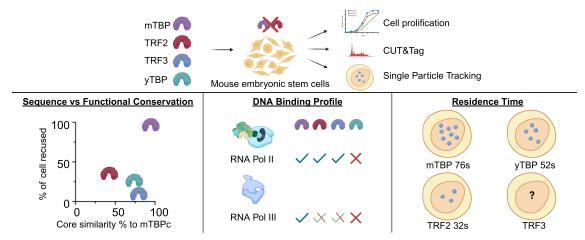


Functional divergence of TBP homologs through distinct DNA-binding dynamics

Jieying H. Cui, James Z.J. Kwan, Armin Faghihi, Thomas F. Nguyen, Sheila S. Teves **


Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BCV6T 1Z3, Canada

*To whom correspondence should be addressed. Email: sheila.teves@ubc.ca

Abstract

The TATA box-binding protein (TBP) is an evolutionarily conserved basal transcription factor common in the pre-initiation complex of all three eukaryotic RNA polymerases (RNA Pols). Despite their high conservation, homologous TBPs exhibit species- and tissue-specific functions that may contribute to the increasingly complex gene expression regulation across evolutionary time. To determine the molecular mechanisms of species- and tissue-specificity for homologous TBPs, we examined the ability of yeast TBP and murine TBP paralogs to replace the endogenous TBP in mouse embryonic stem cells (mESCs). We show that, despite the high conservation in the DNA-binding domain among the homologs, they cannot fully rescue the lethality of TBP depletion in mESCs, which correlates with their inability to support RNA Pol III transcription. Furthermore, we show that the homologs differentially support stress-induced transcription reprogramming, with the divergent N-terminal domain playing a role in modulating changes in transcriptional response. Lastly, we show that the homologs have vastly different DNA binding dynamics, suggesting a potential mechanism for the distinct functional behavior observed among the homologs. Taken together, these data show a remarkable balance between flexibility and essentiality for the different functions of homologous TBP in eukaryotic transcription.

Graphical abstract

Introduction

Transcription initiation is the first step in gene expression, and requires the hierarchical assembly of the RNA polymerase (RNA Pol) machinery at the promoters of genes [1, 2]. Although the three main eukaryotic RNA Pols require general transcription factors that are specific to each system, the TATA box-binding protein (TBP) remains uniquely common to all three [3–7]. TBP, as part of TFIID, is believed to be the first factor to bind onto the promoter region and trigger the hierarchical assembly of the other factors [8, 9]. TBP consists of an unstructured N-terminal domain (NTD) and a conserved

DNA binding core that recognizes the TATA-box DNA binding motif [10–12]. This highly conserved transcription factor is present throughout archaea and eukarya [13], and has been shown to be essential for viability in all species.

Throughout evolution, gene duplication and horizontal gene transfer events have led to the emergence of TBP paralogs, enabling increasingly complex gene regulatory mechanisms [14, 15]. The three main eukaryotic TBP paralogs are known as TBP-related factors 1–3 (TRF1, TRF2, and TRF3) [16–18]. TRF1 is found primarily in insects [16], whereas metazoan-specific TRF2 and vertebrate-specific

[23-25].Despite the emergence of paralogs, TBP remains the predominant initiation factor. In vitro reconstitution of mammalian transcription by each of the three RNA Pols requires TBP for proper initiation [26, 27]. However, recent studies in mouse and human cells suggest that in vivo transcription by RNA Pol I and II have relaxed their requirement for TBP [28– 30]. Specifically, these studies showed that rapid degradation of TBP in mouse embryonic stem cells (mESCs) and human HAP1 cells does not affect RNA Pol I and II activity but leads to massive downregulation of RNA Pol III transcription [28– 30]. In contrast, TBP remains essential for all transcription in yeast cells [4, 6]. One potential mechanism to compensate for the species-specificity of TBP is the emergence of the TBP paralogs, which is absent in unicellular eukaryotes such as yeast. However, the tissue-specificity of the paralogs suggests that a functional divergence has also occurred between yeast and mammalian TBP.

In this study, we assessed how the conservation of TBP homologs leads to diverse species- and tissue-specific functions. Using an acute depletion system for TBP in mESCs, we examined if different TBP homologs, specifically yeast TBP and the mouse paralogs TRF2 and TRF3, can functionally replace the endogenous TBP protein. Despite the varying degrees of conservation in the DNA-binding domain, TBP homologs cannot fully rescue mESCs viability upon TBP depletion. Each homolog also demonstrated a unique DNA binding profile, with TRF2 but not TRF3 partially rescuing RNA Pol III transcription upon depletion of TBP. Furthermore, we demonstrated that the divergent NTD of the homologs plays a specific role in fine-tuning changes in response to stressinduced transcriptional reprogramming. Lastly, we observed inherent differences in DNA-binding dynamics for each TBP homolog, pointing to an evolved property that may enable species- and tissue-specific molecular behaviors, despite their high sequence conservation.

Materials and methods

Cell lines

For all cell lines used in this study, the parental line is JM8.N4 mESCs, purchased from KOMP repository, RRID: CVCL_J962. C64 and C94 are CRISPR-Cas9 genetically modified JM8.N4 cell lines containing mAID-TBP knock-in, obtained as previously described [31]. C41 is a CRISPR-Cas9 modified cell line with a Halo-mTBP knock-in obtained as previously described [31]. B8 is a CRISPR-Cas9 genetically modified C64 cell line with a *Tbpl1* complete gene knock-out as previously described [28]. F6 is a CRISPR-Cas9 genetically modified C94 cell line with a *Tbpl1* complete gene knock-out. Generation of the overexpressed TRF2-HA cell line was previously described [28]. The cell lines have been authenticated by STR profiling, and tested negative for mycoplasma contamination.

Generation of the overexpressed HA or Halo tagged constructs cell line

The mESCs were grown to 50% confluency and transfected using 1 µg of the construct (HA-mTBP, HA-yTBP, TRF3-HA, TRF3c-HA, HA-mTBPc, HA-yNTD-mTBPc, Halo-yTBP, Halo-TRF2, Halo-TRF3, Halo-TRF3c, Halo-mTBPc, and Halo-yNTD-mTBPc) together with 1 µg of the Super Piggybac transposase plasmid using Lipofectamine 2000 (Invitrogen 11668-019) according to the manufacturer's protocol. After 24 h, 500 µg/ml of G418 (Fisher BP673-5) was added to select for successful random integration of the construct. Cell media containing antibiotics was refreshed daily until all negative control cells were dead.

Cell culture

The mESCs were cultured on 0.1% gelatin-coated plates in ESC media KnockOut DMEM (Corning) with 15% FBS (Hy-Clone), 0.1 mM Minimum Essential Medium nonessential amino acids (Gibco), 2 mM GlutaMAX (Gibco), 0.1 mM 2mercaptoethanol (Sigma-Aldrich), and 1000 units/ml of ES-GRO LIF (Chem-icon). ES cells were fed daily, cultured at 37°C in a 5% CO2 incubator, and passaged every 2 days by trypsinization. For TRF2-HA and TRF3-HA overexpressed cell lines, TBP degradation was performed by addition of Indole-3-acetic acid (IAA) at 500 μM final concentration, or dimethyl sulfoxide (DMSO) as carrier control, to a confluent plate of cells for 6 or 24 h. Heat shock was performed at 42°C in a 5% CO2 incubator for 30 min. For HS and IAA treatment, cells were first treated with 24 h of IAA followed by an additional 30 min before being collected. All cell lines with Halo-tagged constructs were treated with 6 h of IAA before live-cell imaging.

Cell counting kit-8 assay

Cells were seeded in a 96-well plate at a density of 4000 cells per well, with 100 µl of culture medium. Following incubation for 24 h, either DMSO (vehicle control) or IAA was added to the culture. After 0, 24, and 48 h of treatment, cells were washed with Phosphate-buffered saline (PBS) and added 100 µl media with 10% of cell counting kit-8 (CCK-8) solution (Ab228554, Abcam). The plate was then incubated in a light-restricted setting at 37°C for 2 h. The absorbance was measured at 450 nm by a SUNRISE plate reader.

Antibodies for western blot

Primary antibodies: anti-HA (α -HA) 1:5000 (EpiCypher 13-2010), α -Tubulin 1:7000 (Abcam ab6046), α -TAF4 1:5000 (Santa Cruz sc-136093), α -BRF1 1:1000 (Santa Cruz sc-390821), α -H3.3 1:5000 (Abnova H3F3B M01), α -Halo 1:3000 (Promega G9211), α -Flag 1:5000 (Sigma M2) α -TBP 1:3000 (mAbcam51841). Secondary antibodies: IRDye 800CW Goat anti-mouse (Licor 926-32210), IRDye 800CW Goat anti-rabbit (Licor 925-32211), IRDye 680RD Goat anti-mouse (Licor 926-68070), or IRDye 680RD Goat anti-rabbit (Licor 926-68701). Blots were quantified using Bio-Rad Image Lab, according to the Image Lab Software User Guide.

Protein sequence alignment analysis

Protein sequence alignment was done using UniProt with the following Uniprot IDs: mTBP (P29037), TRF2 (P62340), TRF3 (Q6SJ95), and yTBP (P13393). For the core regions of

mTBP, TRF3, and yTBP, amino acid sequences starting with MSGIVP until the end (~181 aa) were used. Alignment percentages for both full-length and core protein sequences, as well as phylogenetic tree modeling, were performed using the UniProt multiprotein alignment suite.

