adjacent sites known as nearest-neighboring interaction V  and (correlated) pair tunneling 
P (see Fig. 1a). As in the experimental realization3, we consider a honeycomb lattice geometry. First, we 
restrict our calculations to bosonic particles with a frozen spin degree of freedom. For a single compo-
nent, the Hamiltonian of the extended Bose—Hubbard model reads
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where the operators aiˆ  (aiˆ †) annihilate (create) a particle on site i and n a ai i i=ˆ ˆ ˆ† . The brackets 〈 i,j〉  indicate 
pairs of nearest neighbors i and j. The first part of the Hamiltonian is the standard Bose—Hubbard model 
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Figure 1. Phase diagram of the single-component extended Bose—Hubbard model. (a) Schematics for 
the processes in the extended Bose—Hubbard model. (b) Critical value of J/U for the transition to the 
superfluid (or supersolid) phase as a function of the effective chemical potential Ueffμ /  and the off-site 
interaction amplitudes P/U =  V/U of pair tunneling and nearest-neighbor interaction. The three-dimensional 
phase diagram is obtained using a two-site cluster. The colors indicate the distinct quantum phases. Insulator 
phases with integer site occupancy are the Mott insulator (MI, dark green), (c) the charge-density-wave 
insulator (CDW, light green), and (d) the maximally-imbalanced CDW insulator (CDW2, gray). The phases 
(e-h) have a non-vanishing superfluid order parameter (indicated by a blur). (e) The twisted superfluid (TSF, 
yellow) is characterized by a complex order parameter aiˆ , where the arrows indicate the complex phase 
angle aarg iˆ . (f) The twisted supersolid (TSS, orange) phase has an additional density wave. (g) Supersolids 
(SS) combine a real order parameter with a density wave (not shown in (b)). (h) Dimerized supersolids 
(DSS) are characterized by a long-range density wave with no density gradient within unit cells. (i) At 
quarter integer filling, dimerized density-wave insulators (DDW, blue) appear where particles are delocalized 
on two sites. (j) In addition, dimerized insulators with other fractional fillings such as 5/18 are possible. For 
large values of P and μ, pair superfluids (PSF, red) and pair supersolids (PSS, brown) can be found.
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with on-site interaction energy U, tunneling amplitude J and chemical potential μ. The second part 
describes off-site interaction processes V and P giving rise to the exceedingly rich quantum phase dia-
gram shown in Fig. 1b. For neutral ultracold atoms, it is valid to assume a contact interaction potential. 
As a consequence, the amplitudes of the nearest-neighbor interactions V and the pair tunneling P are 
equal.

The phase-diagram in Fig. 1b is obtained by means of a cluster-mean field theory. Within each cluster 
quantum-mechanical correlations are treated exactly whereas the boundary is coupled self-consistently 
to the mean field. Unlike in the standard Hubbard model, the respective factorization of the Hamiltonian 
(1) leads to three distinct mean fields, namely aiˆ , niˆ  and a ai iˆ ˆ  (see Methods). The increased complex-
ity limits the numerical treatment to clusters of up to four sites. The phase diagram Fig. 1b covers the 
whole three-dimensional parameter space of the Hamiltonian (1) for P =  V. For small ratios J/U insulator 
phases dominate the phase diagram except for the pair superfluid (PSF)18–25 and pair supersolid 
(PSS)19,20,23,24 where the order parameter aiˆ  vanishes but the pair order parameter a ai iˆ ˆ  takes a finite 
value.

Twisted complex superfluidity. The most striking feature is the appearance of the twisted superfluid 
phase (TSF). As illustrated in Fig.  1e, this unconventional superfluid is characterized by a twist of the 
complex phase angle of the superfluid order parameter between neighboring sites, whereas the density 
niˆ  is homogeneous. Expressing the local order parameter as a ei i

