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Abstract

Familial hypercholesterolemia (FH), a genetic disorder with a prevalence of 0.2%, represents a high-risk factor to develop
cardiovascular and cerebrovascular diseases. The majority and most severe FH cases are associated to mutations in the receptor
for low-density lipoproteins receptor (LDL-1), but the molecular basis explaining the connection between mutation and
phenotype is often unknown, which hinders early diagnosis and treatment of the disease. We have used atomistic simulations
to explore the complete SNP mutational space (227 mutants) of the LAS repeat, the key domain for interacting with LDL that is
coded in the exon concentrating the highest number of mutations. Four clusters of mutants of different stability have been
identified. The majority of the 50 FH known mutations (33) appear distributed in the unstable clusters, i.e. loss of conformational
stability explains two-third of FH phenotypes. However, one-third of FH phenotypes (17 mutations) do not destabilize the LR5
repeat. Combining our simulations with available structural data from different laboratories, we have defined a consensus-
binding site for the interaction of the LAS repeat with LDL-r partner proteins and have found that most (16) of the 17 stable FH
mutations occur at binding site residues. Thus, LA5-associated FH arises from mutations that cause either the loss of stability or
a decrease in domain’s-binding affinity. Based on this finding, we propose the likely phenotype of each possible SNP in the LAS
repeat and outline a procedure to make a full computational diagnosis for FH.
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Introduction

The low-density lipoprotein (LDL) receptor (LDL-1) belongs and
gives name to an ancient family of membrane receptors, includ-
ing very-low-density lipoprotein receptor (VLDL-r), ApoER2,
LRP1, LRP2 and LRP6 (1), that appeared early with the onset of
the first metazoans and play important roles in multiple biologic-
al processes, through binding to a diverse set of partners (2,3).
The receptors of the LDL-r family contain a common set of struc-
tural constituents that, from C-terminal to N-terminal, include
(a) a cytoplasmic region that embodies NPxY and PPPSP motifs,
(b) a single-transmembrane segment anchoring the cytoplasmic
and extracellular sections to the cell membrane and (c) an extra-
cellular region formed by an epidermal growth factor (EGF)-like
domain composed by several EGF repeats and a p-propeller do-
main, followed by a ligand-binding region consisting of a variable
number of small cysteine-rich domains (1,3), known as LDL-r
type A domains (LA domains). The ligand-binding region of the
human LDL-r (4) has been widely studied to uncover the mechan-
ism of endocytic LDL internalization and release. These studies
have provided a wealth of structural data corresponding to indi-
vidual domains, domain pairs, the complete extracellular region
(5-8) and even a low-resolution structure of the LDL-LDL-r com-
plex (9). Domains LA1-7 (10) and, most importantly, domains
LA4-5 (2,11), are key for binding of VLDL and LDL particles (12).
LA domains are 40-residue, small autonomous folding units con-
taininglittle secondary structure and lacking an extensive hydro-
phobic core, which are mainly stabilized by three disulfide
bridges and a coordinated calcium ion (2,13-16). The seven LA do-
mains are connected through small peptide linkers that provide
great flexibility to the region (8).

Familial hypercholesterolemia (FH) is a genetic disorder
associated to abnormally high levels of LDLs in the blood,
which constitute a significant-risk factor for cardiovascular and
cerebrovascular diseases (17-20), and has a prevalence of 1:500
in heterozygosis in human populations (21,22). Although FH
can be caused by defects in several proteins linked to cholesterol
internalization and metabolism in cells—e.g. Apo B-100 (23,24),
PCSK9 (25,26) and the LDL-r (27,28)—the majority and most se-
vere FH cases are associated to mutations in the LDL-r (29),
some of which have been shown to compromise the conform-
ational stability of specific receptor domains (30). In spite of the
high-prevalence worldwide, FH is under-diagnosed and under-
treated (31), probably because of the complexity for connecting
genetic variations and disease phenotype. Since the recognition
of the association of FH to genetic variations in the LDL-r and the
discovery of the first disease-causing mutations (32-34), much in-
formation has been gathered on different types of mutations in
the LDL-r gene (28,35-38). The number of known mutations for
the LDL-r is between 1741 and 1835, according to current releases
of the LDL-r database (28) and the Professional version of the
human gene mutation database (37), respectively. Genetic varia-
tions found in this protein include large rearrangements of cod-
ing and/or intronic regions, synonymous and non-synonymous
substitutions and mutations in the regulatory regions or splicing
sites (28,37). Missense substitutions are by large the most fre-
quent type of mutation (28), and are unevenly distributed along
the LDL-r gene sequence. A higher accumulation of genetic varia-
tions has been reported in exons coding for the ligand-binding re-
gion, particularly in exon 4, coding for LA domains 3-5 that are
key for LDL binding (2,11,12).