Protein structure conservation analysis

Protein sequence conservation modeling was performed using iCn3D, a web-based 3D structure viewer that allows for overlaying protein structures [32]. Using the "align protein complexes" function, Alphafold uniprot IDs were inputted, structures were overlaid and colored according to conserved versus nonconserved amino acid residues and RMSD and TM-scores were calculated. Only the aligned region (core domain) is shown as the NTD is variable in sequence and length.

Protein structure DNA interaction analysis was performed

Protein structure–DNA interaction analysis

using Alphafold 3 [33]. Full-length and core-only protein sequences for the homologs were used as described above. Using previously described TBP CUT&Tag [28], TBP peak centers were defined for three RNA POL II gene promoters: Gapdh, with a full TATA-box motif, Agbl5, which contains only the 4 bp TATA sequence (TATA-like), and UBB, which contained no TATA motif. DNA sequences used were as follows; Gapdh-TATA (CCCCCACCATC-CGGGTTCCTATAAATACGGACTGCAGCCCTCCCTGGT), Agbl5-TATA-like (GGTAGAGCGGAGGACTG-TAGTCAGTACAATATGGTAATCCTTAGGTCGCTG), UBB-TATA-less (CACCAATCAGCGTCGGCCT-CATCTTTGACTCCTCACCAATCAGCGCTGGCGCC). Bases bolded represent the approximate predicted binding site (DNA kink) visualized on ChimeraX based on Alphafold 3 prediction. The predicted template modeling (pTM) and the interface predicted template modeling (ipTM) scores were calculated from Alphafold 3, with default confidence cut-offs at 0.5 and 0.6, respectively. Alphafold 3 structures were then exported to ChimeraX for structural remodeling, alignment, and coloring.

CUT&Tag

CUT&Tag version 2 or version 4 was performed as described [34] but with the following modifications. Cells were harvested at room temperature, and 100 000 mESCs were used per sample. With the EpiCypher pAG-Tn5 (EpiCypher EP151117) or Ablab pA-Tn5, cryopreserved Drosophila S2 cells were spiked in at 10% or 20% to account for a spike-in control, during the cell pelleting step before washing. Antibodies used include α-RNA Pol II (Cell Signaling Technology D1G3K), α-RNA Pol III (Santa Cruz Biotechnology sc-21754), Rabbit anti-Mouse IgG (Abcam ab46540), α-H3K27me3 (Cell Signaling Technology C36B11), and α -HA (EpiCypher 13–2010). Secondary antibodies used include Guinea Pig anti-Rabbit IgG (Antibodies-Online ABIN101961) and Rabbit anti-Mouse IgG (Abcam ab46540). Secondary antibody incubation times were 1 h at room temperature. The commercial Epicypher pAG-Tn5 or Ablab pA-Tn5 was added at a final concentration of 1:20. Paired end sequencing was performed at the UBC Biomedical Research Centre using the NextSeq2000 50 cycles.

CUT&Tag analysis

Reads were mapped on mm10 genome build using Bowtie2 with the following parameters: -no-unal -local -verysensitive-local -no-discordant -no-mixed -contain -overlap -dovetail -phred33 -I 10 -X 9999. Polymerase chain reaction (PCR) duplicate reads were kept as these sites may represent real sites from adapter insertion from Tn5 as per recommendation from the Henikoff lab. A normalization factor was determined from Drosophila melanogaster (normalized to the control) alignment from Bowtie2 mapping and used to scale IAA-treated samples to control during generation of bigwig files. Downstream analyses, heatmaps, transcription start site (TSS) plots, gene plots, and k-means clustering were performed using IGV, DeepTools, and BedTools suite [35, 36]. ComputeMatrix from deeptools was done using binsize 10. Replicates were averaged using the wigtools and wigToBig-Wig, which averages the reads after normalizing treatment samples to the control samples of each run using Drosophila spike-in.

Pearson correlation analysis

Pearson correlation analyses were performed using the multi-BigwigSummary command from the DeepTools suite with the bins option and the bedfile option for the regions surrounding the TSS for all samples (± 1000 bp of the TSS). The Pearson correlation coefficients were plotted as a heatmap using the plotCorrelation command with skip zeros option.

DGE analysis using edgeR bioconductor

Scatter plots of differential gene expression (DGE) analysis were performed using the DGE tool from the edgeR bioconductor package. Starting subsampled bam files were used for all Pol II samples. Read counts were obtained using feature-Counts command with paired end specificity for the entire gene and pseudogenes were removed [37]. Reads were then imported into R Studio and analyzed using the DGE tool following the Bioconductor manual using default parameters (i.e. 5% False Discovery Rate). First, DGEList was used to specify reads and gene names, followed by gene annotations (optional) then filtering and normalization by Trimmed Mean of M-values (TMM) (default option). Read counts below 20 were filtered using filterByExpr (min.count = 20). Once reads were normalized, the design matrix was built and dispersion was estimated to determine biological variation. The command glmFit was used to determine DEG and the command topTags was used to show the top genes. Scatter plots were generated using the plotMD function and significant genes were obtained along with the raw values for downstream analyses such as heatmap and table generation.

Scatter plot read counts analyses and filtering

Read counts for scatter plots were obtained from bam files using the bedtools multicov command and plotted to the gene promoters and or gene bodies (TBP homologs binding at promoters: -250 bp to TSS; Pol II binding at gene body: TSS-TES; HS-upregulated gene list: -250 to TES. All transfer RNA (tRNA) readcounts: TSS to TES) [35]. Read counts were then normalized to the scaling factor, summed, and plotted as is or log transformed before being plotted. Regression analysis was then performed to obtain the slope and r^2 value.

Co-IP

Cells were grown to 90% confluency on a 15-cm gelatinized plate. After indicated treatments, cells were washed with $1 \times$ PBS, trypsinized, and pelleted by centrifuging at $600 \times g$. Cell pellets were then lysed in 1 ml of lysis buffer (200 mM NaCl, 25 mM HEPES, 1 mM MgCl₂, 0.2 mM EDTA, 0.5% NP-40, 1× Roche complete inhibitor, 0.2 mM phenylmethanesulfonyl fluoride (PMSF), and 1 mM benzamidine). Cell lysates were passed through a 25 G needle five times and incubated on an end-over-end rotator for 30 min at 4°C. Samples were spun at max speed at 4°C for 5 min. Supernatant was transferred to a new tube, and the pellet was then digested using MNase (New England Biolabs M0297S) by nutating at 37°C for 30 min. Digested pellet was centrifuged at the maximum speed, and the new supernatant was added to the previous supernatant. Lysates were then pre-cleared using 20 μl/sample of Protein G Dynabeads and incubated on an end-over-end rotator for 2 h at 4°C. Samples were then placed on a magnetic rack and aliquoted (10% v/v for input, 45% v/v for α -HA IP, and 45% v/v for α -IgG IP). Pull-down was performed on the cell lysates by adding 1 μ g of α -HA (Sigma Roche 12CA5) or mouse α-IgG (Santa Cruz Biotechnology sc-2025) or α-TBP 1:3000 (mAbcam51841) incubating on an end-over-end rotator overnight at 4°C. The next day, Protein G Dynabeads were added to the mixture and incubated at 4°C for 1 h. Beads were washed six times with 600 µl of lysis buffer. Proteins were eluted from the beads by addition of loading buffer and boiling at 100°C for 10 min.

Single particle tracking: slow tracking

Cells were grown on gelatin-coated 35 mm glass-bottomed dishes (Ibidi, µ-Dish 35 mm, high Glass Bottom 81158) at 37°C in a 5% CO2 incubator for 24 h. Cells (HaloTagged TBPs) were labeled with 25 pM JF549 (Lavis Lab) for 30 min at 37°C in a 5% CO2 incubator and washed three times with ESC media without phenol-red for 5 min each. Halo-TRF3 and Halo-TRF3c cell lines were dually labeled with 25 nM JF646 after 25 pM of JF549 labeling for epifluorescence imaging. Cells were imaged in ESC media without phenol-red. Imaging was conducted on a custom-built 3i (Intelligent Imaging Innovations) microscope equipped with an Alpha Plan-Apochromat 100×/1.46 NA oil immersion TIRF M27 objective, EM-CCD camera (Andor iXon Ultra 897), a Zeiss Definite Focus 2 system, and a motorized mirror to achieve HiLo-illumination. The customized laser launch includes 405 nm (350 mW), 488 nm (300 mW), 561 nm (1 W), and 640 nm (1 W) lasers. A multi-band dichroic (405 nm/488 nm/561 nm/633 nm quad-band bandpass filter) was used to reflect a 561 nm laser into the objective, and the emission light was filtered using a bandpass emission filter. The laser intensity was controlled using an acoustic-optic transmission filter (AOTF), a low constant laser intensity was used to minimize photobleaching. Images were collected at a frame rate of 2 Hz with 2% AOTF for a total of 1000 frames. Each Halo-tagged line was imaged in three biological replicates of 10-12 cells. Examples of raw SPT videos for H2B-Halo, Halo-mTBP, Halo-yTBP, and Halo-TRF2 are shown in the Supplementary Data (Supplementary Videos S1–6). The Halo-TRF3-expressing mESCs were also imaged at a frame rate of 20 Hz and 30% AOTF for 400 frames to visualize more dynamic molecules and at 1% AOTF for epifluorescence imaging.

