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Massive cerebral infarction (MCI) is a devastating condition and associated

with high rate of morbidity and mortality. Hemorrhagic transformation (HT)

is a common complication after acute MCI, and often results in poor

outcomes. Although several predictors of HT have been identified in acute

ischemic stroke (AIS), the association between the predictors and HT remains

controversial. Therefore, we aim to explore the value of texture analysis

on magnetic resonance image (MRI) for predicting HT after acute MCI.

This retrospective study included a total of 98 consecutive patients who

were admitted for acute MCI between January 2019 and October 2020.

Patients were divided into the HT group (n = 44) and non-HT group

(n = 54) according to the follow-up computed tomography (CT) images.

A total of 11 quantitative texture features derived from images of diffusion-

weighted image (DWI) or T2-weighted-Fluid-Attenuated Inversion Recovery

(T2/FLAIR) were extracted for each patient. Receiver operating characteristic

(ROC) analysis were performed to determine the predictive performance

of textural features, with HT as the outcome measurement. There was no

significant difference in the baseline demographic and clinical characteristics

between the two groups. The distribution of atrial fibrillation and National

Institutes of Health Stroke Scale (NIHSS) were significantly higher in patients

with HT than those without HT. Among the textural parameters extracted

from DWI images, six parameters, f2 (contrast), f3 (correlation), f4 (sum of

squares), f5 (inverse difference moment), f10 (difference variance), and f11

(difference entropy), differs significantly between the two groups (p < 0.05).

Moreover, five of six parameters (f2, f3, f5, f10, and f11) have good predictive

performances of HT with the area under the ROC curve (AUC) values of

0.795, 0.779, 0.791, 0.780, and 0.797, respectively. However, the texture

features f2, f3, and f10 in T2/FLAIR images were the only three significant

predictors of HT in patients with acute MCI, but with a relatively low AUC

values of 0.652, 0.652, and 0.670, respectively. In summary, our preliminary
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results showed DWI-based texture analysis has a good predictive validity

for HT in patients with acute MCI. Multiparametric MRI texture analysis

model should be developed to improve the prediction performance of HT

following acute MCI.

KEYWORDS

massive cerebral infarction, hemorrhagic transformation, prediction, texture analysis,
DWI, T2/FLAIR

Introduction

Massive cerebral infarction (MCI), which accounts for
10–15% of all acute ischemic stroke (AIS) cases worldwide
(Huttner and Schwab, 2009), is a devastating condition caused
by complete occlusion of the internal carotid artery trank or
middle cerebral artery trank, or their cortical branches. The
overall prognosis for MCI is poor, with the mortality rate of
patients with conservative medical treatments as high as 53–
78% and most survivors left with severe disabilities (Su et al.,
2016; Lin and Frontera, 2021). There is no unified diagnostic
criteria for MCI and the Adams’ classification method is often
used, i.e., the focal site affects more than two anatomical parts,
and the diameter of infarct lesions is above or equal to 3 cm
(Adams et al., 1993).

It is well-known that stroke-related complications during
hospitalization are the leading cause of death, accounting
for approximate 20–50% of all deaths in ischemic stroke
patients (Ekeh et al., 2015). Stroke-related complications
include common in-hospital medical complications as well as
neurological complications, such as cerebral edema, intracranial
hypertension, hemorrhagic transformation (HT), recurrent
stroke, and poststroke seizures (Li et al., 2019). HT is as
a frequent and serious complication in patients with AIS,
especially those with acute MCI, and severe HT is associated
with deteriorating neurological symptoms and poor outcomes
(Su et al., 2016). HT can be subdivided into two major
subtypes, hemorrhagic infarction and parenchymal hematoma,
with respect to the type of hemorrhage. Although, the
pathophysiological mechanism of HT is still unclear, hypotheses
involving the loss of microvascular integrity and disruption of
neurovascular homeostasis have been proposed (Wang and Lo,
2003; Arba et al., 2020).

Previous studies have reported several risk factors or
predictors for HT after AIS, including the use of antiplatelets
or anticoagulants, size of infarction, demographic factors,
atrial fibrillation, hypertension, diabetes mellitus, lipid
profile, National Institutes of Health Stroke Scale (NIHSS),
reperfusion therapy, and white matter hyperintensity
burden (Paciaroni et al., 2008; Thomas et al., 2021).
Good performance of Magnetic Resonance Imaging (MRI)
techniques, such as T2-weighted-Fluid-Attenuated Inversion
Recovery (T2/FLAIR), diffusion-weighted imaging (DWI) and

perfusion-weighted imaging (PWI), has also been reported
for the prediction of HT in patients with AIS (Oppenheim
et al., 2002; Jha et al., 2014; Shinoda et al., 2017). However, the
diagnostic performance of MRI for predicting HT in acute MCI
is uncertain. Understanding these risk factors and assessing
predictors in depth can significantly help physicians develop
strategies to reduce the occurrence of HT and also provide
insights into the pathophysiological mechanism of disease.

