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Memristor-based analogue computing for brain-
inspired sound localization with in situ training
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The human nervous system senses the physical world in an analogue but efficient way. As a

crucial ability of the human brain, sound localization is a representative analogue computing

task and often employed in virtual auditory systems. Different from well-demonstrated

classification applications, all output neurons in localization tasks contribute to the predicted

direction, introducing much higher challenges for hardware demonstration with memristor

arrays. In this work, with the proposed multi-threshold-update scheme, we experimentally

demonstrate the in-situ learning ability of the sound localization function in a 1K analogue

memristor array. The experimental and evaluation results reveal that the scheme improves

the training accuracy by ∼45.7% compared to the existing method and reduces the energy

consumption by ∼184× relative to the previous work. This work represents a significant

advance towards memristor-based auditory localization system with low energy consumption

and high performance.
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The detection of sound sources is a basic function of human
beings and can be acquired through multiple training
processes1,2. In the biological brain, with neurons and

synapses, binaural auditory information is processed to localize
the sound source. Both the environment and the physiological
structure would influence the auditory effect, specifically mani-
fested in the time difference of binaural soundwaves, spectral
shape and so on2–4. Complementary metal-oxide-semiconductor
(CMOS) circuits have been widely employed to detect the
received time difference of binaural sound signals5–9. As shown in
Fig. 1a, most of them relied on the interaural time difference
(ITD) theory10, using the time difference between the sound
reaching two ears to localize the direction of the sound source.
This simplified model can be implemented on existing CMOS
hardware. However, due to the loss of partial auditory informa-
tion, the angle detection range is certainly limited3. In addition,
with the explosive growth of analysis data for real-time sound

information, due to the separation of the processing unit and
memory, the traditional CMOS hardware platform with von
Neumann architecture is facing the obstacle that computing
efficiency is gradually failing to keep up with the increasing
demand11,12.

Driven by the continuously increasing demand for computing
power, the efficient bio-inspired computing has become one of
the most promising paradigms for overcoming the computing
bottleneck. The emerging electronic devices, memristors, show
similarity to biological synapses13–17. Such a device is able to play
roles in both storage and dealing with information analogously,
promoting the idea of computation-in-memory. It has also drawn
great attention for its low power consumption and high-density
features in neuromorphic applications18–22. In many repre-
sentative classification tasks, the combination of the memristor
and bio-inspired architecture has demonstrated its superiority in
high parallelism and energy efficiency23–34. However, these tasks

Fig. 1 The sound localization and hardware implementation. a The common implementation scheme for sound localization application with CMOS
circuits: ITD theory. b Mechanism of sound localization in biological brain. Multiple binaural features are applied for neural processing to detect sound
sources, including binaural time difference, spectral shape and so on. c A conceptual diagram of a memristor-based neuromorphic sound localization
system. The memristor array acts as synapses to deal with binaural sound signals. d Sound source localization, HRTF and signal sample in the time domain.
The transformation functions Hl and Hr are determined by the sound source azimuth angle θ, elevation ϕ, and distance r. e A schematic diagram for neural
network implementation with an integrated memristor array. Since the weight in the neural network could either be a positive or negative value, it is
mapped to two memristor cells as a differential pair.
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are different from analog information processing. Typically, in a
classification application, each output neuron corresponds to a
certain label and refers to a discrete value. The main target is to
maximize the “right” one. The neural networks used for these
tasks are redundant35. As a result, in many complex cases, a lot of
output nodes are desired, posing a great challenge to hardware
overhead and energy consumption. In the sound localization task,
a representative analog computing application, both the input
signals and the output detected direction are continuous values.
When a neural network is employed for sound localization, the
output neurons work together to obtain for the predicted direc-
tion. Benefits from the significant reduction of the network scale,
the hardware cost is much smaller than a classification network.
However, since every synapse and neuron influence the output
result, this analog computing task tends to be susceptible to
errors. In addition, for training samples corresponding to various
directions, the supervised values of the target neurons are dif-
ferent. Therefore, in the feed-forward and training process, this
task is less tolerant of inevitable non-ideality of hardware, putting
forward higher requirements for device performance and weight
update approach. Although several weight update schemes have
been proposed and successfully demonstrated in memristor
arrays26,36,37, further efforts to improve the training strategy are
still required for analog computing tasks. To date, the hardware
implementation of sound localization with high efficiency and
in situ training is still challenging.