Halo Tagged particles were identified using SLIMfast [38], a custom-written MATLAB implementation of the MTT algorithm [39], using the following algorithm settings: localization error: 10–6.25; exposure time: 200 ms; deflation loops: 3; number of gaps allowed: 1; maximum number of competitors: 5; maximal expected diffusion constant ($\mu m^2/s$): 0.5. The residence times of HaloTagged molecules were determined using custom scripts as previously described [31, 40]. Briefly, we quantified the dwell time of each HaloTagged molecule and generated a survival curve for bound HaloTagged TBPs as a function of time. A two-exponential function was fitted to the survival curve to determine apparent $k_{\rm off}$ rates of HaloTagged TBPs in Fig. 6B and C. The photobleaching correction was performed by subtracting the apparent k_{off} of H2B-Halo from the apparent k_{off} of the HaloTagged TFs, and residence time was determined by taking the inverse of the photobleach-corrected koff for each HaloTagged TBPs.

Single particle tracking: fast tracking mode

Cells were grown and labeled as described in the previous section, and they were labeled with PA-JF549 dye to final 25 nM using the same condition as slow-tracking for each cell line. Imaging process for PA-JF549 dyes [41] performed by utilizing a multi-band dichroic filter (BrightLine quad-band bandpass filter, Semrock) to direct a 250 mW 549 nm laser (1 W, Coherent, Genesis) at 100% AOTF and 146 mW power of 405 nm laser (350 mW, Coherent, Obis) at 10% AOTF into the objective, while a bandpass emission filter (FF01 676/37 Semrock) was used to filter the emitted light. Fast-tracking imaging experiments involved capturing 10 000 frames, with each experiment repeated three times for biological replicates and including 4–12 cells as technical replicates. At a frequency of 225 Hz, stroboscopic pulses of the 549 nm laser were applied for 1 ms per frame at maximum intensity to reduce motion blur. Single-molecule localization and tracking were conducted using SLIMfast, a MATLAB implementation of the MTT algorithm [39], with parameters and analysis methods applied as detailed previously [40], including settings for localization accuracy, competitor limits, and diffusion constant thresholds.

Statistical analyses

Unless stated otherwise, *P*-values were calculated using a one-way ANOVA or *t*-test with a 95% confidence interval using GraphPad Prism suite.

Immunofluorescence

Cells were grown on coverslips (Azn Scientific #ES0117650) that were pre-washed in 70% ethanol and coated with gelatin in tissue culture-treated six-well plates. After indicated treatments, cells were washed with 1 ml of PBS and fixed in 4% paraformaldehyde (UBC Chemical Stores #OR683105) for 15 min. After fixation, cells were washed and permeabilized with 1 ml of 0.025% Triton-X for 5 min, followed by two 10-min washes with PBS. Samples were blocked by gentle mixing in PBS 5% Bovine Serum Albumin (BSA) for 30 min. α -HA (Invitrogen SG77 715 500) was diluted at 1:100 in PBS or α -Flag at 1:50 (Sigma M2) and added to cells in coverslips for 1 h. Samples are washed twice with PBS (5 min for each wash). Coverslips were then incubated in Alexa Fluor 594 (A11005) 1:1000 for 1 h and washed with PBS twice (5 min for each wash). Samples are then incubated with

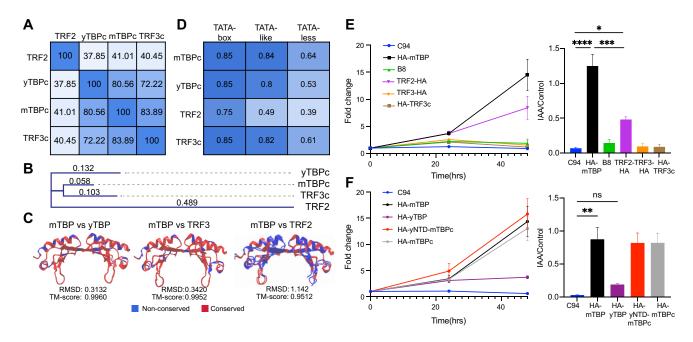


Figure 1. Conservation among the TBP homologs does not predict the ability to rescue lethality from TBP depletion. (A) Amino acid sequence percent similarity in the core domain of TBP homologs depicted as a heatmap matrix. (B) Evolutionary distance between TBP homologs based on conservation of the core domains. Branch lengths are indicated. (C) The structure of the homologs was modeled using iCn3D, utilizing AlphaFold2-predicted protein structures. Protein structure conservation was analyzed by performing pairwise comparisons against mTBP using iCn3D; RMSD, root mean square deviation; TM-score, template modeling score. (D) Alphafold3 was used to predict DNA binding of the core domains of the homologs to three types of promoters: TATA-box, TATA-like, and TATA-less. The ipTM scores, indicating the confidence in the predicted model, are represented as a matrix heatmap. (E) CCK8 growth curves (left) of parental mESCs (C94, B8) and mESCs expressing TRF2-HA, TRF3-HA, and TRF3c-HA for 48 h after IAA treatment to deplete endogenous TBP (right). The growth values at 48 h for IAA treated mESCs are normalized to untreated control to calculate the percent rescue, and plotted as a bar graph with error bars representing standard error of the mean (SEM). (F) Same as E but for HA-mTBP, HA-yTBP, HA-yNTD-mTBP, and HA-mTBPc. Statistics calculated using one-way ANOVA: ns, nonsignificant; *P-value ≤ 0.05, **P-value ≤ 0.001, *****P-value ≤ 0.0001.

4',6-diamidino-2-phenylindole (DAPI) (300 nM in PBS) for 5 min and washed twice with PBS (5 min for each wash). Coverslips were assembled using Vectashield mounting medium (BioLynx #VECTH1000). Fluorescent images were collected using the Leica DMI6000B inverted fluorescence microscope.

Results

Homologous TBPs do not fully rescue TBP lethality in mouse ESCs

Species- and tissue-specificities of the TBP homologs may arise from differences in nonconserved protein sequences [15]. Multisequence alignment and phylogenetic analysis show that the TBP homologs (mouse and yeast TBP orthologs, and mouse paralogs TRF2 and TRF3) share 35%-65% similarity (Supplementary Fig. S1A), but pairwise comparisons of the mTBP core (mTBPc) with TRF3 core (TRF3c), yeast TBP core (yTBPc), and TRF2, which lack an NTD, show 84%, 80%, and 41% similarity, respectively (Fig. 1A), and reflect the phylogenetic distance between homologs (Fig. 1B). Furthermore, pairwise comparisons of Alphafold2 predicted structures between the homologs and mTBP show root mean square deviation (RMSD) under 2Å and template-modeling score (TM score) >0.9, suggesting highly similar structures among the homologs but with TRF2 as most different (Fig. 1C) [42]. Using Alphafold3, we modeled the DNA-binding capabilities of the homolog cores on promoter sequences containing the canonical TATA-box motif (TATAWAW), a TATAlike sequence (only TATA), or no motif (TATA-less), extracting the ipTM score as a measure of model accuracy [33]. All homologs, either full-length or core only, show decreasing ipTM scores from TATA-box to TATAless promoters (Fig. 1D and Supplementary Fig. S1B), but TRF2 shows the lowest ipTM scores for all promoter types, with some scores falling below the 0.6 cutoff for model confidence (Fig. 1D and Supplementary Fig. S1B). These analyses suggest that for most sequences without the TATA-box motif, mTBP, yTBP, and TRF3 would function similarly in terms of binding DNA compared to TRF2.

To test this prediction, we designed a TBP replacement assay using a previously described homozygous knock-in of the minimal auxin inducible degron (mAID) to TBP (C94 mESCs), and subsequent CRISPR-Cas9 knock-out of TRF2 (B8 and F6 mESCs) verified by western blot analysis [28, 31] (Supplementary Fig. S1C). We confirmed by CUT&Tag that, after 24 h of IAA treatment, mAID-TBP is ~90% depleted (Supplementary Fig. S1D). Furthermore, expression analyses confirm TRF2 knockout in B8/F6 and that these mESCs do not express TRF3 [28]. We stably integrated the HA-tagged wild-type mouse and yeast TBP (HA-mTBP and HA-yTBP) orthologs in C94 mESCs, and the HA-tagged TRF3 paralog (TRF3-HA) in F6 mESCs. To test the role of the variable NTD, the HA-tagged truncated core of TRF3 (TRF3c-HA) was stably integrated in F6, and the HA-tagged mouse TBP core (HA-mTBPc) and a chimeric yeast NTD fused to mTBPc (HA-yNTD-mTBPc) were stably integrated in C94 individually (Supplementary Fig. S1E). The TRF2-HA mESCs (B8HA) were generated and described previously [28]. Ectopic expression of homologs when the endogenous TBP is

present was detected by western blot and quantified relative to the mAID-TBP protein levels (Supplementary Fig. S1F and G). Nuclear localization was detected by immunofluorescence analysis, with TRF3 and TRF3c showing both nuclear and cytoplasmic signals (Supplementary Fig. S1H). In each cell line, when the IAA drug is added the endogenous mAID-TBP is rapidly degraded, enabling a functional test of cell viability for each homolog and fusion protein. Although each construct used the same promoter sequence, the resulting homologs and fusion proteins had varying expression levels that mostly did not change upon IAA treatment (Supplementary Fig. S1G), suggesting inherent differences in protein stability independent of endogenous TBP expression. The differences in protein abundance between homologs may play an undefined role in their cellular and molecular function, though these differences did not correlate with the ability to rescue cell viability. Furthermore, the acute depletion system requires at least 6 h of IAA treatment, which may allow cells to compensate for the loss of endogenous TBP. Therefore, the following results must be viewed in light of these technical limitations.