i iφ= θˆ , the difference of the complex 
phase angle of adjacent sites is θ =  θi − θj. The ground state breaks the time-reversal symmetry and is 
two-fold degenerate with a twisting of either θ or θ− . The two degenerate many-particle states {ψ,Tψ} 
are connected by the time-reversal symmetry operation Tψ =  ψ*. In Ref  3, the complex superfluid 
ground state has been observed experimentally. It has been linked to the emergence of a two-mode 
superfluid order parameter on the basis of a simple variational mean-field model. Previous theoretical 
studies have found only real-valued superfluid ground states4,5. These approaches either discard correla-
tions4 or are restricted to finite-size systems and the standard Bose—Hubbard model5. In a recent work 
on a double well using a mean-field model a complex ground state has been found for large pair-tunneling 
amplitudes25. Our theoretical framework allows a correlated treatment of a lattice in the thermodynamic 
limit incorporating beyond-Hubbard processes and offers a conclusive understanding of the twisted 
superfluid quantum phase.

At first glance, the complex order-parameter and the time-reversal symmetry breaking seem to 
stand in contradiction to Feynman’s no-node theorem1,2, which we resolve in the following. For real 
Hamiltonians, the no-node theorem implies a positive real and therefore non-degenerate ground state. 
However, the energy difference between the lowest-energetic states can become arbitrarily small with 
increasing system size. It has been shown that the energy gap between the lowest two states vanishes in 
the thermodynamic limit for the charge density wave27 as well as for a highly occupied double well25. In 
the first case, the superposition of two opposite density waves represents the ground state in finite sys-
tems but a small perturbation breaks the inversion symmetry in favor of one density wave. In the second 
case, the time-reversal symmetry becomes unstable against perturbations for a large number of particles. 
The mean-field approach reproduces the thermodynamic limit and tends to break both symmetries via 
the incoherent mean-field coupling at the boundary of the cluster. For real macroscopic systems, such 
incoherences are introduced by several mechanisms such as system-bath coupling with the surrounding, 
thermodynamic excitations, fragmentation, infinite relaxation times and dissipation in open systems.

The driving mechanism of the twisted superfluid phase is the correlated pair tunneling P competing 
with the single-particle tunneling J. The competition becomes apparent when introducing simple varia-
tional mean-field expressions. Replacing all operators aiˆ  with complex numbers ei

i iφ θ  (see Methods), we 
can approximate both contributions as
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with θ =  θi − θj. For small amplitudes of the pair tunneling P, the first term dominates and minimizing 
the energy yields θ =  0. The pair tunneling energy on the other hand is minimized for θ =  ± π /2. Due to 
the different functional dependence on θ, the system undergoes a phase transition from θ =  0 to a finite 
value 0θ >  at a critical ratio P/J. In a more qualitative picture, we have to include correlations that are 
strong near the insulating phases, i.e. niˆ  and a ai iˆ ˆ  may differ strongly from the variational mean-field 
expressions i

2φ  and ei
2 2i iφ θ , respectively. This is accounted for in the applied cluster Gutzwiller approach 

treating the cluster sites in a full many-particle description. Additionally, the off-site interaction V creates 
a competition between the phase twist and density modulations. The interplay of insulators, density 
waves and complex twisting of the order parameter is vital to the phase diagram in Fig. 1b. As a result, 
a multitude of quantum phase transitions appear which we discuss in the following.

Figure 2a shows a cut through the phase diagram for P =  V =  0.15 U, which depicts also the supersolid 
phase (SS) omitted in Fig. 1b. The supersolid has a non-vanishing superfluid order parameter combined 
with a density wave representing diagonal order19,28–33,35–40 (Fig.  1g). The respective expectation values 
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for aiˆ  and ∆ = −ˆ ˆn n ni j  are shown for J =  0.12 in Fig. 2e. In the thermodynamic limit, the super-
solid phase breaks the inversion symmetry P and has a two-fold degenerate ground state { P }ψ ψ, , where 
the operation P interchanges the two hexagonal sublattices A and B.