In this work, with analog computing-in-memory character-
istics, we develop a memristor-based brain-like algorithm and
architecture, capable of handling complete sound signals received
by two artificial ears, as shown in Fig. 1b, c. With the integrated
1 K HfOx-based analog memristor array, a subset of Head Related
Transformation Function (HRTF) dataset is in situ trained based
on the neural network architecture. The brain-like learning
algorithm of the sound localization function is successfully rea-
lized on the memristor array with a proposed in situ training
method, namely, a multi-threshold-update scheme. The tradeoff
between training results and hardware overhead with different
training schemes and different hardware platforms is further
analyzed.

Results
Sound localization algorithm. Sound localization is a basic
cognitive function of human beings and a typical example dealing
with analog information. As presented in Fig. 1d, the relationship
between the sound source and binaural soundwaves, known as
the Head Related Transform Function (HRTF)38,39, describes
distance r, azimuth angle θ and elevation ϕ contributing jointly to
the differences of the sound signals received by two ears. Previous
works only dealt with differences in binaural features, such as
time or intensity differences. Instead of this partial information,
we train a neural network to derive the relationship between angle
θ and two complete serials of sound signals, suitable for imple-
mentation in the memristor array.

The received binaural soundwaves are transformed to the
Fourier domain, and the supervised outputs are designed as
Gaussian curves to describe the probability of sound source
localization (Supplementary Fig. 1a, b). The neuron outputs work
together to determine the detection of binaural sound signals. As
presented in Eq. (1), the supervised outputs yteacher(αi) are
constructed by two terms, a probability in Gaussian form and a
correction term for better detection, in which αi represents the
output channel and ang denotes the actual angle of the sound
source. To fit in the network, αi is sampled from −120° to 120°
with a step of 40°. Some generated teacher outputs are illustrated

in Supplementary Fig. 1c.

yteacherðαiÞ ¼ exp
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To determine the final predicted angle α, the network outputs
are treated as vectors, where the output values contribute to the
module while the represented direction contributes to the phase.
The angle vectors αi are summarized together weighted by the
corresponding network outputs (Supplementary Fig. 1d). In this
way, the larger the network outputs are, the more likely the sound
source direction is and the larger the contribution. Different from
classification tasks, all neurons affect the final result, even small
outputs, as expressed by Eq. (2).

α ¼ ∑
7

i¼1
youtputðαiÞ � αi ð2Þ

As shown in Fig. 1e, for the hardware implementation on a
1T1R memristor array, considering that the calculated weight
could either be a positive or negative value, it is divided into
positive and negative values and mapped to two adjacent cells on
the memristor array. In the training process, the synaptic weights
are trained with the gradient descent method. In update cycles,
the positive or negative weight cell is randomly selected for weight
update. The description of the CIPIC HRTF dataset38 can be
found in the CIPIC dataset section. More details are shown in the
sound localization algorithm in the methods section.

Memristor device. Since the conductance of each memristor
contributes to the predicted direction, every single device plays a
more critical role than in the classification tasks that have already
been widely realized. In this case, the performance requirements
for devices are higher. To demonstrate the sound localization
function, an integrated 1 K analog memristor array with 128 rows
and 8 columns is fabricated. As illustrated in Fig. 2a, a TiN/TaOy/
HfOx/TiN stack structure is designed to achieve bidirectional
analog behaviors. Detailed information about the device fabrica-
tion process40 is shown in the memristor array fabrication
section.