A quantitative analysis, texture analysis, has been widely
used for qualitative diagnosis, efficacy evaluation, and prognosis
prediction in neurological disorders by virtue of its unique
quantification characteristics of morphological features of
tissues (Kassner and Thornhill, 2010). MRI-based texture
analysis provides information related to the spatial distribution
and intensity of gray levels over the regions of interest. Recently,
texture analysis has been shown to predict HT in patients with
AIS (Kassner et al., 2009; Yu et al., 2018).

To our knowledge, MRI-based texture analysis for
prediction of HT in AIS patients, especially patients with MCI,
has not yet been completely exploited. We hypothesized that
texture analysis on MR images might be sensitive enough to
predict HT in patients with acute MCI. Therefore, we applied
gray-level co-occurrence matrix (GLCM) based texture analysis
to conventional MR imaging of patients with acute MCI to
determine whether MRI-based texture analysis can accurately
predict the appearance of HT.

Materials and methods

Patients

This study was approved by the Ethics Committee of Union
Hospital, Tongji Medical College of Huazhong University of
Science and Technology. Informed consent was waived because
of retrospective nature of this study. The study were also
conducted in accordance with the Declaration of Helsinki.
The clinical and radiological data were obtained retrospectively
from relevant medical records between January 2019 and
October 2020. The inclusion criteria were as follows: (1)
patients without any type of intracranial hemorrhage or lesions
that might mimic AIS on initial computed tomography (CT)
at the time of symptom onset; (2) patients who did not
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FIGURE 1

Flow diagram for patient selection.

receive recombinant tissue plasminogen activator (rt-PA) and
endovascular treatment, (3) DWI performed at the time of
hospitalization within 24 h; (4) HT detected by follow-up
CT 72 h after initial imaging. Exclusion criteria included:
(1) patients with evidence of intracerebral hemorrhage on
initial CT; (2) patients who did not undergo MRI scan or
follow-up CT after admission; (3) patients who was performed
MRI scan using a different machine; (4) poor quality of
MR images. Baseline demographic data including age, gender,
and also smoking, current alcohol drinking, medical history
of hypertension, diabetes mellitus, NIHSS score, laboratory
findings, and treatment measures during hospitalization were
collected as well. Two hundred and sixty eight acute MCI
patients with complete data were initially analyzed and 98
patients, consisting of 44 patients who developed HT during
hospitalization and 54 patients without HT, were included in the
final analysis according to the criteria (Figure 1).

Magnetic resonance imaging protocol
and imaging analysis

All patients were performed on 1.5 Tesla MRI equipment
(GE Healthcare, Milwaukee, WI, United States) using a 24-
channel head coil. MRI techniques included T1WI, T2/FLAIR,
and DWI. For the MRI protocol in this study were as

follows: (1) T1WI sequence: matrix size = 256 × 192,
field of view (FOV) = 240 × 240 mm, repetitive time
(TR) = 1,800 ms, echo time (TE) = 20 ms, flip angle
(FA) = 90, slice thickness = 4.3 mm. (2) T2-FLAIR sequence:
TR/TE = 8,500/120 ms, matrix = 256 × 192, FA = 130◦, slice
thickness = 4.3 mm. (3) DWI scan uses spin-echo echo planar
imaging (SE-EPI) sequence, b value is 0 and 1,000 s/mm2,
TR = 7,600 ms, TE = 100 ms, FOV 240 × 240 cm, slice
thickness = 4.3 mm, no slice gap and matrix size = 128 × 96.
MR angiography (MRA) was used to assess the severity of
intracranial arterial stenosis (ICAS). HT was categorized as
hemorrhagic infarction (HI) or parenchymal hematoma (PH),
both of these types can be classified into two subtypes.
Hemorrhagic infarction was defined as small hemorrhagic
petechiae located along the peripheral margins of the infarct
(HI-1) or more confluent petechiae within the infarct but
without space occupying effect (HI-2). Parenchymal hematoma
was defined as hematoma with slight space occupying effect in
less than 30% of the infarct (PH-1) or hematoma more than
30% of the infarct with substantial space occupying effect or any
hemorrhagic outside the infarcted area (PH-2) (Berger et al.,
2001). Follow-up CT examination was performed 72 h after
initial CT imaging in case of clinical worsening to identify HT.

The MR images were reviewed by two senior radiologists.
When the two radiologists disagreed over the MR images
findings, they reach a consensus after discussion. All images
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were exported in digital imaging and communications in
medicine (DICOM) format. The largest infarction slice from
MR images of each patient was chosen as the single
representative slice. The regions of interest (ROIs) containing
the selected slices were manually delineated on the MR images.
Further image analyses were performed based on the ROIs.
Texture analysis was performed using the publicly accessed
software, MaZda (Institute of Electronics, Technical University
of Lodz, version 4.6) (Szczypinski et al., 2009). Image texture
analysis was performed on the ROIs. The best 11 texture
features were extracted as a feature group for each MRI
sequence based on the GLCM approach. In MaZda, the GLCM
was computed for a distance of each pixel (d = 1) in four
directions (θ = 0◦, 45◦, 90◦, and 135◦). In total, 11 second-order
statistics parameters were extracted from the GLCM: angular
second moment (f1), contrast (f2), correlation (f3), sum of
squares (f4), inverse difference moment (f5), sum average (f6),
sum variance (f7), sum entropy (f8), entropy (f9), difference
variance (f10), difference entropy (f11). The mean values of
the distances in four directions were recorded for each image-
quality parameter.