The transition between the supersolid and the twisted superfluid occurs via a twisted supersolid (TSS) 
which combines the properties of both phases. In the twisted supersolid both the density wave and the 
complex twisting θ ≠ 0 of the order parameter occur (Fig. 1f). Both inversion and time-reversal symme-
try are broken and the ground state is four-fold degenerate { P T PT }ψ ψ ψ ψ, , , . The superfluid order 
parameter, density wave and phase twist θ have a kink at the SS-TSS as well as at the TSS-TSF transition 
(Fig. 2e). In the TSS phase the phase twist θ increases rapidly towards  ±  π /2 with increasing μeff, whereas 
the density modulation drops to zero when entering the TSF phase. This means that the complex phase 
of the order parameter suppresses the density wave reflecting the interplay between nearest-neighbor 
interaction V and pair tunneling P. The energy derivative H μ−∂ /∂ˆ  has no discontinuities but kinks at 
transitions between SF and SS phases marking all phase transitions as second (or higher) order. For the 
transition from the TSS to the SS, we can evaluate the energy gap ∆ between the ground state and the 
real-valued SS state. At the phase boundary, we find the critical behavior c

zμ μ∆ ∝ − ν, J J c
z− ν and 

P Pc
z− ν with a critical exponent zv =  1.96 ±  0.10. We observe that the TSS phase boundary expands 

when increasing the cluster size of the calculation (Fig. 2a) indicating that finite-size scaling41 would lead 
to an even larger region where the superfluid order parameter is complex valued. Note that Fig. 1b is a 
zero-temperature phase diagram. We expect the energetically lowest excitation within the twisted super-
fluid phase to be a disturbance of the phase angle, which would be associated with an energy on the order 
of the pair tunneling P.

Dimerized density-wave insulators. For small J/U several insulator phases can be found with a 
vanishing order parameter â  (Figs 1 and 2). For V =  P =  0, we find the usual Mott insulators (MI)14–16 
with integer filling n 1 2 3i = , ,ˆ  on A and B sites. For increasing off-site interaction, charge-density-wave 

Figure 2. Phase boundaries and order parameters. (a) Cut through the phase diagram Fig. 1b showing the 
plane with P =  V = 0.15 U (see Fig. 1b for abbreviations). The markers indicate the critical point for the SS-
TSS phase transition obtained for cluster sizes 1 (triangle), 2 (circle) and 4 (square). (b–d) Details of the 
phase-diagram showing dimerized density-wave phases (DDW) with fillings 1/4, 3/4 and 5/4 as well as 
supersolids with long periodicity (DSS). (e) Averaged superfluid order parameter â  (black), its complex 
phase angle θ (yellow), density wave |∆n| (blue), and the energy derivative (red) shown across various phase 
transitions for J/U =  0.12, where γ is the ground-state degeneracy.
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insulators (CDW)19,26–36 with half-integer filling per lattice site appear in between the Mott lobes. These 
incompressible phases are characterized by an alternating filling n and n +  1 on A and B sites (Fig. 1c). 
Like in the supersolid phases, the inversion symmetry of the lattice is spontaneously broken in the ther-
modynamic limit. Responsible for this is the nearest-neighbor interaction V which is reduced for an 
alternating filling. The charge-density wave phases are also referred to as Mott solids, alternating Mott 
insulators, and for square lattices as checkerboard insulators.

Remarkably, in between charge-density waves and Mott insulators, we also find fractional insulator 
phases with quarter-integer filling indicated in blue in Figs  1 and 2. These dimerized density waves 
(DDW) combine a density wave and a vanishing superfluid order parameter with a spatial delocalization 
of particles on dimers of the lattice. Similar phases have been discussed only for lattices with non-symmetric 
tunneling and are referred to as “loophole” or fractional insulators 42–46 or in the context of honeycomb 
lattices as dimerized Mott insulators47. For translational-symmetric lattices this kind of dimerization is 
entirely unexpected. We find that for non-zero nearest-neighbor interaction V dimerized phases with 
quarter-integer filling can emerge from the spontaneous breaking of the translational symmetry. For a 
filling of 1/4, a long-range density wave emerges with a delocalized particle on two sites alternating with 
two empty sites (illustrated in Fig. 1i). On these four sites, the respective many-particle state can be 
written approximately as 0 1 0 0 1 0 0 0 2( , , , + , , , )/ . Due to six possible configurations on the 
honeycomb lattice, this state is six-fold degenerate. Like the CDW, the dimerized density-wave minimizes 
the V energy but also allows the particles gaining energy from the single-particle tunneling J. The 
first-order energy E JDDW1 4

μ= − −
/

 per unit cell can fall below the energy of the CDW E 2CDW10
μ= − .