The memristor array exhibits good analog switching char-
acteristics. With multiple pulses, the memristor cells could be
programmed to conductance states between 4 and 40 μS, as
shown in Fig. 2b. Applying identical pulses on the bit-lines, the
conductance of the memristors in the array can be modulated in
an analog way. As shown in Fig. 2c, with 1.5 V/−1.4 V 50 ns
pulses, the conductance increases/decreases continuously from
the lowest resistance state (LRS) to the highest resistance state
(HRS) or from the HRS to the LRS. Compared with a binary
memristor, there is no abrupt conductance jump in the SET/
RESET process.

Due to the inherent physical mechanism, the intrinsic
randomness of memristors is similar to that of biological
synapses. When voltage pulses are applied on the memristor,
oxygen ions move towards a specific direction and reform the Vo
conductive filaments with randomness41,42. Figure 2d statistically
quantifies this random conductance fluctuation. For any initial
state, there is a broad distribution of conductance change on the
memristor cells under one SET/RESET pulse. The verification
scheme is the most common method to compensate for this
inherent variation. However, when training a neural network with
massive parallelism, it is inconvenient to program cells one by
one with high precision. Inaccurate programming will cause
deviation between device conductance and the target value.
Brain-like randomness may help increase the diversity between
memristor cells, but it will also lead to a decrease in learning

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29712-8 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2026 | https://doi.org/10.1038/s41467-022-29712-8 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


efficiency and accuracy, raising challenges for the training
method.

In situ training schemes for sound localization. Through
learning, the human auditory system has the ability to adapt to
changes1. In the ex-situ training scheme that has been widely
employed in previous works, the weight calculated by software
remains unchanged25. The ex-situ training is easily affected by
non-ideal parameters of hardware, for example, programming
variations, state-stuck devices, conductance drift, and so on43,44.
By adjusting weight values according to the real-time output
deviation, the in situ training method44 could adapt well to
environmental changes. In the previous studies, two schemes
have been proposed to update the conductance value during the
in situ training process26, namely, in situ with verification and
without verification (Supplementary Fig. 2). In the first case, the
network is trained accurately but not in an efficient way. It has
been shown that approximately 40 pulses are required to achieve
4-bit precision, which largely limits the operation speed45. In
addition, in an example of the write strategy, additional circuits

are designed, including a complex comparator46. Thus, there is a
tendency that the verification needs much more chip area and
time cost in hardware implementation46–48. For the second case,
only a programming pulse is given on the basis of the sign of the
calculated update values. The overhead is greatly reduced at the
cost of a certain training accuracy loss. However, this simplified
scheme is not applicable for sound localization. To illustrate, with
this scheme, the distribution of weight update values of various
angle samples is simulated, as shown in Fig. 3a. For some large
update values, the conductance change after one SET/RESET
pulse is far from reaching the target value. On the other hand, for
a small update value, one pulse may change the conductance
much larger than the targeted value. It is difficult to find a uni-
versal pulse operation condition to update all weights as similar as
possible to the desired values, demanding weight adaptation in
subsequent cycles.

To tackle the problems of the two traditional methods
mentioned above, a multi-threshold-update scheme is developed.
As depicted in Fig. 3b, from bottom to top, there are several
thresholds to determine the number of pulses applied on the
memristor device. These thresholds divide the weight update

Fig. 2 Memristor characteristics. a The stack structure and TEM image of the memristor device. b With the verification scheme, the mapped conductance
distributions of 420 memristors with the target conductance states between 4 and 40 μS. c Bidirectional analog switching behavior: device conductance
increases/decreases continuously with the number of SET/RESET pulses. SET pulse: 1.5 V, 50 ns; RESET pulse: 1.4 V, 50 ns. In every cycle, the standard
deviation of ΔG under the same SET/RESET pulse is 2.64 μS. d The conductance changes after applying one SET/RESET pulse. For SET and RESET process,
the average ΔG values are 4.12 and −2.44 μS.
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value (ΔW) into intervals filled with various colors. In the color
bar, the numbers annotate pulse numbers used in that case. With
this comparison rule, Fig. 3c shows the flowchart of the update
stage. After the feed-forward and weight calculation, the
calculated ΔW is compared with thresholds and distributed into
different update levels. The number of update pulses is
determined based on the comparison results. The training
schemes section presents a detailed description.