The development of high-scale DNA genotyping and sequen-
cing methodologies (39-42) has stimulated an increase of cascade
screening programs in partial populations of some countries and

high-risk groups (40-44). Unfortunately, due to a lack of knowl-
edge on the phenotypic effect of most mutations, standard geno-
type analyses are centered only in a reduced set of known
pathological mutations, limiting the predictive power of these
techniques (45). Furthermore, the lack of understanding of the
molecular basis of the pathological effect of LDL-r mutations lim-
its our ability for devising novel therapies for treating FH. To gain
such molecular insight in vitro and in silico studies have been per-
formed on different domains or on the complete LDL-r-binding
region (2,5-7,13-16,46-49). These studies provide insights to relate
the severity of mutations with structural or stability impairments
in the LDL-r. However, we are still far from having a complete
molecular-level description of the connection between genetic
variations in the LDL-r gene and the severity of FH phenotypes.

In this work, we have performed massive atomistic simula-
tions for predicting the fate of all possible missense mutations
in the key LAS LDL-r lipoprotein-binding domain. Thus, we
have generated all the possible mutants arising from non-syn-
onymous single nucleotide polymorphism (SNPs)—i.e. 256 SNPs
coding for 227 different mutants (Supplementary Material, Fig.
S1)—and have run MD simulations to assess the distortions
caused by single-amino acid substitutions. When the structural
fluctuations observed during MD trajectories are moderate, we
classify the corresponding mutations as not destabilizing. Con-
versely, they are referred to as destabilizing when they cause a
significant distortion of the LA5 domain structure. However, the
data we use for classifying mutants in one of these two categories
should not be considered as quantitative estimations of changes
in the thermodynamic stability of the protein, which is not mea-
sured in this study. A total of 4.5 microseconds of MD simulations
corresponding to relaxation trajectories have been analyzed
using a variety of data-mining methodologies. The use of these
analyses, together with our proposal of a consensus-binding
site of the LA5 domain based on structural information obtained
in different laboratories (8,50), allows us to explain the patho-
logical nature of most mutations described for the LAS5 domain
as either arising from structural destabilization of its tridimen-
sional structure (Supplementary Material, Fig. S2), or from re-
placement of binding site residues. The results presented here
provide a simple approach for ab initio prediction of the putative
pathological impact of new mutations, opening a way for an early
diagnosis and treatment of FH.

Results

Global conformational instability of the LA5 domain
mutant variants

The 227 mutants resulting from SNPs in the LA5 domain (Supple-
mentary Material, Fig. S1 and Table S2) were generated in silico
using SCWRL (51), which was also used to find the best rotamer
conformations for the side chains of the substituted residues.
All mutants were minimized and equilibrated in explicit water
and MD simulations were extended for a total aggregated time
of 6 ps, including preparation and production trajectories (see
the ‘Materials and Methods’ section). For each mutant 20 ns-
long MD simulations were used to explore its conformational
evolution upon mutation. Based on previous work (49), this
time span was considered enough to permit significant relax-
ation from the initial wild-type-like structure. A parameter com-
monly used to evaluate the structural similarity of two proteins,
or of two protein conformations along an MD trajectory, is the
root mean square deviation (RMSD) or average distance between
the atoms of the superimposed structures. However, some
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characteristics of the RMSD (it is length-sensitive and it is not
normalized) are not ideal to measure structural similarity. On
the other hand, the template modeling score (TM-score) (52,53),
constitutes a protein-length independent metric, which allows
performing thorough structural comparison for identifying top-
ology relationships among related proteins. It has been demon-
strated, from a comprehensive comparison of proteins from
different folding categories, that TM-scores close to 1 correspond
to proteins belonging to the same fold topology, while for pro-
teins with different structural topologies values <0.5 are obtained
(52). We, thus, followed the dynamical evolution of different mu-
tants using the TM-score. The evolution of the TM-scores for a se-
lection of the 227 trajectories corresponding to some of the
mutations found in individuals with FH is shown in Supplemen-
tary Material, Figure S3. The extent of the conformational change
varies greatly among mutations. For example, the substitutions
C197(176)Y; F200(179)L, C; C204(183)S, Y; S206(185)R; D221(200)Y
and D227(206)V (see Supplementary Material, Tables S1 or S2
for details on the numbering) cause great conformational change
in this timescale leading to conformations containing significant
structural distortions after a few nanoseconds of simulation. In
contrast, other FH known mutations such as $198(177)L; C209
(188)Y; H211(190)D; W214(193)S; D224(203)G; C231(210)R and
C231(210)Y cause only mild or apparently no distortions to the
structure of the LA5 domain during the simulations. To evaluate
the degree of conformational distortion associated to each mu-
tant we have performed principal component analysis (PCA) of
all trajectories (54-56). PCA is a standard statistical procedure
(see the ‘Materials and Methods’ section) for performing transfor-
mations of multivariate data for identifying correlation among
variables in the initial data set. This approach has been widely
used to analyze MD simulation data (54,57), allowing the decom-
position of the trajectories into simple uncorrelated motions and
the identification of the more relevant ones. Those essential mo-
tions (principal components) constitute highly compressed re-
presentations of entire trajectories and offer convenient ways
to visually represent and compare different trajectories. When
dealing with large numbers of long trajectories, analysis and
comparison using principal components is much easier and
more objective than using conventional structural analyses of in-
dividual trajectories. A summary of the analysis of the 227 mu-
tant trajectories is included in Supplementary Material,
Figure S4. The ‘Scree Plot’ in this figure for the 1st to 30th compo-
nents shows that the first three ones describe on average 36, 16
and 9% of the total variance (i.e. they amount for >60% of the ex-
plored MD variance). Those three eigenvectors have been se-
lected to describe the ‘essential dynamics’ of the systems
(54,58-61).