Assessment of the prediction model
for hemorrhagic transformation based
on magnetic resonance imaging-based
texture features

In this study, texture features derived from DWI images
were selected as potential predictors of outcomes by logistic
regression analysis, and a prediction model for HT was
developed. Using the caret package in R (version 3.3.2), 98
samples were randomly divided into a train cohort (n = 69)
and test1 cohort (n = 29) at an approximate ratio of 7:3.
Subsequently, all 98 samples were assigned to the test2 cohort
(n = 98). In the train cohort, a multivariable logistic regression
model was undertaken to construct a novel radiomics-based
diagnostic model based on a set of texture features of great
significance extracted from DWI (Specific parameters were
as follows: “family = binomial,” direction = “backward”).
Thereafter, the “predict” function in R was applied to evaluate
the diagnostic abilities of our radiomics-based model in the
training, test1, and test2 datasets. The “plot.roc” function in
R was employed to visualize the results of receiver-operator
characteristic (ROC) in the training, test1, and test2 datasets.
Of note, the larger the area under the curve (AUC), the higher
the diagnostic value of the model is. Calibration of radiomics
signature in the prediction of HT was assessed with a calibration
curve based on the “lrm” and “calibrate” functions in R. Further,
decision curve analysis (DCA) was used to assess the clinical
efficiency of radiomics signature in predicting HT by calculating
the net benefit across a spectrum of threshold probabilities based
on the “ggDCA” package in R.

Statistical analysis

Statistical analysis was performed using Statistic Package
for Social Science (SPSS) software version 23.0. Normality of
the data was tested using the Shapiro-Wilk test. Normally
distributed continuous variables are presented as the means and
standard deviations, while non-normally distributed variables
are presented using median and interquartile range (IQR)
values. Categorical variables were expressed as counts and
percentages. T-tests, Chi-square, Mann–Whitney U test, and
Wilcoxon rank sum test were used to identify variables
associated with HT. A p-value less than 0.05 was considered
statistically significant. ROC curve analyses were performed to
compare the diagnostic performance of texture features based
on DWI and T2-FLAIR images and to calculate the area under
the curve (AUC) for measure diagnostic accuracy for prediction
HT. The higher AUC values (AUC ≥ 0.8) indicate a better
prognosis prediction for HT. AUC is interpreted as follows:
0.5 < AUC ≤ 0.7 indicates low accuracy, 0.7 < AUC ≤ 0.9
indicates moderate accuracy, 0.9 < AUC < 1.0 indicates high
accuracy, and AUC = 1 indicates perfect (Greiner et al., 2000).

Results

Characteristics of the patients

The baseline demographic data and clinical data of the two
groups were summarized in Table 1. Of these 98 patients with
acute MCI, 55 were males and 43 were females. Forty four
patients (44.9%) developed HT with a mean age of 68.97 (9.53)
years, and 54 (55.1%) patients were in the non-HT group with
a mean age of 65.75 (14.35) years. There was no difference in
the baseline demographic factors (age and gender), smoking,
alcohol intake, hypertension, diabetes mellitus, coronary heart
disease, lipid levels, and laboratory findings between the HT
group and the non-HT group. The proportion of patients with
atrial fibrillation among the HT group was 56.8%, significantly
higher than that of patients without HT (16.7%) (P < 0.05).
The mean baseline NIHSS was higher in the HT group than
in the non-HT group (13.83 ± 4.66 vs. 9.17 ± 5.76, p = 0.021).
With regards to intracranial arterial stenosis (ICAS), 14 (31.8%)
of 44 patients who progressed to HT had symptomatic ICAS,
but a higher proportion of the patients in non-HT group
presented with symptomatic ICAS (61.1%, 33/54). Of the HT
group, 27 (61.4%) patients were anterior circulation ischemia,
and 17 (38.6%) patients were posterior circulation ischemia
confirmed by MRI. In the non-HT group, 32 (59.3%) patients
were anterior circulation ischemia, and 22 (40.7%) patients were
posterior circulation ischemia. Of note, there was no significant
difference in HT incidence between the anterior circulation
and posterior circulation ischemia group. All patients were
treated with single antiplatelet therapy. For the patients with
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TABLE 1 Baseline demographic and clinical characteristics of patients
with and without hemorrhagic transformation (HT).