The close-ups of the DDW phases for filling 1/4, 3/4 and 5/4 in Fig. 2b-d reveal the typical droplet 
shape that is also present for non-symmetric lattices42–47 as well as a direct insulator-insulator transi-
tion in Fig.  2b. We also find this kind of dimerization in the supersolid state. Close to the dimerized 
density-wave with filling 1/4 and 3/4, a phase emerges with a non-vanishing superfluid order parameter 
and equal densities on neighboring dimer sites but a long-range density wave (Fig. 2b,c). It is denoted as 
dimerized supersolid (DSS) and illustrated in Fig. 1h.

In the dimerized density-wave, neighboring sites are strongly correlated and thus single-site mean-field 
approaches are unable to find this quantum phase. Due to the cluster size for this calculation, filling at 
multiples of 1/4 are expected, but depending on the lattice geometry, different fillings might be possible 
and energetically favorable depending on the chemical potential. For example, the structure shown in 
Fig. 1j has the same energy per particle as the DDW1/4 state but with a larger filling 5/18 indicating that 
fragmentation into larger unit cells might be possible.

Before turning to two-component systems, we briefly discuss other phases appearing in Figs 1 and 2 
that are already discussed in the literature. At a critical value V =  U/6 it becomes energetically favorable 
to gather all particles on one sublattice, while for smaller values of V the population imbalance between 
the sites is minimized34. As a result, both Mott and CDW insulators undergo the transition to a 
maximally-imbalanced charge-density wave (CDW2). For large values of V, the dimerized density waves 
(with filling  ≥ 3/4) have a smooth crossover to a long-range density-wave with maximal imbalance 
between neighboring sites, i.e. n n0 1 0, , − , . For sufficiently large values of μeff the insulators develop 
a finite pair superfluidity a2ˆ  driven by the pair tunneling P. Fig. 1b shows that pair superfluids (PSF)18–25 
extend from the Mott insulator phases, whereas CDW insulators are attached to pair supersolids 
(PSS)19,20,23,24 characterized by both a density wave and pair superfluidity.

Twisted superfluidity for two components. In the following, we discuss the quantum phases 
described above for a system with two distinguishable bosonic species. This introduces a new degree of 
complexity and has a dramatic impact on the phase diagram. The two bosonic components, denoted as 
↑ and ↓, can e.g. be realized as atoms in two different hyperfine states. For simplicity, we assume symmet-
ric intra- and interspecies interactions as well as an inversion-symmetric honeycomb lattice. Note that 
in the experiment3 the honeycomb lattice is strongly spin-dependent with a site-offset between the sub-
lattices. Furthermore, we assume a balanced population of both species, i.e n ni i i i∑ = ∑↑ ↓ˆ ˆ . The 
two-component Hamiltonian is given by

H H H U n n H
3i

i i
nn

∑= + + + ,
( )↑ ↓ ↑ ↓ ↑↓

ˆ ˆ ˆ ˆ ˆ ˆ

where H ↑ˆ  and H ↓ˆ  are the intraspecies Hamiltonians (1). The nearest-neighbor interspecies interaction 
reads

H Vn n Pa a a a Ca a a a
4i j

i j i i j j i j i j
nn
∑= + +

( )
↑↓

,
↑ ↓ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †

and accounts for the nearest-neighbor interaction V, the tunneling of a ↑, ↓-pair with amplitude P and 
the cross tunneling (or counter hopping) C, which interchanges a ↑- and a ↓-particle on neighboring sites. 
For spin-independent contact interaction, the amplitudes V =  P =  C are equal to the corresponding 
intraspecies interactions. The complexity of the two-component Hamiltonian is reflected by eight 
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independent mean-field parameters that are needed for the description (see Methods). In addition, the 
number of the many-particle states in the cluster increases drastically by incorporating the tensor basis 
of the two components limiting the cluster size to maximally two sites.