After performing the PCs decomposition of all trajectories, we
have made a pair-wise comparison of the average structures of
different mutants. As shown in Figure 1, while many mutants
display fairly similar average structures, some groups of mutants
are structurally dissimilar to most others, e.g. trajectories M009-
MO010, M029, M049-M053, M153-M155, M161-M164 and M191-
M197 (see Supplementary Material, Table S2 for the correspond-
ence among trajectory indexes, codon change and amino acid
substitutions), The conformational evolution of some of these
dissimilar mutants along the trajectories, as shown by the pro-
jections of each trajectory into the first three PCs, is depicted in
Figure 2, Supplementary Material, Figure S5 and Videos S1-S5.
The charts in Figure 2 show the projections of the conformations
visited during a simulation into the space formed by the first
three PCs. The values of the projections provide a measure of
the similarity of the structure at a given time step with the
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average structure of the simulation, located at the origin
(Ogst, 0yna, 0410 ). For a Boltzmann-weighted ensemble of molecules
that behave harmonically, a ‘Gaussian’ distribution of projec-
tions in each dimension is expected, which correspond to an
ellipsoid centered at the origin, with the eigenvectors corre-
sponding to the axes of the plot, and the dispersion of the ellips-
oid length in the ith PC being proportional to the ith eigenvalue.
Deviations from this expected behavior could be taken as a quali-
tative estimate of the conformational change caused by the mu-
tation. The significant conformational change caused by some
amino acid substitutions on the LDL-r LA5 structure is clear
when Figure 2 (and Supplementary Material, Fig. S5 and Videos
S1-S5) is compared with the plots corresponding to background
mutants (Fig. 3, Supplementary Material, Fig. S6 and Videos S6-
S10) that has little or no effect on the conformation of the LDL-r
LAS domain.

Clustering of LA5 mutants according to the extent
of conformational instability

Among the 227 trajectories collected some are stable, but there
are also unstable trajectories that do not follow a multivariate
normal distribution in the PC space. In order to perform a com-
bined analysis of all the trajectories, we have concatenated the
last 10 ns of each one into a meta-trajectory. This provides a com-
mon PC space and Eigensystem where the independent trajector-
ies can be compared. Within this new reference system, we have
used a sampling methodology to compare the essential sub-
spaces of the trajectories. By randomly comparing subsets of
each simulation against each other (10° random comparisons),
it was possible to obtain a statistical assessment of the mean dis-
tance between the essential subspaces visited by the different
mutants and the wild-type LAS5 domain. The Mahalanobis dis-
tance metric (62) was used for comparing and clustering the mu-
tants according to the extent of conformational instability (see
the ‘Materials and Methods’ section and Fig. 4), which allowed
to objectively establish a link between conformational instability
and the likelihood of the expression of a LDL-r variant with an
impaired function towards LDLs interaction (2,11,49).

The results in Figure 4 provide an intuitive picture of the clus-
tering of the trajectories in a 25th-dimensional space, sufficient
to describe 95% of the conformational variability. As expected,
the projections for the trajectories of the wild-type LDL-r LAS5 do-
main and of different stable mutants explored an ellipsoidal sub-
space close to the PCs origin, and consequently they formed a
stable cluster of mutants shown in green. This is the largest clus-
ter, comprising 114 mutants (for a detailed list of the mutants see
the color codes in Supplementary Material, Table S2). Three add-
itional clusters appeared that are formed by 57 unstable mutants
(orange cluster), 34 very unstable mutants (magenta cluster) and
22 highly unstable mutants (red cluster), as judged from the con-
formational changes experienced. So far, 50 disease-linked SNP
have been found in the LDL-r LA5 domain of FH individuals
(28,37). These pathological mutations appear unequally distribu-
ted among the four stability clusters. The large stable cluster only
includes 17 (34%) of the 50 known FH mutations, the remaining 33
being distributed among the three unstable clusters (Fig. 4). The
stability of the LAS structure in the 17 known diseased-linked
SNPs classified by us as ‘stable’ mutations can be appreciated
in Supplementary Material, Figure S7 and Videos S11-515. We ob-
serve two trends in the structural distribution of mutants among
the four clusters. The percentage of buried mutations increases
from 52% in the stable cluster to 72, 88 and 86% in the progressive-
ly more unstable clusters, and a similar increase is observed in
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Figure 1. All-to-all comparison of the trajectories average structures. The average structures of all the 227 mutants were extracted from their corresponding trajectories
after performing a PCA. The average structures were compared in pairs using the TM-score metric. The chart is a heat map of the comparison of all versus all, and the color
in each cell corresponds to the TM-score for the comparison of two structures whose indexes are found in the abscissa and ordinate axes. The rightmost side of the chart
shows the color legend for the TM-score, from red for dissimilar structures (TM-score ~ 0.5) to blue for identical structures (TM-score » 1).

mutations affecting Ca** coordinating residues or cysteines
(from 25 to 25, 50 and 63%). It appears that, in agreement with
structural/energetic expectations, mutations in buried residues
and in those contributing to structural loci are, on average, more
destabilizing that others.