Variable HT
(n = 44)

Non-HT
(n = 54)

P-value

Age, years 68.97 ± 9.53 65.75 ± 14.35 0.238

Sex

Male 24 (54.5) 31 (57.4) 0.839

Female 20 (45.5) 23(42.6)

Medical history

Hypertension 32 (72.7) 44 (81.5) 0.338

Diabetes mellitus 9 (20.5) 18 (33.3) 0.179

Atrial fibrillation 25 (56.8) 9 (16.7) 0.000

Coronary heart disease 6 (13.6) 3 (5.5) 0.292

Hyperlipemia 3 (6.8) 7 (13.0) 0.504

Hyperuricemia 2 (4.5) 8 (14.8) 0.178

Smoking 16(36.4) 16 (29.6) 0.521

Alcohol intake 3 (6.8) 8 (14.8) 0.336

Stroke severity

NIHSS score on admission 13.83 ± 4.66 9.17 ± 5.76 0.021

Findings on admission

Systolic blood pressure, mmHg 141.92 ± 17.35 145.28 ± 23.42 0.876

Diastolic blood pressure, mmHg 87.04 ± 11.48 86.11 ± 11.97 0.737

Total cholesterol, mmol/L 4.15 ± 1.32 4.16 ± 1.13 0.882

LDL-cholesterol, mmol/L 2.13 ± 0.77 2.15 ± 0.73 0.725

FIB, g/L 3.91 ± 1.43 3.68 ± 1.22 0.762

D-dimer, ug/mL 0.95 ± 1.21 0.98 ± 1.14 0.813

Hcy, umol/L 10.06 ± 5.78 9.94 ± 3.62 0.231

Symptomatic ICAS ≥ 50% 14 (31.8) 33 (61.1) 0.004

HT, hemorrhagic transformation; NIHSS, National Institutes of Health Stroke Scale;
LDL, low-density lipoproteins; FIB, fibrinogen; Hcy, homocysteine; ICAS, intracranial
arterial stenosis.

hemorrhagic transformation, the antiplatelet agents (aspirin or
clopidogrel) were stopped at once. All the patients received
mannitol treatment to reduce cerebral edema, and appropriate
rehabilitation guidance according to the clinical condition.

Texture analysis to classify individuals
with hemorrhagic transformation or
without hemorrhagic transformation

Figure 2 shows the selected region of interest drawings
from the brain MRI of two unrelated female patients with and
without HT, respectively. The median values of 11 textural
features extracted from ROIs of patients in the HT and
non-HT groups are summarized in Table 2. Among the 11
textural parameters extracted from DWI images, six parameters
(contrast, correlation, sum of squares, inverse difference
moment, difference variance, and difference entropy) differs
significantly between the two groups (p < 0.05) (Figure 3).
Compared with non-HT group, the median contrast in DWI

images was significantly increased in HT patients (44.652
vs. 19.963, p = 2.363 × 10−5), and the median correlation
in DWI images was lower in HT patients (0.784 vs. 0.897,
p = 6.450 × 10−5). The median difference variance and
difference entropy were significantly increased in HT cohort
compared with the values in non-HT patients (19.096 vs. 9.971,
p = 6.156 × 10−5 and 1.128 vs. 0.964, p = 2.141 × 10−5,
respectively). Our results showed overall good predictive
performances of HT in f2 (contrast), f3 (correlation), f4 (sum
of squares), f5 (inverse difference moment), f10 (difference
variance), and f11 (difference entropy) parameters extracted
from DWI images with the AUC values of 0.796, 0.779, 0.652,
0.792, 0.780, and 0.797, respectively (Figure 4). Among these
features, f2 (contrast), f5 (inverse difference moment), and f11
(difference entropy) had better discriminatory power in the
prediction of HT than other features (AUC > 0.7). Among
these features, the AUC value of f11(difference entropy) was
the highest diagnostic accuracy (AUC = 0.797, sensitivity 63%,
specificity 85.4%). As shown in Table 2, based on the T2-FLAIR
images, three of eleven texture features (contrast, correlation,
and difference variance) were significant different between
the two groups (p < 0.05). Compared with HT patients, the
median infarct f2 (contrast) and f10 (difference variance) were
significantly reduced in non-HT patients (19.997 vs. 12.319,
p = 0.029 and 10.060 vs. 6.297, p = 0.015, respectively). However,
the median f3 (correlation) was significantly increased in non-
HT patients compared with HT patients (0.888 vs. 0.939,
p = 0.029).The area under the curve (AUC) of combined texture
features is shown in Table 2. The AUC values of f2 (contrast),
f3 (correlation), and f10 (difference variance) were 0.652, 0.652,
and 0.670, respectively (Figure 4). Among these features, the
AUC value of f10(difference variance) was the highest diagnostic
accuracy (AUC = 0.670, sensitivity 53.6%, specificity 77.8%). In
present study, the texture analysis based on T2 FLAIR images
were less helpful and accurate in predicting HT when compared
with those upon DWI images.