The phase diagram for the binary bosonic mixture is shown in Fig. 3 and differs strongly from the 
single-component case. Surprisingly, the twisted superfluid phase (TSF) appears already for small values 
of the chemical potential and, most notably, for small amplitudes of the pair tunneling. For P =  0.05 U, 
the TSF phases form stripes in the phase diagram emerging from the charge density waves (CDW) 
(Fig.  3b) and are separated by supersolid phases (SS). For a smaller amplitude P =  0.02 U the stripes 
overlap as shown in Fig. 3a. We observe that the slope of the SF-TSF phase boundary is roughly propor-
tional to P. To first order, this corresponds to a constant ratio P J P n J n2/ ≈ /ˆ ˆ ˆ ˆ  leading to J n P∝ ˆ .

The twisted superfluid phase for two components is characterized by anti-aligned twisted complex 
order parameters with 0θ θ+ =↑ ↓  as illustrated in Fig. 4a,b. The state is spontaneously symmetry-broken 
and forms degenerate pairs with θ θ θ= − = ±↑ ↓ . This implies that the two components are in a 
strongly correlated state with respect to each other. The phase correlation is established by the cross 
tunneling process (equation (4)). Using the simple mean-field approach (2), the cross-tunneling energy 
is approximated by C2 cosi j i j ( )φ φ φ φ θ θ−↑ ↓ ↓ ↑ ↑ ↓ , which becomes minimal for 2θ θ π= − = /↑ ↓ . The 
actual values of θ↑ and θ− ↓ are determined by all contributions in (3) and (4). The cross tunneling energy 
for a correlated state C a a a ai j i j↑ ↓ ↓ ↑ˆ ˆ ˆ ˆ† †  can be large even in the vicinity of the Mott phases. In the pure 
mean-field approach of Ref. 4, it is pointed out that this beyond-mean-field effect could possibly yield a 
twisted superfluid phase. Our results show that the cross tunneling process is indeed mainly responsible 
for the emergence of the TSF phase at small amplitudes P. At the same time so-called spin-density waves 
may appear, which represent anti-aligned single-component density waves with n n∆ = −∆↑ ↓ such that 
the total density is homogeneous n n 0∆ + ∆ =↑ ↓ .

The experimental observation of the density wave requires imaging with single-site resolution, 
whereas the complex twisting of the order parameter can be revealed in momentum space. Time-of-flight 
experiments with ultracold atoms allow the mapping on free momenta after a sudden release of the 
atomic trapping potential. For the individual spin components (we omit the spin index), the momentum 

Figure 3. Phase diagrams of the extended two-component Bose—Hubbard model. The results are 
obtained for (a) P =  0.02 U and (b) P =  0.05 U with P =  V =  C using a single-site cluster. The close-ups below 
for (c) P =  0.02 U and (d) P =  0.05 U are computed with a two-site cluster. This allows identifying dimerized 
density waves (DDW) and dimerized supersolids (DSS). e Order parameters and degeneracy γ for J =  0.1 U 
and P =  0.05 U. In the continuously degenerate phases the expectation values correspond to the solution with 
θ =  θmax.
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density is proportional to the structure factor48 S a ak eij i j
ik r ri j( ) = ∑ ( − ) ˆ ˆ† , which gives six equivalent 

first-order momentum peaks S0 at reciprocal lattice vectors for a superfluid (θ =  0). In the twisted super-
fluid, this symmetry is broken and adjacent peaks have either amplitude S+ or S−. Fig. 4c,d depict calcu-
lated time-of-flight images yielding alternating patterns in momentum space. The two amplitudes are 
given by θ θ π( ) = + ( ± / )σ σ σ±S S A2 [1 cos 3 ]0  for σ  either ↑ or ↓. For two components, the orientation 
of the stronger peaks are opposite for both components due to θ θ( ) = ( )± ↑ ↓

S S . This behavior was also 
observed experimentally3. An additional spin-density wave n∆ σ modifies the strengths of the peaks via 
with Aσ, whereas A 1=σ  for a homogeneous density (see Methods).