Discussion

Direct assessment of the effect of all possible SNPs
in the structural stability of the LDL-r LA5 domain

Conformational diseases (63-66) are pathological states arising
from alterations in protein conformational or binding equilibria
driven by changes in physicochemical conditions or by muta-
tions. In FH, an ample number of mutations identified by cascade
screening assays (40,41,43,44) have been reported to be genetic
determinants of the disease. Although there have been attempts
to experimentally assess the effect of mutations in some LDL-r
domains (5-7,13-15,46-48), we are far from being able to experi-
mentally explore the consequences of all the biologically access-
ible mutations. Only a small fraction of all possible mutations in
the LDL-r has been catalogued and reported in genetic variation

and sequence databases (28,35-38). In an effort to fill the gap be-
tween possible genetic variability and knowledge of the asso-
ciated phenotype, many computational methodologies have
been developed (67,68). Those methods, mainly based on indirect
genetic, structural or evolutionary assumptions, cannot always
anticipate the real effect of the amino acid substitution at the
structural level, a key information for predicting whether the mu-
tation might cause a perturbation in the protein conformational
equilibrium, and also a crucial step to derive structural informa-
tion for more efficient drug-design protocols. We present here an
alternative ‘de novo’ computational strategy based on the analysis
of relatively short, all-atom MD simulations of the protein under
physiological conditions. This is to our knowledge, the first com-
plete exploration of the effect of all biologically accessible muta-
tions caused by SNPs in the structure of a protein domain: the
LDL-r LA5-binding domain, to determine whether and how FH
might be etiologically related to genetic variations.

We have generated all possible mutants arising from SNPs in
the ¢cDNA for the LDL-r LA5-binding domain (Supplementary
Material, Fig. S1), performing for all of them atomistic MD
simulations under physiological conditions. In this ‘exhaustive’
approach, instead of concentrating on explaining previously
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identified specific amino acid substitutions, we have explored the
entire SNP mutational landscape of a key domain known to es-
tablish functional interactions with LDLs (2,11), and encoded in
the LDL-r exon bearing the highest proportion of mutations iden-
tified in individuals with FH. Inspection of the 3D structure of the
LAS domain (Supplementary Material, Fig. S2) allows identifying
important structural loci on which the substitution of an amino
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acid could be accompanied by significant conformational changes.
However, our results point out to a context-dependent scenario
where the specific substitution, not just the locus, determines
whether the structure of the LA5 domain is significantly affected.
This finding is illustrated in Supplementary Material, Figure S3
with a selection of trajectories corresponding to FH mutants
(28,37). Their TM-scores (52,53) prove that, even in mutants involving
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Figure 2. Dynamical evolution of LAS mutants in the PCA space (destabilizing mutations). The MD trajectories are followed along time by projecting the structures at each
time step into the space described by the first three PCs. Each subchart is a two-dimensional density plot of the projections of the structures into PC1 versus PC2, PC1 versus
PC3 and PC2 versus PC3. The color scale goes from red (no occupancy) to blue (high occupancy), passing through intermediate scales of yellow and green. For accessing the
more descriptive animations please visit the corresponding files for each simulation in the Supplementary Material, Videos S1-S5.
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residues from the calcium coordinating box or disulfide bond-
forming cysteines, some simulations show stable evolutions
along time while, for others, the conformational stability appears
to be significantly affected. These results are not obvious and could
not be easily predicted by standard trained methods (67-71).

In order to define quantitative criteria for a global comparison
of the conformations visited by different types of mutants during
MD simulations we performed PCA of each trajectory, and the
structural differences among the corresponding average struc-
tures were calculated using the TM-score (Fig. 1). The presence
of clusters of mutants structurally different from the rest of var-
iants suggests the possibility of grouping mutants according to
the extent of the instability introduced by the amino acid substi-
tution. The PC representations depicted in Figure 2, correspond-
ing to destabilizing mutants most of whom are associated to FH
(Supplementary Material, Table S2), graphically confirms the in-
stability caused by these mutations. In contrast, Figure 3 shows
several examples of stable evolutions around the average struc-
ture, including mutations such as C209(188)W in an important
structural locus, which reaffirms the need for specific mutation
testing versus general predictions based on structural location.

FH mutations in the LDL-r LA5 domain due to loss
of conformational stability or binding competence

A main goal of this work is to devise a quantitative way of identify-
ing SNP mutations that could destabilize the structure of the LDL-r
LAS5-binding domain and to group different types of mutations
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according to the extent of destabilizing effects. Analysis of the
meta-trajectories of the 227 mutants allows comparing, within a
single Eigensystem, the conformational subspaces more probably
visited by each mutant. The clusters in Figure 4 provide an object-
ive classification of the SNPs according to their effect in structural
stability, and hence their possible pathogenicity (see also in Sup-
plementary Material, Table S2 a color-coded classification of the
destabilizing effect of each mutant). Of the 50 known FH mutations,
33 appear distributed in the three unstable clusters, indicating that
loss of conformational stability explains two-third of FH pheno-
types. According to our simulations, there appear to be hotspots
in the structure of the LDL-r LA5 domain where SNPs are more like-
ly to lead to substitutions compromising the conformational stabil-
ity—e.g. C197, E201, C204, D221, C222, D224, D227 and E228
(Supplementary Material, Fig. S8). Conversely, some positions are
unlikely to derive in unstable mutant proteins due to SNP—e.g.
A199, L205, G219, N230 or A232.