Efficacy of the magnetic resonance
imaging-based prediction model in
predicting hemorrhagic transformation

In the present study, we constructed a novel radiomics
panel based on a set of 6 different texture features (contrast,
correlation, sum of squares, inverse difference moment,
difference variance, and difference entropy) of great significance
extracted from DWI for predicting HT in patients with acute
MCI, and analyze the discrimination and calibration of this
model. For the train, test1, and test2 cohorts, the AUC values of
ROC curves (Figure 5) produces satisfactory results, indicating
our radiomics-based panel could serve as an excellent diagnostic
indicator of HT. Likewise, the calibration curves (Figure 6) and
DCA plots (Figure 7) validated the clinical usefulness of our
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FIGURE 2

MR images of two patients (a 58-year-old female patient in no-HT group and a 75-year-old female patient who developed HT) with acute MCI.
The stroke lesions of the two patients were visible as hyperintensity on DWI (A,F) and T2/FLAIR (C,H), and hypointensity signal on T1-weighted
imaging (B,G), respectively. Regions of interest were placed within the infarct lesion (D,I) and were manually delineated to include the largest
stroke lesion area (red curve). Follow-up CT was performed 72 h after the MR imaging and showed no evidence of HT (E). Follow-up CT
revealed infarcts with HT in the left cerebral hemisphere (J). HT, hemorrhagic transformation; MCI, massive cerebral infarction; MR, magnetic
resonance; DWI, diffusion weighted imaging; T2/FLAIR, T2-weighted-fluid-attenuated inversion recovery; CT, computed tomography.

TABLE 2 Comparison of textural parameters of diffusion-weighted image (DWI) and T2-weighted-fluid-attenuated inversion recovery (T2/FLAIR)
images between hemorrhagic transformation (HT) and non-HT groups and receiver operator characteristic (ROC) analysis.

DWI T2WI-FLAIR

HT Non-HT Z-value P-value AUC HT Non-HT Z-value P-value AUC

Angular second moment 0.003 0.003 −1.921 0.055 0.634 0.003 0.003 −1.929 0.054 0.635

Contrast 44.652 19.963 −4.227 0.000 0.796 19.997 12.319 −2.178 0.029 0.652

Correlation 0.784 0.897 −3.995 0.000 0.779 0.888 0.939 −2.178 0.029 0.652

Sum of squares 104.963 102.704 −2.174 0.030 0.652 105.991 103.206 −1.497 0.134 0.605

Inverse difference moment 0.197 0.294 −4.172 0.000 0.792 0.304 0.328 −1.463 0.143 0.602

Sum average 65.460 65.738 −1.203 0.229 0.584 65.109 65.092 −1.021 0.307 0.571

Sum variance 376.335 385.154 −1.148 0.251 0.580 394.778 396.678 −0.250 0.803 0.517

Sum entropy 1.833 1.864 −2.075 0.058 0.645 1.881 1.883 −0.113 0.910 0.508

Entropy 2.644 2.631 −0.806 0.420 0.556 2.708 2.655 −1.497 0.134 0.637

Difference variance 19.096 9.971 −4.007 0.000 0.780 10.060 6.297 −2.428 0.015 0.670

Difference entropy 1.128 0.964 −4.250 0.000 0.797 0.954 0.885 −1.645 0.100 0.615

DWI, diffusion-weighted image; T2/FLAIR, T2-weighted-fluid-attenuated inversion recovery; ROC, receiver operator characteristic; AUC, area under the ROC curve; HT, hemorrhagic
transformation; P-value indicates differences of texture features between patients with and without HT. P < 0.05 was considered statistically significant.

radiomics-based panel in differentiating patients with HT from
non-HT patients.

Discussion

In this study, we investigated the performance of texture
analysis based on MR images in predicting HT in patients

with acute MCI. To the best of knowledge, this is the first
study in which the predictive ability of MRI-based texture
analysis is evaluated in patients with acute MCI. Our results
show that texture analysis has a potential power to distinguish
infarcted tissues that are prone to develop HT from the
surrounding tissues.

The pathophysiology mechanisms of HT after ischemic
stroke is still unclear. Recent studies show evidences of
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FIGURE 3

Boxplots of the most distinguishing texture parameters for predicting hemorrhagic transformation (HT) based on magnetic resonance (MR)
images. Boxplots show six texture parameters (f2, f3, f4, f5, f10, and f11) with significant distinguishing capacity between infarct lesions of two
groups for predicting HT based on diffusion weighted imaging (DWI) (A–F). Boxplots show three texture parameters (f2, f3, and f10) with
significant distinguishing capacity between infarct lesions of two groups for predicting HT based on T2-weighted-fluid-attenuated inversion
recovery (T2/FLAIR) (G–I).

significant hemodynamic and metabolic imbalances led to
breakdown of blood-brain barrier and eventually increased
extravasation of blood (Warach and Latour, 2004; Hong et al.,
2021). Accurate prediction of HT after AIS is crucial for
therapeutic regimen selections on patient’s prognosis to reduce
the occurrence of HT. Many risk factors or predictors have
been described for HT after AIS. Although several predictors
of HT have been identified in AIS, the association between
these predictors and HT remains controversial. Reperfusion
therapy, including intravenous thrombolysis with rt-PA or
mechanical thrombectomy, are well-established risk factors for
HT in patients with AIS. To avoid the influence of reperfusion
therapy on HA, only those acute MCI patients who did not
receive intravenous rt-PA as well as mechanical thrombectomy
were included in this study. Hypertension, diabetes mellitus,
and hematological parameters did not contribute to HT in
our study, consistent with previous studies (Bang et al., 2007;

Yu et al., 2018). The mean baseline NIHSS for participants in the
HT group was significantly higher than that of patients without
HT. In agreement with a previous study, the distribution of
atrial fibrillation was significantly higher in patients with HT
than in patients without HT (Paciaroni et al., 2008). There
is growing evidence showing that atrial fibrillation is related
to a lower recanalization rate after thrombolysis but increased
risk for HT (Dang et al., 2019). In our study, the relatively
lower frequency of ICAS in HT group compared with non-HT
group, which indicates that the patients with symptomatic ICAS
were less likely to develop HT. This may be due to prolonged
or impaired downstream perfusion as a result of inadequate
collateral compensation (Feng et al., 2019).