Using the CCK8 growth assay with and without IAA (Fig. 1E and F, and Supplementary Fig. S1I), we measured cell growth and viability of each homolog and calculated the ratio of growth at 48 h for IAA over control to quantify percent rescue. As expected, IAA treatment of the parental cell line C94 resulted in \sim 90% cell death by 48 h (Fig. 1E and F). No homolog fully rescued cell viability upon TBP depletion, but TRF2-HA demonstrated a partial rescue at \sim 50%, whereas HA-yTBP weakly supported ~25% rescue, and TRF3-HA showed no rescue (Fig. 1E and F). Surprisingly, TRF3c-HA also failed to rescue the loss of endogenous TBP (Fig. 1E), despite being most similar to HA-mTBPc, which fully rescued cell viability along with the chimeric HA-yNTD-mTBPc (Fig. 1F). These results suggest that the core domain, not the variable NTD, dictates the ability to support cell viability, and that sequence and structural similarity between TBP homologs do not predict functional performance.

Conservation in the core domain of TBP homologs does not predict DNA-binding capability

To investigate the molecular mechanisms underlying the differences in cell viability, we measured the DNA-binding capabilities of each homolog by performing CUT&Tag using the HA antibody targeting HA-mTBP, HA-yTBP, and TRF3-HA in control and IAA-treated cells. We performed two independent replicates with spike-in normalization, and aligned the reads onto the mouse genome. The TRF2-HA CUT&Tag was previously published [28], and the data were reanalyzed here. Whole genome Pearson correlation analyses show a high correlation between replicates, and clustering analyses show that the TRF3-HA cluster away from the other homologs, with strong consistency between replicates (Supplementary Fig. S2A and B). In both control and IAA-treated conditions, the wild-type HA-mTBP, TRF2-HA, and HA-yTBP can recognize and bind onto the promoter of Gapdh, but TRF3-HA does not bind at this gene and globally (Fig. 2A and Supplementary Fig. S3A). As previously described, TRF2-HA was bound to all transcribed RNA Pol II genes [28], but global binding somewhat decreased upon depletion of endogenous TBP (Fig. 2B). This reduction may be due to decreased TFIIA binding following TBP depletion [28], as TRF2 is known to interact with TFIIA [42], and likely not through heterodimerization as we observed no interaction between TBP and TRF2 via co-immunoprecipitation (Co-IP) (Supplementary Fig. S3B). In contrast, TRF3-HA was bound to RNA Pol II promoters at an extremely low level (Fig. 2B and Supplementary Fig. S3A). The ortholog HA-yTBP was bound to all expressed genes (Fig. 2B), but with ~44% times higher binding levels than HA-mTBP, as quantified by linear regression analysis (Fig. 2E, top).

Unlike RNA Pol II, transcription by RNA Pol III in mESCs is critically dependent on TBP [29]. At the tRNA109-TryGTA and tRNA110-AlaAGC loci, we observed that TRF2-HA binding is decreased when the endogenous TBP is depleted (Fig. 2C). The HA-yTBP exhibited a low level of binding whereas TRF3-HA showed near background level binding at these tRNA genes (Fig. 2C and Supplementary Fig. S3C). Globally, TRF2-HA binding at tRNA genes decreased by over 50% when the endogenous TBP was depleted (Fig. 2D and Supplementary Fig. S3C), consistent with the observed effect on RNA Pol II genes. TRF3-HA failed to bind to most tRNA genes (Fig. 2D and Supplementary Fig. S3C). HAyTBP showed some binding for all tRNA genes (Fig. 2D and Supplementary Fig. S3D), albeit at 65% lower levels than the wild-type HA-mTBP as quantified by linear regression analysis (Fig. 2E, bottom), which is in stark contrast to the pattern at RNA Pol II promoters (Fig. 2B and E).

What determines the differences in DNA binding between the homologs, despite the strong similarity in protein sequence and structure? Our data show that HA-yTBP and TRF2-HA bound equally to gene promoters containing a defined TATAbox as to those without the conserved motif (Supplementary Fig. S3E), consistent with previous studies showing sequenceindependent binding of TBP in vivo [43, 44]. For RNA Pol II initiation, structural studies have shown that mammalian TBP may be positioned by the TFIID complex [8], and in tRNA expression, the TFIIIC complex first binds the promoter and recruits the TBP-containing TFIIIB complex [45, 46]. Using Co-IP assays, we observed that HA-yTBP interacts with both mouse TAF4 and BRF1 (Fig. 2F) albeit to a lesser degree than HA-mTBP (Supplementary Fig. S3F), providing a potential mechanism for DNA binding for the ortholog, though the difference in degree of interactions may be determined by protein expression levels. However, previous studies have shown that mouse TRF2 and TRF3 do not interact with TFIID and instead form their own complexes with TFIIA [47, 48]. Moreover, previous studies using the mAID-TBP system in mESCs showed that TRF2 did not interact with TFIID [28], suggesting that the paralogs have evolved an alternative pathway to DNA binding than the TBP orthologs.

Failure to fully rescue lethality correlates with the inability to support Pol III transcription

Given the different DNA-binding capabilities we observed, we questioned how the homologs affect the recruitment of the RNA Pols. We first assessed the chromatin occupancy of RNA Pol II through CUT&Tag with and without IAA in the presence of different homologs in two biological replicates. Whole genome Pearson correlation and cluster analyses show high correlation between replicates and clustering of Pol II data based on the expressed homolog (Supplementary Fig. S4A). Consistent with previous results, RNA Pol II occupancy was not affected by the degradation of TBP or the expression of

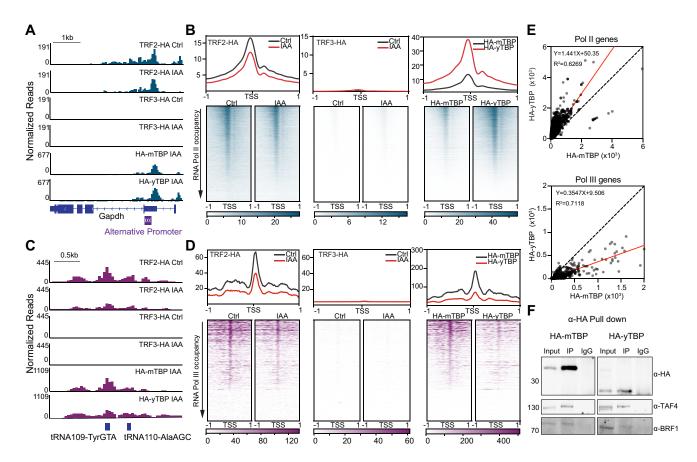


Figure 2. DNA binding of TBP homologs is independent of core domain conservation. (A) Gene browser tracks at *Gapdh* for α-HA CUT&Tag of TRF2-HA, TRF3-HA, HA-mTBP, and HA-yTBP in control (Ctrl, DMSO) or indole-3-acetic acid (500 μM, IAA)-treated mESCs. Alternative promoters are indicated. (B) Genome-wide average plots (top) and heatmaps (bottom) arranged by decreasing Pol II occupancy of HA CUT&Tag for TRF2-HA (Ctrl versus IAA), TRF3-HA (Ctrl versus IAA), HA-mTBP (IAA), and HA-yTBP (IAA) in a 2 kb window surrounding the TSS of all RNA Pol II genes. (C) Gene browser tracks at tRNA109-TyrGTA and tRNA110-AlaAGC for HA CUT&Tag of TRF2-HA, TRF3-HA, HA-mTBP, and HA-yTBP in control or IAA-treated mESCs. (D) Genome-wide average plots (top) and heatmaps (bottom) arranged by decreasing Pol III occupancy of HA CUT&Tag for TRF2-HA (Ctrl versus IAA), TRF3-HA (Ctrl versus IAA), HA-mTBP (IAA), and HA-yTBP (IAA) in a 2 kb window surrounding the TSS of all tRNA genes. (E) Normalized read counts of IAA-treated HA-yTBP CUT&Tag signal versus IAA-treated HA-mTBP in the promoter (–250 to TSS) region of each Pol II (top) gene and in the gene body of each Pol III (bottom) gene are displayed as scatter plots. (F) Co-IP using α-HA or IgG for cells expressing HA-mTBP (left) or HA-yTBP (right) and blotted with α-HA, α-TAF4, and α-BRF1.

different TBP homologs, with consistent biological replicates (Supplementary Fig. S5A-C) [28].

Next, we examined potential changes to RNA Pol III recruitment. We performed RNA Pol III CUT&Tag with or without the endogenous TBP in two biological replicates and spike-in normalization. Pearson correlation analysis shows high correlation between replicates, and clustering analysis indicates that IAA-treated samples cluster away from other homologs, confirming strong dependency of Pol III binding on the presence of endogenous TBP (Supplementary Fig. S4B). RNA Pol III recruitment to tRNA109-TyrGTA and tRNA110-AlaAGC genes (Fig. 3A) and to all tRNAs (Fig. 3B) and Supplementary Fig. S5D) was significantly impaired when the endogenous TBP was depleted, consistent with previous findings [28]. However, when TRF2-HA and HA-yTBP were expressed in the absence of endogenous TBP, we observed a partial rescue of RNA Pol III occupancy at these loci (Fig. 3A), and at all tRNA genes (Fig. 3B) to \sim 34% and 32% relative to wild-type mTBP (Fig. 3C and E), respectively, which correlates with the homologs' ability to partially bind onto tRNA genes (Supplementary Fig. S5D). TRF3-HA did not support RNA Pol III recruitment at these loci (Fig. 3A) and at all tRNA genes

(Fig. 3B and D, and Supplementary Fig. S5D) upon TBP degradation. Notably, TRF2-HA and HA-yTBP supported different subsets of tRNAs, which is not correlated by the expression levels of the tRNAs (Fig. 3F). The binding ability of TBP homologs at tRNA genes correlates with the ability to support RNA Pol III binding, which reflects the varying ability to rescue lethality due to TBP depletion.