On the other hand, 17 FH mutations (Supplementary Material,
Table S2) are classified as stable, and the individual analysis of
their trajectories (see examples in Supplementary Material, Fig.
S7) confirms they do not significantly alter the conformational
behavior of the LA5 domain. This is a clear indication that they
will cause FH by a different mechanism. The simplest reason
that can explain their relationship with FH is that those muta-
tions impair the interaction of LA5 with its binding partners, ei-
ther other domains from the LDL-r or other proteins involved in
cholesterol homeostasis. There are three known partners of LAS:
the B-propeller domain of the LDL-1, and the apolipoproteins Apo
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B and Apo E present in LDL and/or VLDL particles. At low pH (8),
LAS interacts with the B-propeller domain through residues H211,
$212,W214, D217, G219, D221 and K223, clustered in the LA5 con-
vex face (Fig. 5). Recent structural data from our group (50) have
determined that the interaction between LA5 and key interacting
helices of Apo E and Apo B also involves essentially residues
at the convex face (W214, G218, G219, D221 and D227 in the com-
plexes with Apo B and Apo E, plus E201 in the complex with Apo
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E). Those two sets of residues define a common patch in the con-
vex face (Fig. 6A) that very likely constitutes the binding site used
by LAS to interact with different partners. In fact, the homologous
LDL-r domains LA3 and LA4 use a structurally equivalent patch to
recognize yet another partner, the receptor-associated protein
(RAP) (6).

The 17 FH mutations in the stable cluster occur in 11 residues
(P196, S198, E201, C209, H211, W214, C216, D221, D227, E228 and
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Figure 3. Dynamical evolution of LA5 mutants in the PCA space (non-destabilizing mutations). The MD trajectories are followed along time by projecting the structures at
each time step into the space described by the first three PCs. Each subchart is a two-dimensional density plot of the projections of the structures into PC1 versus PC2, PC1
versus PC3 and PC2 versus PC3. The color scale goes from red (no occupancy) to blue (high occupancy), passing through intermediate scales of yellow and green. For
accessing the more descriptive animations please visit the corresponding files for each simulation in the Supplementary Material, Videos S6-5S10.
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C231), 7 of which are surface exposed and contiguous, defining an
extended but overlapping version of the binding site (Fig. 6B).
Three of the four remaining residues, C216 and C231 forming
the C-terminal most disulfide bridge, plus E228 at the calcium
cage, are also surface exposed at one end of the convex face
and appear to constitute a prolongation of the known binding
site (Fig. 6B). Only D227 is buried. As expected, most substitutions
at this residue are greatly destabilizing (Supplementary Material,
Table S2), but its replacement by similarly charged glutamic acid,
although reported to cause FH, does not lead to structural pertur-
bations during the simulations. The likely cause of the FH charac-
ter of D227(206)E is that its reduced Ca™™ affinity impairs folding
(13). Except for this mutation, the rest of the 17 non-destabilizing
FH SNPs in the LAS5 domain affect binding site residues. Thus, the
pathogenicity of these mutations seems related to disruption of
LAS-binding compatibility with other proteins. The underlying
structural reasons can be either that the substitution abolishes
important contacts with partner-binding residues—e.g. W214
(193)S (8)—or that the newly introduced residue modifies the ster-
ic or physicochemical compatibility of the interacting patches
[e.g. H211(190)D, Y, L (8,72)].

From molecular dynamics to a strategy for computational
diagnosis in conformational diseases

Our results indicate that 33 out of the 50 known FH mutations
at the LAS5 domain are destabilizing and that, of the remain-
ing 17 non-destabilizing mutations, 16 occur in residues at the

-30 -20 -10

-10
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PC1

surface-binding site. As it appears, computational estimations
of conformational instability from short-range MD simulations,
combined with experimental knowledge of the LA5 domain
interacting residues, makes possible to anticipate the disease
phenotype that has been observed in 49 of the 50 SNPs known
to be related to FH. This result shows that our method has a re-
markably high sensitivity (true positives rate) of 0.98 for classify-
ing FH-causing SNPs. We have also tried to provide a measure for
the specificity of the method (true negatives rate), but the lack of
sequence data on neutral mutations (see legend of Supplemen-
tary Material, Table S2) impedes it.