Moreover, advanced neuroimaging techniques have recently
been wide applied to study ischemic stroke because of its
capacity to predict HT. Quantitative texture analysis based
on the MR sequences, such as DWI, T2/FLAIR or PWI, has
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FIGURE 4

ROC analysis showing the best model for predicting hemorrhagic transformation (HT) in patients with acute massive cerebral infarction (MCI).
Illustration of the accuracy of six texture analysis features (f2, f3, f4, f5, f10, and f11) in terms of ROC curves for predicting HT based on diffusion
weighted imaging (DWI) (A). Illustration of the accuracy of three texture analysis features (f2, f3, and f11) in terms of ROC curves for predicting
HT based on T2-weighted-fluid-attenuated inversion recovery (T2/FLAIR) (B). ROC, receiver operator characteristic.

FIGURE 5

Receiver operator characteristic (ROC) of the prediction model
based on a set of six different texture features (f2, f3, f4, f5, f10,
and f11) of great significance extracted from diffusion weighted
imaging (DWI) in both the train (0.831, [0.733, 0.929]), test1
(0.808, [0.636, 0.980]), and test2 dataset (0.828, [0.744, 0.912]).

been used for the prediction of HT in AIS. However, the
feasibility and effectiveness of MRI-based texture analysis in
order to evaluate HT in patients after ischemic stroke remains
largely untested. Texture analysis is a well-established radiology
techniques that detects the invisible signal changes among
image pixels. It may reduce the degree of variability in imaging
interpretation that relies primarily on human visual perception
(Kassner et al., 2009). MRI-based texture analysis can be used

to quantify the spectral properties, pixel interrelationships,
gray-level patterns of MRI images, and the spatial distribution
differences of lesions within the brain parenchyma. MRI-based
texture analysis is able to reveal ischemic lesions and can be
used to assess the severity of ischemic stroke (Huisa et al.,
2013; Wang et al., 2020). Kassner et al. (2009) demonstrated
that texture analysis based on postcontrast T1-weighted images
is a good predictor of HT in AIS. However, the prediction of
HT by MRI-based texture analysis in acute MCI has not been
reported so far. Our results showed overall good predictive
performances of HT in textural parameters extracted from DWI
images with the higher values of AUC. Although three textural
parameters on T2/FLAIR images reached statistical significance,
we failed to find any features with high diagnostic power
between images from patients with HT and patients without
HT. This suggests that DWI-based texture analysis tend to have
higher prediction value for HT in patients with acute MCI
than the analysis base on T2/FLAIR images. Multiparametric
MRI texture analysis model should be developed to improve the
prediction performance of HT following AIS.

Hemorrhagic transformation is an important factor related
to stroke outcome, but its influence on functional outcome
is currently unclear. A prospective multicenter study in Italy
reported that the risk of 24-h neurological deterioration and
3-month death was severely increased after PH (Paciaroni
et al., 2008). Van Kranendonk et al. (2019) found that not
only PH2 was related to functional outcome after stroke
but other smaller types of HT might influence functional
outcome. Moreover, the management of HT in adults with
acute MCI is often more complicated and challenging.
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FIGURE 6

(A) The calibration curves for diffusion weighted imaging (DWI)-based prediction model in the training dataset. (B) The calibration curves for
DWI-based prediction model in the test1 dataset. (C) The calibration curves for DWI-based prediction model in the test2 dataset.

FIGURE 7

(A) Decision curve analysis for diffusion weighted imaging (DWI)-based prediction model in the training dataset. (B) Decision curve analysis for
DWI-based prediction model in the test1 dataset. (C) Decision curve analysis for DWI-based prediction model in the test2 dataset.

There have been no appropriate guidelines about the use of
antithrombotics after HT. Accordingly, the guidelines organized
by the Chinese Stroke Association recommend the temporary
discontinuation of antiplatelet or anticoagulant medications in
stroke patients with HT (Liu et al., 2020). Treatments of HT also
include blood pressure management, reversing coagulopathy,
and management of intracranial pressure. Therefore, early
identification of HT in patients with acute MCI is particular
important, and may be used to guide the selection of patients
for thrombolytic therapy, and subsequent monitoring of HT.