The variable NTD does not affect DNA binding and function of TBP under homeostasis

The divergent NTD is variable both in sequence and length, with the NTDs for TRF3, mTBP, and yTBP at ~170, 130, and 60 amino acid residues, respectively (Supplementary Fig. S1E). Although removal of the NTD in mTBP did not affect the growth phenotype of mESCs, we assessed its molecular role by performing CUT&Tag on the HA-mTBPc, TRF3c-HA, and the chimeric HA-yNTD-mTBPc, with and without IAA treatment. Biological replicates of CUT&Tag show strong consistency for each expressed homolog (Supplementary Figs S2A and B, and S6A–E). At the *Gapdh* locus, the HA-mTBPc and HA-yNTD-mTBPc were bound to the promoter region at sim-

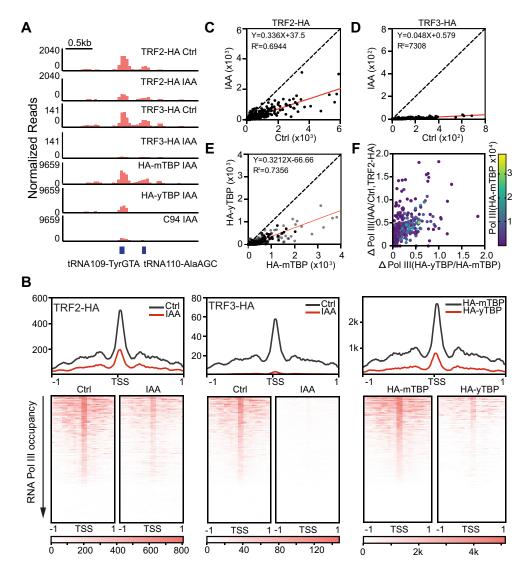


Figure 3. TBP homologs differentially affect RNA Pol III transcription of tRNA genes. (A) Gene browser tracks at tRNA109-TyrGTA and tRNA110-AlaAGC for Pol III CUT&Tag of mESCs expressing TRF2-HA, TRF3-HA, HA-mTBP, and HA-yTBP in control or IAA-treated conditions. (B) Genome-wide average plots (top) and heatmaps (bottom) of Pol III CUT&Tag for mESCs expressing TRF2-HA (Ctl versus IAA), TRF3-HA (Ctl versus IAA), HA-mTBP (IAA), and HA-yTBP (IAA) in a 2 kb window surrounding the TSS of all tRNA genes arranged by decreasing Pol III occupancy in control conditions. (C-E) Normalized read counts of Pol III CUT&Tag signal in TRF2-HA IAA versus Ctrl (C), TRF3-HA IAA versus Ctrl (D), and in IAA-treated HA-yTBP versus IAA-treated HA-mTBP (E) in the gene body of each Pol III gene are displayed as scatter plots. (F) The change in the normalized read counts of Pol III CUT&Tag signal (IAA/Ctrl, TRF2-HA) versus the change in IAA treated Pol III CUT&Tag signal (HA-yTBP/HA-mTBP) are displayed as a scatter plot for each tRNA genes. The heatmap color represents the normalized read counts of Pol III CUT&Tag signal in IAA-treated HA-mTBP mESCs.

ilar levels as the full-length HA-mTBP, whereas TRF3c-HA failed to bind (Fig. 4A). This pattern is consistent for all RNA Pol II genes (Supplementary Fig. S6A and D). Scatter plot analysis showed highly similar binding between the core and full-length mTBP, whereas the HA-yNTD-mTBPc showed a 45% increase compared to HA-mTBP (Fig. 4B).

We next examined the role of the NTD in homolog binding on tRNA genes. For mTBP, removal of the endogenous NTD or replacement with the yeast NTD showed no change in binding ability at the *tRNA109-TyrGTA* and *tRNA110-AlaAGC* genes (Fig. 4A, bottom). Heatmaps centered at tRNA TSSs (Supplementary Fig. S6A, right) and scatter plot analysis (Fig. 4C) of HA-mTBPc showed highly similar binding levels at all tRNA genes compared to HA-mTBP, whereas HA-yNTD-mTBP showed 25% increase in binding compared to wild-type. As with RNA Pol II genes, the removal of the NTD

did not change the behavior of TRF3 binding on tRNA genes (Fig. 4A and Supplementary Fig. S6D).

To measure effects on transcription, CUT&Tag of RNA Pol II and RNA Pol III was also performed for each cell line and plotted as heatmaps in a 2 kb window around the TSS for all RNA Pol II genes or tRNA genes in two biological replicates (Fig. 4D and Supplementary Figs S4A and B, and S6B and C). The RNA Pol II occupancy did not show significant changes in the truncated or chimeric products compared with either full-length protein, whereas the RNA Pol III had a minor increase in occupancy for the HA-yNTD-mTBPc, though there was no effect on cell viability (Figs 1F and 4D). Taken together, we conclude that, although the highly divergent NTD may have minor effects on TBP binding at both RNA Pol II and III promoters, it has no major effects on RNA Pol II or III transcription at homeostasis.

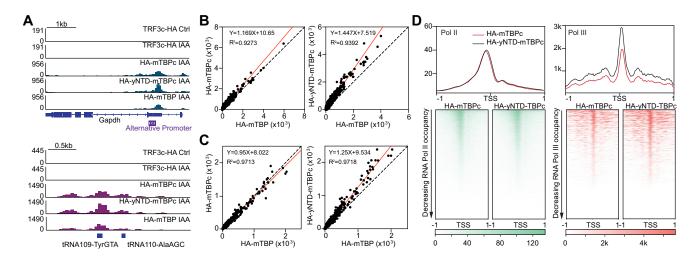


Figure 4. The variable NTD does not affect DNA binding and function of TBP under homeostasis. (A) Gene browser tracks at *Gapdh* for HA CUT&Tag of mESCs expressing TRF3c-HA, HA-mTBPc, HA-yNTD-mTBPc, and HA-mTBP in control or IAA-treated conditions. Alternative promoters are indicated. Gene browser tracks at tRNA109-TyrGTA and tRNA110-AlaAGC for HA CUT&Tag of mESCs expressing TRF3c-HA, HA-mTBPc, HA-yNTD-mTBPc, and HA-mTBP in control or IAA-treated conditions. (B) α-HA CUT&Tag normalized read counts in the promoter region of each RNA Pol II gene for HA-mTBPc versus HA-mTBP (left) and HA-yNTD-mTBPc versus HA-mTBP (right) are displayed as scatter plots. (C) tRNA gene body normalized read counts for HA CUT&TAg of HA-mTBPc versus HA-mTBP (left) and HA-yNTD-mTBPc versus HA-mTBP (right) are displayed as scatter plots. (D) Genome-wide average plots (top) and heatmaps (bottom) of CUT&TAg for RNA Pol II (left) and III (right) in mESCs expressing for HA-mTBPc and HA-yNTD-mTBPc in a 2 kb window surrounding the TSS of all RNA Pol II or tRNA genes.

The variable NTD modulates transcriptional responses to stress

We next tested the role of the variable NTD under transcriptional reprogramming using the highly conserved heat shock (HS) response. Specifically, mESCs expressing HA-mTBP, HAmTBPc, HA-yNTD-mTBPc, and HA-yTBP were exposed to 42°C for 30 min while the endogenous TBP was depleted, and CUT&Tag analysis for HA and RNA Pol II was performed in two biological replicates with spike-in normalization (Supplementary Fig. S7A-C). Gene browser tracks for both HA and RNA Pol II CUT&Tag at the HS-induced gene Hspa1a showed massive increases in homolog and RNA Pol II binding upon HS compared to control samples at 37°C in all cell lines (Fig. 5A and B). DGE analysis of RNA Pol II CUT&Tag data in cells expressing HA-mTBP showed that 1679 and 1392 genes are significantly upregulated and downregulated, respectively, in HS samples compared to control (Supplementary Fig. S7D).

The change of induction was quantified by measuring the fold change in the promoter and gene body (-250 to TES)read counts of each upregulated gene at HS versus non-HS conditions. Although all HA-tagged homologs showed increased binding upon HS (Supplementary Fig. S7A and C), the extent of this change varied among the expressed constructs. Notably, the truncated HA-mTBPc exhibited a greater increase in occupancy on HS-induced genes compared to the full-length HA-mTBP during HS (Fig. 5C and Supplementary Fig. S7E). Additionally, incorporating the yeast NTD into mTBPc affected the chimeric TBP binding to HS-induced genes, resulting in a smaller increase in binding relative to HAmTBPc and HA-mTBP (Fig. 5C and Supplementary Fig. S7E). We also observed that HA-vTBP was less efficient in being recruited to HS-related genes compared with HA-mTBP in mESCs (Fig. 5C and Supplementary Fig. S7E).