To prove the feasibility and optimize the training performance,
we simulate the in situ training results with the multi-threshold-
update scheme for sound localization. The memristor model is
depicted in Supplementary Figs. 3 and 4. Figure 3d presents the
average angle deviation under various training methods. With the
zero-threshold-update scheme, also known as the conventional
scheme without verification, the trained network shows a large
deviation. The introduction of more update levels improves the
average training accuracy by approximately 4–5 degrees com-
pared to the without verification scheme. However, as the number
of thresholds is further increased, the training accuracy will not
be improved to a greater extent. Conversely, the unfavorable
effect of writing variation becomes more obvious.

On the other hand, more thresholds would increase the
hardware overhead. The hardware cost of various in situ training
schemes are studied. The energy consumption of inference and
training processes are calculated as the product of update times
and energy consumed each time. Figure 3e, Supplementary
Fig. 5a, and the benchmark for hardware implementation section
present the simulated total energy consumption and processing
time cost in the memristor array under various number of
thresholds. As illustrated in Fig. 3d), for the two-threshold-update
scheme, the total number of update pulses during the training
process is reduced compared to the without verification scheme,
as well as the operation cost. The training result is also better with

this scheme. As a result, when considering the hardware
complexity, as well as the simulation results, in situ training
with the two-threshold-update scheme is the most suitable
method for the sound localization task in this work. The
parameters in the update scheme are determined based on the
device characteristics and algorithm. It goes as follows: one pulse
is applied if the conductance update value |ΔG| falls in |10 μS| > |
ΔG| > 1 μS|, while successive 150 pulses are applied for |ΔG| > |
10 μS|. No pulse is applied if |ΔG| < |1 μS|. Different types of
devices also follow the similar trend, as presented Supplementary
note 7. This method also applicable for more complex tasks, as
shown in Supplementary Fig. 5b. Depending on the device
characteristics and tasks, the thresholds and pulse number may be
different in other works.

Results and discussion
In the integrated 1 K memristor array, the in situ learning of
sound localization function is experimentally demonstrated.
Supplementary Fig. 6 and the measurement platform section
present detailed information about the test platform. Overall, the
results indicate the feasibility of this analog computation imple-
mentation on the memristor array. Figure 4a, b show the weight
distributions and statistical results under various schemes. For
in situ training with the introduction of thresholds, most weights
are small values, similar to the ideal weight matrix, while the
weight distribution under the conventional without verification
scheme is quite different. In that case, most of the negative
weights are located in the rows corresponding to the large angles.
For large-angle samples, the neuron outputs that should have
large contribution are small, leading to unsatisfactory prediction
results, as shown in Fig. 4c, d. With regard to the multi-threshold-
update scheme, the comparison operation ignores small weight
update values of approximately 0. Compared to the former

Fig. 3 Schematic diagram and simulation results of various training schemes. a The distributions of update values of samples corresponding to various
angles. b Schematic diagram of the multi-threshold-update scheme. As the updating levels increase, there will be more thresholds for ΔW classification to
apply different numbers of pulses on the memristor device. c Flow chart of in situ training with the multi-threshold-update scheme. d Simulation results
under various update levels and variation factors. The factor scales the updating variation of the devices. e The total energy consumption of memristor-
based sound localization under various number of update thresholds.
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method, this scheme makes the trained weight distribution more
stable and more inclined to gradually approach the optimal
solution. It is suitable for this analog computing task and
decreases the MSE of the experimental results by ~45.7% for
in situ training, as shown in the Supplementary Table 1.