We would like to propose a FH computational diagnosis for all
possible SNPs in module LAS that considers both the degree of
conformational instability in the simulations and the possible
impairment of the interacting region (Supplementary Material,
Table S2). Of all the possible SNPs—i.e. 256 non-synonymous
SNPs coding for 227 different single amino acid substituted var-
iants—only 22% have been found in FH individuals (dot tagged
mutants in Supplementary Material, Fig. S1). These variants are
labeled as deleterious in Supplementary Material, Table S2. For
the remaining 177 mutations not reported in genetic variation
databases, those belonging to any of the three unstable clusters
are also classified as deleterious. For those in the stable cluster,
we have considered evaluating their possible binding impairing
effects using qualitative structural criteria—e.g. steric and
physicochemical differences between the wild-type and substi-
tuted residues. However, such a fine evaluation would be too pre-
liminary given the limited structural information available for
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LAS/partner complexes, e.g. the structure of the LDL-r complete
extracellular region (8) is of low resolution, and the interactions
of LAS with Apo B and E peptides are only defined in part (50)

r (9122) .

6 (9/34)
5t .

(151 57)

Mahalanobis Distance
B

(171 114)

PC space (no metric)

Figure 4. Clustering of LA5 mutants according to the extent of conformational
instability. For the meta-trajectory of the concatenation of the last 10 ns of the
227 simulations, the average Mahalanobis distance among all pairs of
simulations was used to assess the difference in the subspaces explored by
each mutant in the PCA N-dimensional space (25-dimensions). Based on those
distances, a complete-link-based clustering algorithm was used, and an
abstract representation of the four more representative clusters is shown. The
clusters are color-coded: green (stable mutants), orange (unstable mutants),
magenta (very unstable mutants) and red (highly unstable mutants). For each
cluster, we show in parenthesis the number of mutants found in persons with
FH (in red) and the total number of mutants. The dispersion observed in each
cluster corresponds to the variability observed for the average Mahalanobis
distance of each simulation and the rest of the simulations included in the
corresponding cluster, which correspond to branching nodes representing these
trajectories in the clustering dendrogram.
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because the exact conformation of those peptides in the com-
plexes is not known. Therefore, we have provisionally evaluated
all mutations taking place in binding site residues as ‘deleterious’,
which may increase the number of false-positives in this subset of
our predictions. Our phenotype predictions in Supplementary
Material, Table S2 can be compared with predictions calculated
using different methodologies, such as PMUT (68), and a consen-
sus approach, CONDEL (69), integrating the predictions made
using SIFT (67,73), polyphen-2 (71) and mutation assessor (70,74).
We have also included the predictions obtained using polyphen-
2 (71), and the calculation of stability changes upon mutation ob-
tained with FoldX (75). The comparison reveals clear discrepancies
among the different predictions, and stability estimations in key
structural loci, such as in cysteines or in Ca**-binding residues—
e.g.in C197(176)S or E228(207)D as well as in many other mutations
in the LAS structure (Supplementary Material, Tables S2 and S3).
Thus, depending on the predictive approach used, the conclusions
drawn would be different. Moreover, the true positive rates ob-
tained with PMUT, CONDEL and polyphen-2 for the classification
of FH-causing mutations are 42, 76 and 80%, respectively (Sup-
plementary Material, Tables S2 and S3), which shows that our
structure-based method outperforms all these sequence-based
approaches. Furthermore, we are not only able to correctly pre-
dict almost all FH-causing mutations, but also to differentiate
mutations that cause the disease through the structural instabil-
ity of the LA5 domain, and others associated to residues in the
interaction site with other partner proteins and LDL particles.
Though undoubtedly our approach is more computationally ex-
pensive and requires more data processing and analysis than
others available for predicting deleteriousness of mutations
(67-71,73,74), general advances in computation speed and specif-
ic improvement in MD simulations (76-78), together with the
emergence of online services for performing client-based and
high-throughput MD simulations (79-81), may facilitate the gen-
eralization of the approach presented here in the near future.

Interaction Face

W214

Figure 5. The binding region of the LDL-r LAS domain. The structure of the LDL-r LA5 domain and the interaction region. (A) The LAS domain in the context of the structure
of the complete LDL-r extracellular region (PDB id: 1N7D). The LA5 domain is shown in surface representation colored in white, highlighting in red the 11 residues where
the 17 mutations not affecting the conformational stability of the domain occur. (B) A close look of the LA5 domain and the 11 residues bearing FH mutations that do not
destabilize the domain. We highlight the upper convex region of the LA5 domain, which according to recent experimental evidence (50), is responsible for the interaction
of the domain with LDL and VLDL particles, in addition to forming the self complex shown in (A). From the residues highlighted in red, we also include their name and

position in the sequence. Of the 11 residues showed, only residue D227 is buried.
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Figure 6. The consensus-binding region of the LDL-r LAS domain compared with the region bearing non-destabilizing FH mutations. (A) The residues in the convex face of
the LDL-r LAS domain known to participate in interactions with other domains from the LDL-r (8) or from Apo B and Apo E (50), are highlighted. (B) The residues that bear
some mutations related to FH that do not destabilize the domain and are classified in the stable cluster, are highlighted. Ten out of the 11 residues in which the 17 non-
destabilizing known mutations are distributed at the surface, can be viewed simultaneously. Only residue D227 is buried.