As previously observed, RNA Pol II in TBP-depleted C94 cells was still recruited to HS-induced genes (Fig. 5B), and is unaffected by the presence of exogenous HA-mTBP (Fig.

5B and D, and Supplementary Fig. S7B and C). Although gene induction does not require TBP, mESCs expressing the HA-mTBPc exhibited a greater change in RNA Pol II induction compared to cells expressing the full-length HA-mTBP (Fig. 5D and Supplementary Fig. S7E), suggesting an exaggerated RNA Pol II response. This effect is somewhat modulated in the HA-yNTD-mTBPc cells, though the change in induction remains higher than the HA-mTBP (Fig. 5D and Supplementary Fig. S7E). The HA-yTBP mESCs exhibited similar levels of RNA Pol II induction as the HA-mTBP and C94 samples, suggesting no modulating effects by the fulllength ortholog (Fig. 5D and Supplementary Fig. S7E). Taken together, these analyses show that, although the NTD of TBP plays a minor role during homeostasis, it may function as a modulator of RNA Pol II induction under transcriptional reprogramming during stress.

TBP homologs display distinct DNA-binding dynamics

We next examined the biophysical properties of each homolog by performing live-cell single molecule imaging and single particle tracking (SPT). First, we stably integrated Halo-tagged TBP versions in either the C94 (Halo-yTBP, Halo-mTBPc, and Halo-yNTD-mTBPc) or F6 (Halo-TRF2, Halo-TRF3, and Halo-TRF3c) cell lines and measured expression by western blot (Supplementary Fig. S8A). For the Halo-mTBP, we used the previously described endogenous knock-in of HaloTag in the TBP locus in mESCs where the cell line maintained pluripotency potential, showing that the HaloTag did not affect TBP function [31].

To determine the residence times on DNA for each homolog, Halo-tagged expressing mESCs were labeled with Halo-specific JF549 and imaged in slow-tracking mode at 2 Hz [49], such that diffusing molecules "blur out" while DNA-interacting molecules appear as diffraction-limited spots (Fig. 6A). Consistent with the CUT&Tag data, we observed

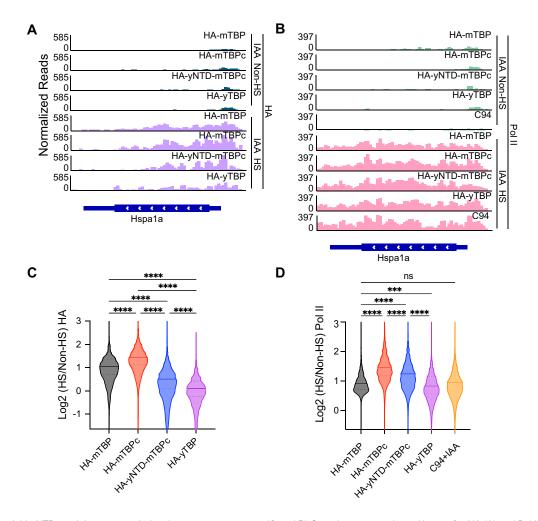
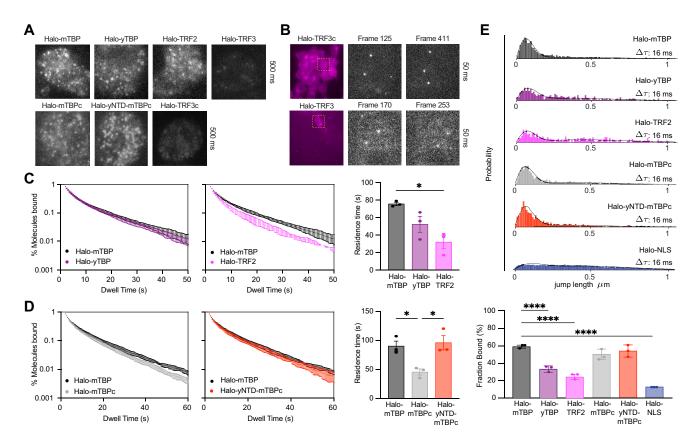



Figure 5. The variable NTD modulates transcriptional responses to stress. (**A** and **B**) Gene browser tracks at *Hspa1a* for HA (A) and Pol II (B) CUT&Tag of mESCs expressing HA-mTBP, HA-mTBPc, HA-yNTD-mTBPc, and HA-yTBP in IAA-treated nonheat-shocked (non-HS) or heat-shocked (HS) conditions. (**C** and **D**) The change in normalized read counts of HA (C) and Pol II (D) CUT&Tag signal in IAA-treated HA-mTBP, HA-mTBPc, HA-yNTD-mTBPc, and HA-yTBP mESCs was quantified as log2 (HS/non-HS) in the promoter and gene body of each HS-induced Pol II gene, and visualized as a violin plot. Statistics calculated using one-way ANOVA: ns, nonsignificant; ***P-value ≤ 0.001, ****P-value ≤ 0.0001.

diffraction-limited spots for Halo-mTBP, Halo-yTBP, and Halo-TRF2, but not Halo-TRF3 (Fig. 6A), suggesting that Halo-TRF3 does not form stable interactions with DNA. Indeed, using a ten-fold faster frame rate (20 Hz), we were able to capture diffraction-limited spots for Halo-TRF3 (Fig. 6B), confirming much more dynamic DNA interactions compared to the other homologs. Using the SLIMfast algorithm [38], single molecules were localized and tracked, and the dwell times were plotted as semi-log histograms averaged across three biological replicates (Fig. 6C and D), with high consistency between replicates (Supplementary Fig. S8B). A twocomponent exponential decay model was fitted to the dwell time curves, and the apparent residence times for each homolog was extracted and corrected for photobleaching as previously described [31, 40] (Fig. 6C and D). Consistent with previous studies, the average residence time of Halo-mTBP is about 80 seconds (Fig. 6C and D). Halo-yTBP and Halo-TRF2 showed decreased residence times compared to Halo-mTBP, at \sim 50 and 30 s, respectively (Fig. 6C). Although we were able to detect diffraction-limited spots at faster frame rates, Halo-TRF3 was too dynamic to perform a similar analysis.

We assessed the contribution of NTD in DNA-binding residence times by performing slow tracking SPT for the truncation and chimeric proteins (Halo-TRF3c, Halo-mTBPc, and Halo-yNTD-mTBPc) (Supplementary Fig. S8B). Slow-tracking analysis shows that Halo-mTBPc is more dynamic than Halo-mTBP, with a residence time for the core at about half of the full-length TBP (Fig. 6D). Addition of the yNTD resulted in increased residence time for the chimeric protein to a level similar to the Halo-mTBP (Fig. 6D), suggesting that the NTD of both yeast and mouse TBP helps stabilize the mTBP core on chromatin (Fig. 6D). As with the full-length Halo-TRF3, the DNA binding dynamics by the core-only Halo-TRF3c was detectable at 20 Hz but not at 2 Hz (Fig. 6A and B). These results suggest that DNA binding residence times are largely determined by the core domain, with some modulation by the NTD.

Next, we examined the dynamic behavior of the homologs. The mESCs expressing full-length Halo-tagged TBP homologs were labeled with a photoactivatable dye (pa-JF549) and imaged at high illumination intensity using stroboscopic photoactivatable single particle tracking (spaSPT). Individual molecules were localized and their displacement between consecutive frames was measured as previously described [40, 50] and plotted as a histogram, with the HaloTag fused to a nuclear localization signal (Halo-NLS) as a non-DNA binding

Figure 6. TBP homologs display distinct DNA binding dynamics. (**A**) Still images from SPT imaging of Halo-yTBP, Halo-yTBP, Halo-TRF2, Halo-TRF3, Halo-mTBPc, Halo-yNTD-mTBPc, and Halo-TRF3c in IAA-treated mESCs indicating DNA-bound diffraction limited spots. (**B**) Epifluorescence and still images from SPT imaging of Halo-TRF3 and Halo-TRF3c using 20 Hz. (**C** and **D**) Dwell time histogram (left two panels) of the fraction of Halo-mTBP (C and D), Halo-yTBP (C), Halo-TRF2 (C), Halo-mTBPc (D), and Halo-yNTD-mTBPc (D) molecules remaining bound for IAA-treated mESCs. Quantification of the residence time (right) of each cell line. n = 3 biological replicates with 8–10 cells per replicate. Error bars represent SEM. (**E**) Jump length histogram measured in displacements (μm) after four consecutive frames ($\Delta \tau = 16$ ms) during spaSPT for mESCs expressing Halotagged homologs or Halo-NLS as control (left). Fraction of bound molecules for each protein extracted from fitting the jump length histogram with a two-state kinetic model. (C-E) Error bar represents SEM. Statistics calculated using one-way ANOVA: *P-value ≤ 0.005; ****P-value ≤ 0.0001.

control (Fig. 6E and Supplementary Fig. S8C). The higher proportion of short displacements (jump length) for Halo-mTBP suggests more DNA bound molecules compared to freely diffusing ones, as characterized by long displacements. In contrast, Halo-yTBP and Halo-TRF2 had smaller proportions of short displacements compared to Halo-mTBP, suggesting a higher population of freely diffusing molecules. Using Spot-On [50], we fitted a two-state kinetic model on the displacement histograms to represent "bound" and "free" populations and the characteristic diffusion coefficients for each population. From these models, Halo-mTBP shows the highest proportion of bound molecules at 59%, whereas Halo-TRF2 and Halo-yTBP are at 24% and 33%, respectively (Fig. 6E). We also examined the diffusion coefficients of the freely diffusion molecules (Supplementary Fig. S8D) but there are no statistically significant differences in diffusive behavior among the homologs. Since Halo-TRF3 did not exhibit measurable binding by SPT, we excluded this homolog from the analysis.