In summary, our preliminary results showed that MRI-
based texture has a good predictive validity for HT in
patients with acute massive cerebral infarction. There are a
few limitations that should be noted in the present study.
First, this retrospective cohort study may have selection bias.
Second, TA was performed on the largest slice rather than
the whole infarcted lesion, which may have an immeasurable
effect on the final results. Third, the sample size in our study
was relatively small. Further investigations with a large sample

size are warranted. Finally, we fail to perform MRI-based
texture analysis after classification of HT because of limited
number of patients with parenchymal hematoma. In spite of
these limitations, MRI-based TA can facilitate the accurate
prediction of HA in patients with acute MCI and can optimize
the development of clinical decisions.

Data availability statement

The original contributions presented in this study are
included in the article/supplementary material, further inquiries
can be directed to the corresponding authors.

Ethics statement

The studies involving human participants were reviewed
and approved by Ethics Committee of Union Hospital, Tongji

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.923708
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-923708 July 14, 2022 Time: 17:32 # 10

Zhai et al. 10.3389/fnins.2022.923708

Medical College of Huazhong University of Science and
Technology. The patients/participants provided their written
informed consent to participate in this study.

Author contributions

HZ and ZL: methodology, data curation, software,
image processing, statistical analysis, writing—original draft,
and visualization. SW and ZC: software, data curation,
image processing, and statistical analysis. YL and YX:
conceptualization, methodology, writing—review and editing,
and supervision. All authors contributed to the article and
approved the submitted version.

Funding

This work was supported by the grants from the National
Natural Science Foundation of China (82101504) to ZL.

Acknowledgments

We thank all participants for their help and support.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

References

Adams, H. P. Jr., Bendixen, B. H., Kappelle, L. J., Biller, J., Love, B. B., Gordon,
D. L., et al. (1993). Classification of subtype of acute ischemic stroke. Definitions
for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke
Treatment. Stroke 24, 35–41. doi: 10.1161/01.str.24.1.35

Arba, F., Rinaldi, C., Caimano, D., Vit, F., Busto, G., and Fainardi, E. (2020).
Blood-Brain Barrier Disruption and Hemorrhagic Transformation in Acute
Ischemic Stroke: Systematic Review and Meta-Analysis. Front. Neurol. 11:594613.
doi: 10.3389/fneur.2020.594613

Bang, O. Y., Buck, B. H., Saver, J. L., Alger, J. R., Yoon, S. R., Starkman, S., et al.
(2007). Prediction of hemorrhagic transformation after recanalization therapy
using T2∗-permeability magnetic resonance imaging. Ann. Neurol. 62, 170–176.

Berger, C., Fiorelli, M., Steiner, T., Schabitz, W. R., Bozzao, L., Bluhmki, E., et al.
(2001). Hemorrhagic transformation of ischemic brain tissue: asymptomatic or
symptomatic? Stroke 32, 1330–1335. doi: 10.1161/01.str.32.6.1330

Dang, H., Ge, W. Q., Zhou, C. F., and Zhou, C. Y. (2019). The Correlation
between Atrial Fibrillation and Prognosis and Hemorrhagic Transformation. Eur.
Neurol. 82, 9–14.

Ekeh, B., Ogunniyi, A., Isamade, E., and Ekrikpo, U. (2015). Stroke mortality
and its predictors in a Nigerian teaching hospital. Afr. Health Sci. 15, 74–81.
doi: 10.4314/ahs.v15i1.10

Feng, X., Chan, K. L., Lan, L., Abrigo, J., Liu, J., Fang, H., et al. (2019). Stroke
Mechanisms in Symptomatic Intracranial Atherosclerotic Disease: Classification
and Clinical Implications. Stroke 50, 2692–2699.

Greiner, M., Pfeiffer, D., and Smith, R. D. (2000). Principles and practical
application of the receiver-operating characteristic analysis for diagnostic tests.
Prev. Vet. Med. 45, 23–41.

Hong, J. M., Kim, D. S., and Kim, M. (2021). Hemorrhagic Transformation
After Ischemic Stroke: Mechanisms and Management. Front. Neurol. 12:703258.
doi: 10.3389/fneur.2021.703258

Huisa, B. N., Liebeskind, D. S., Raman, R., Hao, Q., Meyer, B. C., Meyer, D. M.,
et al. (2013). Diffusion-weighted imaging-fluid attenuated inversion recovery
mismatch in nocturnal stroke patients with unknown time of onset. J. Stroke
Cerebrovasc. Dis. 22, 972–977. doi: 10.1016/j.jstrokecerebrovasdis.2012.01.004

Huttner, H. B., and Schwab, S. (2009). Malignant middle cerebral artery
infarction: clinical characteristics, treatment strategies, and future perspectives.
Lancet Neurol. 8, 949–958. doi: 10.1016/S1474-4422(09)70224-8

Jha, R., Battey, T. W., Pham, L., Lorenzano, S., Furie, K. L., Sheth, K. N., et al.
(2014). Fluid-attenuated inversion recovery hyperintensity correlates with matrix
metalloproteinase-9 level and hemorrhagic transformation in acute ischemic
stroke. Stroke 45, 1040–1045. doi: 10.1161/STROKEAHA.113.004627

Kassner, A., Liu, F., Thornhill, R. E., Tomlinson, G., and Mikulis, D. J. (2009).
Prediction of hemorrhagic transformation in acute ischemic stroke using texture
analysis of postcontrast T1-weighted MR images. J. Magn. Reson. Imaging 30,
933–941. doi: 10.1002/jmri.21940

Kassner, A., and Thornhill, R. E. (2010). Texture analysis: a review of neurologic
MR imaging applications. Am. J. Neuroradiol. 31, 809–816.