Our analysis also indicates that, together with LDL-r destabil-
izing mutations, a significant percentage of FH phenotypes are
related to impairment of structural regions mediating protein/
protein interactions (e.g. LR5/-propeller domain or LR5/apoB).
In this respect, a complete picture of the interactions formed by
the different domains of the LDL-r among them and with VLDL,
LDL, PCSK9, RAP or additional partners yet to be discovered is
lacking. Comprehensive high-throughput and high-resolution
interactome structural predictions will eventually become avail-
able, but meanwhile much experimental work remains to be
done. Besides, a structural and thermodynamic understanding
of how the LDL-r interactions are affected by the specific and
changing solution conditions in the different cellular compart-
ments visited along its functional cycle is also needed (5-7,13-
15,46-48,50,82-84). Although the structural distortions caused
by mutations in the isolated LA5 domain, as identified with our
approach, need not be identical to those taking place in the con-
text of the whole LDL-r, the strong experimental evidence show-
ing the structural independence of LA domains (8,30) suggests
those distortions are likely to be very similar. Nevertheless, in
cases where differences occur they will impose an upper limit
to the predictive accuracy of the method. It is also important to
emphasize that the evaluation and improvement of the specifi-
city of this or any other predictive method will benefit from the
search for, and documentation of, non-pathogenic mutations.

In this work, we have provided a clear structure/stability view
of the complete mutational landscape of the LAS domain, with a
quantitative classification of the conformational instability
caused by all biologically accessible SNP amino acid substitu-
tions. We hope that these data would be useful for planning ex-
perimental work to measure the real extent of the structural
instability associated to yet-to-study putative destabilizing mu-
tations, and for designing screening devices for the efficient diag-
nosis of FH. By extension, the method here illustrated may be
applied to studying how SNP may affect the structure and func-
tion of other proteins associated to other pathologies.

Conclusions

Examination on the entire SNP mutational space of the LDL-r LA5S
domain using relaxation molecular dynamics simulations allows
to accurately classify each possible mutation as either compatible

with the native structure or as destabilizing. Comparison of this
classification with the known SNPs associated to FH disease
phenotype clearly reveals two types of FH mutations: those caus-
ing a stability defect and those impairing binding interactions
with LDL-r-associated proteins. The data generated here delin-
eate the space of putative pathogenic mutations in an important
LDL-r domain and may help experimentalist to develop more
comprehensive FH screening methods, and may contribute to
a better understanding of FH from a structural perspective. On
a larger scale and with sufficient computation power, it seems
possible to make a full computational diagnosis for FH by consid-
eringboth the degree of conformational instability in simulations
of the LDL-r and related proteins, and the possible impairments
of their interacting regions. Importantly, the structural approach
followed by us can be applied to predict the deleteriousness of
genetic variations in other small proteins without relying in the
evolutionary assumptions characteristic of most current meth-
ods based on sequence analysis. An obvious challenge in apply-
ing this method to larger proteins is that they will require more
computation power due to their larger size and also to the larger
number of possible SNPs. An additional challenge may apply in
the form of slower relaxation kinetics for large proteins (85), espe-
cially if they exhibit full thermodynamic cooperativity (86).

Materials and Methods

LAS5 domain coding sequence, structure and complete
SNP mutational map generation

From the protein sequence of the complete human LDL-r accessible
in Uniprot (35) (ID: LDLR_HUMAN, AC: P01130), we extracted the
DNA-coding sequence for the LA5 domain by accessing the entry
for this gene in the Ensembl database (87) (ID: ENSG00000130164).
The protein sequence for the LA5 domain corresponds to resi-
dues 195-233 in the sequence of the complete receptor, while
the X-ray structure of the domain used as the starting point for
MD simulations and structural analysis (PDB id: 1AJ]), includes
residues 196-232. Thus, we just extracted the coding sequence
for amino acids 196-232, leaving out the codons for the N- and
C-terminal serine and valine. The DNA sequence was then pro-
cessed with an ad hoc script for generating all the biologically
accessible mutants arising from the substitution of a single



nucleotide (Supplementary Material, Fig. S1). All the non-syn-
onymous SNPs were identified—i.e. 256 non-synonymous SNPs
coding for 227 different single-residue substituted protein var-
iants—and the corresponding mutations in the structure of LAS
domain were generated using the program SCWRL (51), for find-
ing the best rotamers of the mutated residue. Then, the mutants
were given a specific code (Supplementary Material, Table S2) to
be further processed before running the MD simulations.

Setting up the systems for molecular dynamics
simulation production

Each of the 227 mutants, plus the wild-type LA5 domain, was sol-
vated in a cubic water box with approximately 5500 TIP3 water
molecules, and neutralized with Na*Cl~™ counter ions using the
solvate package in VMD (88). We setup a thorough procedure
for preparing the systems previous to running the production
MD simulations, including multiple cycles of step-descending
minimization/equilibration steps in a preparation phase of
~5 ns, which encompasses: (a) short CPT dynamics of water mo-
lecules with the protein atoms fixed to eliminate possible poten-
tial strains in the water box, (b) slow release of the protein atoms
by imposing decreasing elastic restraints and (c) very slow heat-
ing of the systems to the final simulation temperature (310K)
using a gradient temperature ramp. The 5 ns preparation phase
guaranteed the stabilization of the temperature and total energy
of the systems. Then, 20 ns production MD simulations were run
for each mutant using the CHARMM (89) force field (version
€34b1) in NAMD (90). The simulations were run using Langevin
dynamics, with periodic boundary conditions and Particle Mesh
Ewald for modeling long-range electrostatic interactions with a
cutoff distance of 14 A. The Nosé-Hoover thermostat was used
for pressure coupling of the system and the friction coefficients
were set to 0.5 and 60 ps™* for protein atoms, and water molecules
and ions, respectively. The simulations were run mainly in the
cluster of the Red Espafiola de Supercomputacién: marenostrum
at the Barcelona Supercomputing Center and CaesarAugusta at
the Institute for Biocomputation and Complex Systems Physics
(BIFI), and also at the Terminus and Memento clusters at BIFI. The
trajectories were analyzed with VMD (88) and a set of ad hoc TCL
and Perl scripts.