Furthermore, we evaluate the hardware performance of a larger
memristor-based sound localization task and compare it with
previous works. A schematic diagram of the proposed memristor-
based implementation circuit is presented in Supplementary
Fig. 9. The network has two layers with the sizes of 200 × 50 and
50 × 11, respectively. The most peripheral circuits and memristor
array are simulated by the simulator XPEsim under a 130 nm
technology process49. The performance results of the integrator
and analog-to-digital converter (ADC) are obtained through
testing and reference37,50. The evaluation details can be found in
the benchmarking for hardware implementation section and
Supplementary Tables 2 and 3. Benefitting from computing-in-
memory, with small accuracy degradation (<1.5 degrees), the
memristor-based sound localization reduces the energy con-
sumption by ~184× compared to the existing application specific
integrated circuit (ASIC) designs with conventional architecture6.
In the future work, by optimizing the weight-update nonlinearity,
variations and other non-ideal effects of memristors, the training
accuracy can be further improved.

As a representative neuromorphic computing application, both
the input signals and the detected results of the sound localization
task are analog values. For the hardware implementation of such
a cognitive task, a promising update scheme with high efficiency
and accuracy is developed and experimentally demonstrated in
the 1 K oxide analog memristor array in this work. This scheme

yields improvements of 45.7% in the training performance
compared to the previous method. The hardware performance is
also analyzed, where memristor-based sound localization reduces
energy consumption by ~184× relative to existing ASIC design.
This work paves the way towards a cognitive system that rivals
the CMOS design in processing accuracy and hardware costs.

Methods
Sound localization algorithm. The hardware implementation of the sound loca-
lization network is described in Fig. 1e. In this demonstration, the CIPIC HRTF
dataset is used for training and testing the neural network38. The network contains
60 input and 7 output neurons. The network model and mapping scheme used in
this work are expressed as Eq. (3):

yj ¼ σ

�
∑
m

i
wi;j � xi þ b

�
¼ σðsj þ bÞ ð3Þ

To implement matrix-vector multiplication in the memristor array, in this
experiment, the input values are quantized to 16 levels and presented as multiple
read pulses, as expressed in Eq. (4).

vout;j ¼
Z ni

0
∑
i
vreadðtÞ � ðGi;j

þ � Gi;j
�Þdt ð4Þ

wi;j represents the weight of network. xi is the ith input value and represents the
integral time ni . Considering that the calculated weight could either be a positive or
a negative value, it needs to be divided into positive and negative weights and
mapped to two memristors. In the feed-forward process, the multi-pulse read
process is also divided into two processing steps. In each stage, the transformed
binaural signals are fed into the BLs corresponding to the positive and negative
weight cells. The neuron outputs, vout;j are obtained by subtracting the current
flowing through the SLs in two stages. The sj in Eq. (3) is substituted with array
output vout;j. Analog neuron outputs contribute for the prediction angle together.

Fig. 4 Experimental demonstration results of sound localization. a The ideal weights and the measured trained weights under the number of
thresholds= 0 and 2. b The weight statistical distribution results under various in situ training schemes and ideal weights. c The normalized mean square
error (MSE) of the experimental results under the number of thresholds= 0 and 2. d The ideal and experimental outputs of three angle samples with
various training schemes.
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For the single-layer sound localization, the gradient descent method is
employed to calculate update weight matrix, as represented as Eq. (5).

dW i;j ¼ η � xi � ðyj � byjÞ � ∂yjðxiÞ∂xi
ð5Þ

In the training process, η and x are respectively the learning rate and inputs. y
and ŷ refer to the actual and target outputs. In the experiments, minibatch is
chosen as 5. Therefore, in each update iteration, the update weight is calculated as
the average value of 5 feedforward calculation results.

CIPIC dataset. The dataset used in this demonstration is a subset of the CIPIC
HRTF dataset38. It provides a collection of binaural signals from the same sound
source for HRTF research. Samples are randomly selected from the dataset. We
choose samples with azimuths ranging from −90° to 90° and elevations less than
15° for the experiments.