To test the role of NTD on TBP dynamics, we performed a similar analysis on the truncation (Halo-mTBPc) and chimeric (Halo-yNTD-mTBPc) constructs. Both versions exhibited binding percentages comparable to mouse TBP, with 50% for Halo-mTBPc (mouse TBP core) and 54% for Halo-yNTD-mTBPc (Fig. 6E). As with the homologs, these truncation and chimeric proteins display similar diffusive behav-

iors (Supplementary Fig. S8D). Consistent with the slow-tracking results, these data suggest that the core region of TBP is the primary factor for determining the fraction of bound molecules and the dynamic behavior in the nucleus, whereas the NTD plays minor roles that may be important for fine-tuning changes in transcriptional responses.

Discussion

In this study, we investigated the conserved and divergent properties of TBP homologs in mESCs. Despite high amino acid sequence conservation in the core domains, TBP homologs exhibited various capabilities in supporting cell viability, DNA binding, and transcription. Although mouse TRF3 shares the highest sequence similarity with mouse TBP in the core domain, it displayed the least conserved behavior at the functional and molecular level. In contrast, the more divergent yeast TBP and mouse TRF2 can partially support cell growth, DNA binding, and RNA Pol III transcription. Additionally, compared to the core domain, the species-specific differences in the NTD primarily manifest in altered transcriptional stress response. Lastly, each homolog displayed distinct DNA binding dynamics that correlated with the functional and molecular phenotypes, suggesting that dynamics may be an evolved

property of the core domain that can be partially modulated by the NTD.

It has been widely accepted that amino acid sequences determine protein structure, which in turn dictates biochemical function. As has been established in several studies [51, 52], protein pairs with sequence identity higher than 35%-40% are very likely to be structurally similar. Here, we provide an example where highly conserved protein sequences, with similar predicted structures, do not correlate well with their observed molecular and functional behaviors. For instance, TRF3 shares 83% similarity in the core domain with mouse TBP, yet even the truncated TRF3c has only minimal DNA binding and cannot support Pol III transcription. In contrast, the more diverged TRF2 core domain—with only ~40% similarity to mouse TBP—can partially rescue cell viability and Pol III transcription. One possibility for this discrepancy is that TRF3 has evolved to be more restricted to tissue-specific expression than TRF2. Although mice display reproductive defects upon knockout of either paralog [23-25], most cell types express TRF2 whereas TRF3 expression is restricted to oocytes in mice [48]. Previous studies have shown that TRF3 does not interact with canonical TFIID, but instead interacts with TFIIA to form an oocyte-specific PIC [48]. It may be that there are as yet unidentified oocyte-specific cofactors that help TRF3 form this noncanonical PIC, much like how TRF2 interacts with the testis-specific TFIIA paralog ALF [47]. If so, the absence of such cofactors in mESCs would limit the ability of TRF3 to functionally replace TBP in mESCs.

How do the different TBP homologs exhibit such diverse molecular phenotypes despite high conservation in protein sequence and predicted structure? We propose that the distinct DNA-binding dynamics observed among the homologs provide an underlying mechanism for such functional diversity. In this model, subtle variations in DNA interaction and binding kinetics enable homologous TBPs to perform contextdependent functions, potentially affecting promoter recognition and recruitment of other general transcription factors. Our slow SPT data showing that TRF3 and the truncated TRF3c have much faster DNA binding dynamics than mouse TBP suggests that the majority of the differences in DNAbinding dynamics is largely due to key residues within the DNA-binding domain, with the NTD acting as a secondary modulating factor. This dynamics-based model is not mutually exclusive to the potential presence of homolog-specific cofactors as speculated above. Indeed, presence of such cofactors could influence the DNA binding dynamics of each homolog. As such, these dynamics could provide a level of regulatory specificity that underpins the distinct biological roles of TBP homologs in different species and tissues.

A secondary role for the NTD compared to the core domain is somewhat surprising given that this sequence represents the largest divergence in TBP throughout evolution. Although deletion of the NTD in mice results in post-embryonic developmental lethality, yeast cells without the NTD grow well and are phenotypically indistinguishable from wild-type cells [53, 54]. In humans, expansion of the poly-glutamine (poly-Q) stretch in the NTD leads to the neurodegenerative disorder spino-cerebellar ataxia 17 [55]. Intriguingly, this poly-Q stretch is conserved in the mouse TBP but absent in yeast NTD and the paralogs [15], further indicating a complex yet still undefined role for the NTD in multicellular development and disease. Yet at the molecular level, such species-specific differences in the NTD primarily manifest in altered transcrip-

tional stress response (Figs 4 and 5), suggesting a modulatory role in changing environments. In this molecular context, the observed variations in DNA-binding kinetics that are attributable to the NTD (Fig. 6C) could influence their ability to adapt to changing conditions. For instance, TBPs with higher DNA-binding affinity and stability might be more likely to remain bound at promoter regions and may be less responsive to fast signals required for stress response. Conversely, truncated TBP with more transient DNA interactions might facilitate a more dynamic, fluid exchange of transcription factors upon stress, thereby allowing for rapid transcriptional reprogramming under stress conditions. In this way, subtle changes in the conserved core can result in major changes in function, while large changes in NTD can have minor modulating effects, enabling a balance between flexibility and essentiality for TBP in eukaryotic transcription.

Acknowledgements

We thank Dr. Eric Jan for providing S2 cells for spike-in normalization. We thank T. Stach (BRC-seq, UBC) for Illumina sequencing. This work was supported by Life Sciences Institute Cores (LSI Imaging, ubcFLOW, and QPCR Core), and by the UBC GREx Biological Resilience Initiative. For insightful comments on the manuscript, we thank Dr. Leann Howe.

Author contributions: Conceptualization: J.H.C., J.Z.J.K., and S.S.T.; Methodology: J.H.C., J.Z.J.K., A.F., and T.F.N.; Investigation: J.H.C., J.Z.J.K., A.F., and T.F.N.; Visualization: J.H.C., J.Z.J.K., A.F., T.F.N., and S.S.T.; Funding acquisition: J.H.C. and S.S.T.; Supervision: S.S.T.; Writing—original draft: J.H.C., J.Z.J.K., A.F., and S.S.T.; Writing—review and editing: J.H.C., J.Z.J.K., T.F.N., and S.S.T.

Supplementary data

Supplementary data is available at NAR online.

Conflict of interest

The authors declare that they have no competing interests.

Funding

This work was supported by the Canadian Institutes for Health Research Project Grant award to S.S.T. (PJT-162289 and PJT-191938); the National Sciences and Engineering Research Council Discovery Grant award to S.S.T. (RGPIN-2020-06106), and The Stem Cell Network Early Career Researcher Jump Start Awards Program to S.S.T. (ECR-C4R1-11). Funding to pay the Open Access publication charges for this article was provided by the Canadian Institutes of Health Research. J.C. was supported by the University of British Columbia 4-Year Fellowship Program. S.S.T. is supported by the Canada Research Chair Tier II (CRC-RS 2021-00294).

Data availability

All sequencing data have been deposited in Gene Expression Omnibus (Accession number: GSE281338). All other data are available in the manuscript or in the supplementary materials.