Principal component analysis of individual MD trajectory
data and of meta-trajectories

PCA, a useful procedure for capturing correlations among vari-
ables, has been extensively used for analyzing MD trajectories
aiming at describing the ‘essential dynamics’ (54,58-61) of a sys-
tem. Performing PCA on MD data starts by aligning the trajectory
for removing the translational and rotational components of
movement (91). Then, the trajectory is centered to the reference
structure S,e—e.g. the initial or an average structure—by sub-
tracting the reference structure to the aligned snapshots, and it
is represented as a matrix of the type T¢ = [3N x F|, on which
the rows are the coordinates of the N residues of the system,
and the columns the number of frames or snapshots, F, of the tra-
jectory. Subsequently, the covariance or correlation matrix is cal-
culated from the product of the trajectory matrix by its transpose
> =(1/3N)T¢ - T¢. The eigenvalue decomposition of the covari-
ance matrix renders a set of eigenvalues and orthogonal eigen-
vectors organized in the form A =VT.2.V, where A is the
diagonal matrix of the eigenvalues (11,4, ...,A3v-6) and V is the
matrix of the 3N — 6 eigenvectors paired to the eigenvalues.
The eigenvalues are sorted in descending order with respect to
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the amount of variance of the original data described by the pair-
ing eigenvectors.

Principal components representations of individual trajector-
ies were generated by projecting the coordinates in the Cartesian
space coming from the simulation into the eigenspace defined by
the first 3 eigenvectors, as shown in Figures 2 and 3 and Supple-
mentary Material, Figure S7. On the other hand, we quantitatively
compared the PCA subspace explored by different mutants and
by the wild-type LA5 domain as follows. Using the VMD (88)
CATDCD utility, we concatenated into a meta-trajectory the last
10 ns of all the trajectories and then recalculated the complete
Eigensystem to obtain the projections of the frames of each
independent simulation into the meta-trajectory principal com-
ponents. This approach allows to describe all the different simu-
lations in a common PC space. Then, we quantitatively assessed
the effect of mutations on the structure of the LA5 domain by
calculating the distance among the subspaces explored by each
mutant and the wild-type domain. To do that we used the Maha-
lanobis distance (62) (MDyp), a metric routinely used in the field
of multivariate statistics which, in contrast with the classic
Euclidean distance, accounts for the correlations on data and
is independent of data transformations. In the specific case
of PCA, the Mahalanobis distance between a pair of points p and
p’ in the PC space is defined as:

MDpp = \j >0 Py

where projp); are the corresponding projections in the N-dimen-
sional PCA space, and 4; is the corresponding eigenvalue for the
PG;. The MD,,,, normalizes the contributions of all the PCs accord-
ing to the percentage of variance described by the pairing eigen-
vector, providing a more realistic assessment of the distance
among points in the PCA space.

For obtaining the mean distance among trajectories inde-
pendently of their compliance (stability) or non-compliance
(instability) with the multivariate normal distribution, we set
aresampling strategy in which we resampled with replacement
a subset of snapshots—e.g. 5 ns for the 10 ns meta-trajectory—
from each trajectory, and calculated MDy,, for all possible pairs
of points in the N-dimensional PCA space—e.g. 25 eigenvectors
describing 95% of the variance. We repeated this step 10° times
for each pair of simulations and obtained normal distributions
for the Mahalanobis distances among points in the trajectories,
with rather low-standard deviations. From this comparison, we
obtained the mean MDr; 1, among whichever two trajectories.
After calculating the distance matrix among trajectories, we
performed a clustering—i.e. using a complete-link clustering
procedure—of the trajectories according to the PCA subspace
explored in each case. All the manipulation of MD data for
PCA analysis was performed with a set of ad hoc TCL and
Perl scripts, alongside with the PCAZIP package (http://mmb.
pcb.ub.es/software/pcasuite/pcasuite.html). We compressed
all the trajectories using PCAZIP, taking into consideration
only the backbone atoms of the LDL-r LA5 domain and retriev-
ing, in each case, the number of eigenvalues and eigenvectors
sufficient to describe 95% of the total variance in the system.
Using a tool from the PCAZIP package, we extracted all the me-
trics and data used in the statistical analyses in our study—e.g.
eigenvectors, projections etc. The processing of PCA data, and
all the resampling, clustering and statistical analyses were
done in the R statistical package (92) with a group of ad hoc
R scripts.
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