Infinite degeneracy and quantum phase transitions. In contrast to the two-fold degeneracy for 
a single species, we find that the TSF ground state for two components has an infinite degeneracy in 
respect to the continuous parameter θ. More precisely, all states with max maxθ θ θ− ≤ ≤  have the same 
energy, where θ can take a continuous value and θmax depends on the point in the phase diagram. As 
depicted in Fig. 4e, the spin-density wave n n∆ = −∆↑ ↓ and the complex twisting θ are correlated. This 
corresponds to a redistribution of the energy between the spin-density wave and the complex twisting 
of the superfluid order parameter. For θ θ= ± max the spin-density wave vanishes, whereas the 
spin-density wave n∆ σ  is maximal for θ =  0. These two extrema correspond to a “pure” twisted super-
fluid with n 0∆ =σ  and a real, anti-aligned supersolid in each component for θ =  0, respectively. The 
latter implies that two of the solutions are real wave functions obeying time-reversal symmetry. The 
origin of the continuous symmetry lies within an equal redistribution of the energy between the different 
interaction processes and persists only if all amplitudes V, P and C are equal, which holds for equivalent 
atomic species with SU(2) symmetric interactions. We observe this degeneracy for all studied cluster 
sizes. However, it might be lifted by including higher bands of the lattice leading to a renormalization of 
the amplitudes above49. At the touching points of TSF phases and CDW insulators, we observe a complex 
order parameter in combination with a total density wave n n 0∆ + ∆ ≠↑ ↓ , i.e. a twisted supersolid 
(TSS). In analogy to the TSF phase, its ground state is continuously symmetry broken. We cannot exclude 
the possibility of a thin twisted supersolid layer at the boundary between supersolid and TSF phase.

Similarly, we find also an infinite degeneracy of the ground state for the MI and CDW insulator phases 
for symmetric intra- and interspecies interaction. For instance, the Mott insulator with filling n n 1i i+ =↑ ↓ˆ ˆ  
on two neighboring sites i and j can be written in first order as ( | ↑ 〉 + | ↓ 〉 ) ⊗ ( | ↑ 〉 − | ↓ 〉 )c c c ci i j j1 2 2 1  
with an arbitrary constant c1 and c c 11

2
2

2+ = . Here, the intra- and interspecies interaction energy of 
nearest-neighbor sites V and the cross tunneling energy C are redistributed yielding the same total energy. 
Since the cross-tunneling order parameter a ai i↑ ↓ˆ ˆ†  does not vanish, the two-species Mott insulator is 
sometimes referred to as a counterflow superfluid 18,20,50–53.

Figure 4. Experimental signature of twisted superfluidity. For two components, denoted as ↑ and ↓, the 
twisted superfluid phase is characterized by an anti-correlation of phase twist and density wave. (a) The 
arrows illustrate a complex phase angle θ θ=↑  for the ↑-component. (b) The ↓-component has the opposite 
twist θ θ= −↓ . The density waves oppose each other forming a spin-density wave with a homogeneous total 
density. (c,d) Illustration of time-of-flight images allowing the experimental observation of the twisted 
superfluid phase. The images correspond to the individual spin components of (a,b), respectively. The 
alternating intensities of the first-order coherence peaks interchange between the species due to θ θ= −↓ ↑. 
Here we chose 8θ π≈ /  and =σA 1, whereas at θ = π/3 the weaker peaks disappear entirely. (e) The relation 
between phase twist θ and spin-density wave for the infinitely degenerate ground state in the TSF phase. The 
markers correspond to 200 individual solutions of the self-consistent cluster mean-field algorithm with 
different random initial states.
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As shown in Fig. 3e, the transitions between SS and TSF phases are first order quantum phase tran-
sitions with discontinuities in H μ∂ /∂ˆ . At the transition point the total density wave n n∆ + ∆↑ ↓ and 
the superfluid order parameter are discontinuous. The structure of the ground state changes across the 
transition from a two-fold to infinite degeneracy. Also the transition between superfluid and Mott insu-
lator are of first order18,53 characterized by a discontinuity of the superfluid order parameter as well as by 
the different degeneracies.

The close-up of the phase diagram shown in Fig. 3d reveals the appearance of dimerized density waves 
(DDW) for two components. These phases with quarter-integer filling arise between Mott and CDW 
insulators as discussed above for a single component. Due to the strong correlations between neighbor-
ing sites, this quantum phase is only found in calculations using clusters with at least two sites. Similar 
as the Mott insulator phase, the DDW has an infinite degeneracy. Attached to this phase, we also find a 
dimerized supersolid (DSS) in analogy to the single-component phase diagram.