Memristor array fabrication. To achieve bidirectional analog conductance
modulation behavior, a TiN/TaOy/HfOx/TiN stack structure is adopted with the
material proportion delicately designed. Transistors are fabricated in the standard
CMOS foundry. The length and width are 1 and 0.5 μm, respectively. The contact
and the first TiN layer are also prefabricated by the foundry. The TiN, TaOy, HfOx,
and TiN layers are sequentially deposited with atomic layer deposition (ALD). The
8 nm-thick HfOx acts as the switching layer. The 45 nm-thick TaOy layer acts as
thermal enhanced layer, whose low thermal conductivity confines the heat in the
HfOx layer, inducing the increasing temperature of conductive filament (CF)
region and more uniform distribution of oxygen vacancies51. Therefore, this
memristor stack provides resistive switching with good analog characteristics.
Transistors could provide better control of the analog behaviors of memristors. The
1024 one-transistor-one-resistor (1T1R) cells are grouped into 128 rows and 8
columns. The 128 word-lines are connected to the gates of transistors. Memristor
devices are located between bit-lines and drains of transistors.

Measurement platform. The measurement platform is shown in Supplementary
Fig. 6, and the 1 K memristor array is connected to the probe card. During the
training process, the tester generates SET/RESET/READ pulses and sends them to
a probe card that is connected to the array. The current flow through SLs is
collected by the probe card and sent back to the tester. A PC sequentially performs
further analysis. The activation function and other processing operations are
executed in the software. In the SET (conductance increase) process, 1.5–2 V is
applied on the transistor gate to limit the current. A voltage pulse (1.5 V, 50 ns) is
applied on the BL, while the SL is connected to 0 V. During the RESET (con-
ductance decrease) process, a voltage pulse (1.6 V, 50 ns) is applied on the SL.
Moreover, 0 V and a high voltage to ensure that the transistor opened are applied
on the BL and WL, respectively.

Training schemes. The schematic of the multi-threshold-update scheme can be
seen in Fig. 3b. From bottom to top, there are operation schemes corresponding to
various thresholds. The color in different ranges of |ΔW| corresponds to the
programming pulse number used in that case (n0 < n1 < n2 < n3 < n4 < n5, n0 and n1
are generally 0, 1). For example, when the number of thresholds is 0, the pulse list
is [n1]. If ΔW > 0, one SET pulse is applied. Conversely, if ΔW < 0, a RESET pulse is
required. When the one-threshold-update method is applied, the pulse list is [n0,
n1]. Only if |ΔW|is greater than |W1|, one SET or RESET pulse is applied to the
corresponding cell.

Figure 3c represents the flow diagram of the multi-threshold-update scheme.
The weight update value is calculated after the feed-forward and error calculation.
For M thresholds, WTH= [|W1|, …, |WM|], and the pulse number list= [P0, …,
PM]. These thresholds divide the update value into multiple intervals. The
calculated |ΔW| is sequentially compared with |W1|, …, |WM|. According to the
intervals at which the update weights are located, the number of update pulses is
determined based on the comparison results. For example, when M= 2, the |ΔW|
values in [0, |W1|), [|W1|, |W2|), [|W2|, +∞) correspond to the P0, P1, P2 update
pulses to be applied to the memristor device (P0= n0, P1= n1, P2= n5). The
positive and negative memristors are randomly selected as the updated device. The
updated conductance value is closer to the target value. The parameter analysis is
presented in Supplementary note 7.

Benchmarking for hardware implementation. We evaluate the hardware over-
head of sound localization. In the evaluation process, the main circuit modules are
all taken into consideration, consisting of the memristor array, integrator, ADC,
drivers, and shift adder. The synaptic weight matrix is mapped to a 2T2R mem-
ristor array. In the feed-forward process, the transformed signals are converted to
two opposite voltage pulses and applied on the BL+ and BL−. Performance of the
BL driver, WL drivers and integrators comes from test results of actual circuits37.
The shift adder module is simulated by XPEsim under 130 nm technology node49.
Data of the actual Fourier transformation circuit are obtained through reference52.
The detailed results can be observed in Supplementary Figs. 9 and 10 and Sup-
plementary Table 3.

Data availability
The data other than that provided in Source data that support the findings of this study
are available from the corresponding author upon request. Source data are provided with
this paper.

Code availability
The codes that support the findings of this study are available from the corresponding
author upon reasonable request.
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