References

- Segall J, Matsui T, Roeder RG. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. *J Biol Chem* 1980;255:11986–91. https://doi.org/10.1016/S0021-9258(19)70231-2
- Matsui T, Segall J, Weil PA *et al*. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. *J Biol Chem* 1980;255:11992–6. https://doi.org/10.1016/S0021-9258(19)70232-4
- 3. Kwon H, Green MR. The RNA polymerase I transcription factor, upstream binding factor, interacts directly with the TATA box-binding protein. *J Biol Chem* 1994;269:30140–6. https://doi.org/10.1016/S0021-9258(18)43788-X
- Cormack BP, Struhl K. The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. *Cell* 1992;69:685–96. https://doi.org/10.1016/0092-8674(92)90232-2
- White RJ, Rigby PWJ, Jackson SP. The TATA-binding protein is a general transcription factor for RNA polymerase III. *J Cell Sci* 1992;1992:1–7. https://doi.org/10.1242/jcs.1992.Supplement_16.1
- Schröder O, Bryant GO, Geiduschek EP et al. A common site on TBP for transcription by RNA polymerases II and III. EMBO J 2003;22:5115–24. https://doi.org/10.1093/emboj/cdg476
- Shen Y, Kassavetis GA, Bryant GO et al. Polymerase (Pol) III TATA box-binding protein (TBP)-associated factor Brf binds to a surface on TBP also required for activated Pol II transcription. Mol Cell Biol 1998;18:1692–700. https://doi.org/10.1128/MCB.18.3.1692
- 8. Patel AB, Louder RK, Greber BJ *et al.* Structure of human TFIID and mechanism of TBP loading onto promoter DNA. *Science* 2018;362:eaau8872. https://doi.org/10.1126/science.aau8872
- He Y, Fang J, Taatjes DJ et al. Structural visualization of key steps in human transcription initiation. Nature 2013;495:481–6. https://doi.org/10.1038/nature11991
- Starr DB, Hawley DK. TFIID binds in the minor groove of the TATA box. *Cell* 1991;67:1231–40. https://doi.org/10.1016/0092-8674(91)90299-E
- Kim JL, Nikolov DB, Burley SK. Co-crystal structure of TBP recognizing the minor groove of a TATA element. *Nature* 1993;365:520–7. https://doi.org/10.1038/365520a0
- Lee DK, Horikoshi M, Roeder RG. Interaction of TFIID in the minor groove of the TATA element. *Cell* 1991;67:1241–50. https://doi.org/10.1016/0092-8674(91)90300-N
- 13. Rowlands T, Baumann P, Jackson SP. The TATA-binding protein: a general transcription factor in eukaryotes and archaebacteria. *Science* 1994;264:1326–9. https://doi.org/10.1126/science.8191287
- 14. Akhtar W, Veenstra GJC. TBP-related factors: a paradigm of diversity in transcription initiation. *Cell Biosci* 2011;1:23. https://doi.org/10.1186/2045-3701-1-23
- 15. Ravarani CNJ, Flock T, Chavali S *et al.* Molecular determinants underlying functional innovations of TBP and their impact on transcription initiation. *Nat Commun* 2020;11:2384. https://doi.org/10.1038/s41467-020-16182-z
- Crowley TE, Hoey T, Liu J-K et al. A new factor related to TATA-binding protein has highly restricted expression patterns in Drosophila. Nature 1993;361:557–61. https://doi.org/10.1038/361557a0
- Persengiev SP, Zhu X, Dixit BL et al. TRF3, a TATA-box-binding protein-related factor, is vertebrate-specific and widely expressed. Proc Natl Acad Sci USA 2003;100:14887–91. https://doi.org/10.1073/pnas.2036440100
- Dantonel JC, Wurtz JM, Poch O et al. The TBP-like factor: an alternative transcription factor in metazoa? Trends Biochem Sci 1999;24:335–9. https://doi.org/10.1016/S0968-0004(99)01436-X
- 19. Ohbayashi T, Kishimoto T, Makino Y *et al.* Isolation of cDNA, chromosome mapping, and expression of the human TBP-like protein. *Biochem Biophys Res Commun* 1999;255:137–42. https://doi.org/10.1006/bbrc.1999.0159

- Di Pietro C, Ragusa M, Duro L et al. Genomics, evolution, and expression of TBPL2, a member of the TBP family. DNA Cell Biol 2007;26:369–85. https://doi.org/10.1089/dna.2006.0527
- 21. Xiao L, Kim M, DeJong J. Developmental and cell type-specific regulation of core promoter transcription factors in germ cells of frogs and mice. *Gene Expr Patterns* 2006;6:409–19. https://doi.org/10.1016/j.modgep.2005.09.005
- 22. Yang Y, Cao J, Huang L *et al.* Regulated expression of TATA-binding protein-related factor 3 (TRF3) during early embryogenesis. *Cell Res* 2006;16:610–21. https://doi.org/10.1038/sj.cr.7310064
- 23. Martianov I, Fimia GM, Dierich A *et al*. Late arrest of spermiogenesis and germ cell apoptosis in mice lacking the TBP-like TLF/TRF2 gene. *Mol Cell* 2001;7:509–15. https://doi.org/10.1016/S1097-2765(01)00198-8
- 24. Zhang D, Penttila TL, Morris PL *et al.* Spermiogenesis deficiency in mice lacking the Trf2 gene. *Science* 2001;292:1153–5. https://doi.org/10.1126/science.1059188
- Gazdag E, Santenard A, Ziegler-Birling C et al. TBP2 is essential for germ cell development by regulating transcription and chromatin condensation in the oocyte. Genes Dev 2009;23:2210–23. https://doi.org/10.1101/gad.535209
- Goodrich JA, Tjian R. TBP-TAF complexes: selectivity factors for eukaryotic transcription. *Curr Opin Cell Biol* 1994;6:403–9. https://doi.org/10.1016/0955-0674(94)90033-7
- Burley SK, Roeder RG. Biochemistry and structural biology of transcription factor iid (TFIID). *Annu Rev Biochem* 1996;65:769–99. https://doi.org/10.1146/annurev.bi.65.070196.004005
- 28. Kwan JZ, Nguyen TF, Uzozie AC *et al.* RNA polymerase II transcription independent of TBP in murine embryonic stem cells. *eLife* 2023;12:e83810. https://doi.org/10.7554/eLife.83810
- Kwan JZ, Nguyen TF, Teves SS. TBP facilitates RNA Polymerase I transcription following mitosis. RNA Biol 2024;21:706–15. https://doi.org/10.1080/15476286.2024.2375097
- Santana JF, Collins GS, Parida M et al. Differential dependencies of human RNA polymerase II promoters on TBP, TAF1, TFIIB and XPB. Nucleic Acids Res 2022;50:9127–48.https://doi.org/10.1093/nar/gkac678
- 31. Teves SS, An L, Bhargava-Shah A *et al*. A stable mode of bookmarking by TBP recruits RNA polymerase II to mitotic chromosomes. *eLife* 2018;7:e35621. https://doi.org/10.7554/eLife.35621
- 32. Wang J, Youkharibache P, Zhang D *et al.* iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. *Bioinformatics* 2020;36:131–5. https://doi.org/10.1093/bioinformatics/btz502
- Abramson J, Adler J, Dunger J et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024;630:493–500. https://doi.org/10.1038/s41586-024-07487-w
- Kaya-Okur HS, Wu SJ, Codomo CA et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 2019;10:1930.
- Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinforma Oxf Engl* 2010;26:841–2. https://doi.org/10.1093/bioinformatics/btq033
- 36. Ramírez F, Ryan DP, Grüning B *et al.* deepTools2: a next generation web server for deep-sequencing data analysis. *Nucleic Acids Res* 2016;44:W160–5. https://doi.org/10.1093/nar/gkw257
- 37. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinforma Oxf Engl* 2014;30:923–30. https://doi.org/10.1093/bioinformatics/btt656
- Normanno D, Boudarène L, Dugast-Darzacq C et al. Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher. Nat Commun 2015;6:7357. https://doi.org/10.1038/ncomms8357
- Sergé A, Bertaux N, Rigneault H et al. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 2008;5:687–94. https://doi.org/10.1038/nmeth.1233

- 40. Teves SS, An L, Hansen AS et al. A dynamic mode of mitotic bookmarking by transcription factors. *eLife* 2016;5:e22280. https://doi.org/10.7554/eLife.22280
- 41. Grimm JB, English BP, Chen J et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 2015;12:244–50. https://doi.org/10.1038/nmeth.3256
- 42. Jumper J, Evans R, Pritzel A et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583-9. https://doi.org/10.1038/s41586-021-03819-2
- 43. Pugh BF, Venters BJ. Genomic organization of human transcription initiation complexes. PLoS One 2016;11:e0149339. https://doi.org/10.1371/journal.pone.0149339
- 44. Kim J, Iyer VR. Global role of TATA box-binding protein recruitment to promoters in mediating gene expression profiles. Mol Cell Biol 2004;24:8104-12. https://doi.org/10.1128/MCB.24.18.8104-8112.2004
- 45. Ramsay EP, Vannini A. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation. Biochim Biophys Acta 2018;1861:285-94. https://doi.org/10.1016/j.bbagrm.2017.11.005
- 46. Seifert-Davila W, Girbig M, Hauptmann L et al. Structural insights into human TFIIIC promoter recognition. Sci Adv 2023;9:eadh2019. https://doi.org/10.1126/sciadv.adh2019
- 47. Martianov I, Velt A, Davidson G et al. TRF2 is recruited to the pre-initiation complex as a testis-specific subunit of TFIIA/ALF to promote haploid cell gene expression. Sci Rep 2016;6:32069. https://doi.org/10.1038/srep32069

- 48. Yu C, Cvetesic N, Hisler V et al. TBPL2/TFIIA complex establishes the maternal transcriptome through oocyte-specific promoter usage. Nat Commun 2020;11:6439. https://doi.org/10.1038/s41467-020-20239-4
- 49. Watanabe N, Mitchison TJ. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 2002;295:1083-6. https://doi.org/10.1126/science.1067470
- 50. Hansen AS, Woringer M, Grimm JB et al. Robust model-based analysis of single-particle tracking experiments with Spot-On. eLife 2018;7:e33125. https://doi.org/10.7554/eLife.33125
- 51. Rost B. Twilight zone of protein sequence alignments. Protein Eng 1999;12:85-94. https://doi.org/10.1093/protein/12.2.85
- 52. Kinjo AR, Nishikawa K. Eigenvalue analysis of amino acid substitution matrices reveals a sharp transition of the mode of sequence conservation in proteins. Bioinforma Oxf Engl 2004;20:2504-8. https://doi.org/10.1093/bioinformatics/bth297
- 53. Hobbs NK, Bondareva AA, Barnett S et al. Removing the vertebrate-specific TBP N terminus disrupts placental β2m-dependent interactions with the maternal immune system. Cell 2002;110:43-54. https://doi.org/10.1016/S0092-8674(02)00806-1
- 54. Lee M, Struhl K. Multiple functions of the nonconserved N-terminal domain of yeast TATA-binding protein. Genetics 2001;158:87-93. https://doi.org/10.1093/genetics/158.1.87
- 55. Shao W, Bi X, Pan Y et al. Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nat Chem Biol 2022;18:70-80. https://doi.org/10.1038/s41589-021-00904-5