Discussion
The appearance of the twisted superfluid phase at small values of the pair tunneling amplitude for a 
bosonic mixture is quite remarkable. For the honeycomb lattice a pair tunneling amplitude of P/U =  0.05 
and 0.01 correspond to a lattice depth V0 =  1ER to 3.5ER, respectively54. The ratio J/U depends on the 
scattering length a s, where we find J/U =  0.14 for V0 =  3.5ER and a a360s 0= . However, the ratios P/J and 
C/J can also be tuned experimentally using lattice shaking techniques55. The presented results shed light 
on the formation of twisted superfluidity recently found experimentally3. We are able to draw a consistent 
picture of the time-reversal symmetry breaking and the interplay with the insulating phases. The strik-
ingly complex phase diagram is a manifestation of the multilayered interplay between different extended 
Hubbard processes on the one hand and nearest-neighbor correlations on the other hand. In the exper-
imental realization3, where the scattering length is about a a100s 0= , the lattice potential depends on the 
atomic hyperfine states causing an energy offset between the sublattices. In future studies, the effect of 
the spin-dependent offset on the phase diagram can be evaluated.

Spontaneous breaking of the translational symmetry allows for dimerized density waves with 
quarter-integer filling. The nature of this fractional insulator is reflected in a strongly correlated super-
position state on dimers of the lattice, which is linked to resonating valance bond coupling in solids. 
The same mechanism leads to dimerized supersolid phases. We have not found any indication for phase 
separation in the honeycomb lattice similar as Refs 30,31.

It would be interesting to study in detail the infinite degeneracy for the two-component TSF and TSS 
ground states. This degeneracy should be experimentally observable for a spin-independent lattice and 
SU(N) symmetric interactions. For the hyperfine states of rubidiums atoms3, the SU(N) symmetry is 
broken causing slightly different intra- and interspecies scattering lengths. This also breaks the continu-
ous ground-state degeneracy of the TSF phase and locks the value of θ and the density wave. However, 
the two-fold degeneracy connected with the time-reversal symmetry breaking persists.

For the sake of simplicity and to avoid an even larger parameter space, the Hamiltonians (1) and (3) 
are not complete with respect to nearest-neighbor interaction processes. They neglect a term of the form 
( )+ˆ ˆ ˆ ˆ†a n n ai i j j known as density-induced tunneling. For ultracold neutral atoms, its amplitude is com-

parably large. However, it has been shown that it may be absorbed in the single-particle tunneling J in 
most situations17,36,49. Thus, we mainly expect a shift of the phase boundaries due to this combined 
occupation-dependent tunneling. Moreover, the next-nearest-neighbor tunneling has a considerable 
amplitude in shallow lattices54. Since its sign corresponds to antiferromagnetic coupling, it may even 
stabilize the twisted superfluid phase. Long-range interactions, such as dipolar interaction17, offer further 
perspectives for studying off-site interactions.

The twisted superfluid itself presents a highly exotic state of matter as it combines the off-diagonal 
long-range order of a superfluid state with a correlated short-range ordering. For two components, cor-
relations between the species are essential and manifest themselves in spin-density waves and an oppo-
site complex twisting of the superfluid order parameter. As previously mentioned the connection to 
time-reversal symmetry breaking in the context of superconductors8,10–13 is of high interest. Quantum 
gas experiments may contribute by offering highly tunable systems and a different experimental platform 
for studying correlated quantum phases in lattices.

Methods
Cluster mean-field method and order parameters. For the computation of the phase diagram, we 
apply the cluster Gutzwiller method. It is based on factorizing the many-body wave function |ψ〉 |Ψ c〉  in 
two parts describing particles inside | ψ c〉 and outside the cluster |ψ〉 . Accordingly, the Hamiltonian 
decomposes in H M H H NNM cluster boundary( )ψ ψ= +ˆ ˆ ˆ  in the basis of many-particle cluster states 
|N〉 . The knowledge of the (factorized) solution for |ψ〉  allows obtaining the correlated cluster wave 
function | Ψ 〉 = ∑ 〉c NN Nc  by means of diagonalization. Fortunately, tight-binding Hamiltonians reduce 
the information required from the wave function |ψ〉  outside the cluster, since H boundary

ˆ  acts only on sites 
at the boundary. For the single-component Hamiltonian (1), H boundaryψ ψˆ  reduces to aiˆ , niˆ  and 
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a ai iˆ ˆ , which we obtain self-consistently from inside the cluster. Note that H boundary
ˆ  couples different Fock 

spaces in the cluster. In the case of the two-component Hamiltonian (3) eight mean-field parameter are 
required, i.e. a i↑ˆ , n i↑ˆ , a ai i↑ ↑ˆ ˆ , 〈 〉↓â i , 〈 〉↓n̂ i , 〈 〉↓ ↓ˆ ˆa ai i , 〈 〉↑ ↓ˆ ˆa ai i  and 〈 〉↑ ↓ˆ ˆ†a ai i . We apply self-consistent itera-
tions I, until c cN N I N I 2∑ −, , −  falls below a threshold value (typically smaller than 10−8). On subsequent 
iterations, we allow the cluster wave function and mean fields to be different, which enables us to find 
structures spanning 2k sites with a k-site cluster. Due to the high dimension of the mean-field parameter 
space up to several thousand iterations are needed in certain regions of the phase diagram. We have 
carefully checked convergence with respect to the size of the cluster basis. Further technical details can 
be found in Ref. 41.

Phase diagrams. The phase diagrams presented in Figs 1 and 2 are obtained by means of the cluster 
mean-field approach using a two-site cluster. The phase boundaries are slightly affected when increasing 
the cluster size (see comparison in Fig. 2a), since longer-ranged many-particle correlations can be incor-
porated41. The effective chemical potential U P U U2 1 6 2effμ μ= ( + / )/( + / ) − /  accounts for the 
increased total interaction energy for finite V. In these units, the position of the Mott lobes is approxi-
mately independent of P =  V. The phase diagram for two components in Fig. 3a,b is computed using a 
single-site cluster and the two-component tensor basis, i.e. including all interspecies on-site correlations. 
The close-ups in Fig. 3c,d are obtained using two-sites clusters. For two components, the chemical poten-
tial U P U U2 1 3 2effμ μ= ( + / )/( + / ) − /  accounts for the off-site interaction energy.

Simple variational mean-field expressions. For a single component, a variational model can be 
constructed serving as a motivation for the complex phase in the twisted superfluid phase. In contrast 
to the cluster mean-field approach above, we neglect all correlations arising from the one- and two-particle 
operators by setting 〈 〉 = 〈 〉 〈 〉ˆ ˆ ˆ ˆ† ⁎a a a ai j i j  and 〈 〉 = 〈 〉 〈 〉 〈 〉〈 〉ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † ⁎ ⁎a a a a a a a ai j k l i j k l . Allowing for two different 
sublattices A and B, we replace the operators with complex numbers a A Aφ=ˆ  and a eB B

iφ= θˆ  with 
a relative phase θ. In this model, the mean-field energy of Hamiltonian (1) per unit cell 
reads  H U J V P2 6 cos 6 3 cos 2A

4
B
4

A
2

B
2

A B A
2

B
2

A
2

B
2φ φ μ φ φ φ φ θ φ φ φ φ θ= ( + )/ − ( + ) − ( ) + + ( ). This 

model predicts the transition between superfluid and twisted superfluid qualitatively, but is unable to 
predict correlated insulator phases and is invalid for small J/U. The same model can also be applied to 
the two-species case (equation (3)) with the same restrictions mentioned above. In particular, this 
approach cannot capture the twisted superfluid phase at small amplitudes of the off-site interactions, 
which is driven by correlations.

Structure factor. The twisted superfluid state gives rise to a distinct time-of-flight signature showing 
first-order momentum peaks with an alternating intensity S± (Fig.  4). A density wave n∆ σ within the 
spin component σ  modifies the strengths of the peaks S± via A n N1 2 2 1 2= ( − ∆ / )σ σ

/  with 
N n ni j= ∑ +σ σ σ, ,ˆ ˆ . The central peak for zero momentum is proportional to A1 cos iθ+ ( )σ .
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