Li, J., Zhang, P., Wu, S., Wang, Y., Zhou, J., Yi, X., et al. (2019). Stroke-
related complications in large hemisphere infarction: incidence and influence
on unfavorable outcome. Ther. Adv. Neurol. Disord. 12:1756286419873264. doi:
10.1177/1756286419873264

Lin, J., and Frontera, J. A. (2021). Decompressive Hemicraniectomy for Large
Hemispheric Strokes. Stroke 52, 1500–1510.

Liu, L., Chen, W., Zhou, H., Duan, W., Li, S., Huo, X., et al. (2020).
Chinese Stroke Association guidelines for clinical management of cerebrovascular
disorders: executive summary and 2019 update of clinical management of
ischaemic cerebrovascular diseases. Stroke Vasc. Neurol. 5, 159–176.

Oppenheim, C., Samson, Y., Dormont, D., Crozier, S., Manai, R., Rancurel, G.,
et al. (2002). DWI prediction of symptomatic hemorrhagic transformation in acute
MCA infarct. J. Neuroradiol. 29, 6–13.

Paciaroni, M., Agnelli, G., Corea, F., Ageno, W., Alberti, A., Lanari, A., et al.
(2008). Early hemorrhagic transformation of brain infarction: rate, predictive
factors, and influence on clinical outcome: results of a prospective multicenter
study. Stroke 39, 2249–2256. doi: 10.1161/STROKEAHA.107.510321

Shinoda, N., Hori, S., Mikami, K., Bando, T., Shimo, D., Kuroyama,
T., et al. (2017). Prediction of hemorrhagic transformation after acute
thrombolysis following major artery occlusion using relative ADC ratio: A
retrospective study. J. Neuroradiol. 44, 361–366. doi: 10.1016/j.neurad.2017.
07.003

Su, Y., Fan, L., Zhang, Y., Zhang, Y., Ye, H., Gao, D., et al. (2016). Improved
Neurological Outcome With Mild Hypothermia in Surviving Patients With
Massive Cerebral Hemispheric Infarction. Stroke 47, 457–463. doi: 10.1161/
STROKEAHA.115.009789

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.923708
https://doi.org/10.1161/01.str.24.1.35
https://doi.org/10.3389/fneur.2020.594613
https://doi.org/10.1161/01.str.32.6.1330
https://doi.org/10.4314/ahs.v15i1.10
https://doi.org/10.3389/fneur.2021.703258
https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.01.004
https://doi.org/10.1016/S1474-4422(09)70224-8
https://doi.org/10.1161/STROKEAHA.113.004627
https://doi.org/10.1002/jmri.21940
https://doi.org/10.1177/1756286419873264
https://doi.org/10.1177/1756286419873264
https://doi.org/10.1161/STROKEAHA.107.510321
https://doi.org/10.1016/j.neurad.2017.07.003
https://doi.org/10.1016/j.neurad.2017.07.003
https://doi.org/10.1161/STROKEAHA.115.009789
https://doi.org/10.1161/STROKEAHA.115.009789
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-923708 July 14, 2022 Time: 17:32 # 11

Zhai et al. 10.3389/fnins.2022.923708

Szczypinski, P. M., Strzelecki, M., Materka, A., and Klepaczko, A. (2009).
MaZda–a software package for image texture analysis.Comput.Methods Programs.
Biomed. 94, 66–76. doi: 10.1016/j.cmpb.2008.08.005

Thomas, S. E., Plumber, N., Venkatapathappa, P., and Gorantla, V. (2021).
A Review of Risk Factors and Predictors for Hemorrhagic Transformation in
Patients with Acute Ischemic Stroke. Int. J. Vasc. Med. 2021:4244267.

Van Kranendonk, K. R., Treurniet, K. M., Boers, A. M. M., Berkhemer, O. A.,
Van Den Berg, L. A., Chalos, V., et al. (2019). Hemorrhagic transformation is
associated with poor functional outcome in patients with acute ischemic stroke
due to a large vessel occlusion. J. Neurointerv. Surg. 11, 464–468.

Wang, H., Lin, J., Zheng, L., Zhao, J., Song, B., and Dai, Y. (2020). Texture
analysis based on ADC maps and T2-FLAIR images for the assessment of the

severity and prognosis of ischaemic stroke. Clin. Imaging 67, 152–159. doi: 10.
1016/j.clinimag.2020.06.013

Wang, X., and Lo, E. H. (2003). Triggers and mediators of
hemorrhagic transformation in cerebral ischemia. Mol. Neurobiol. 28,
229–244.

Warach, S., and Latour, L. L. (2004). Evidence of reperfusion injury, exacerbated
by thrombolytic therapy, in human focal brain ischemia using a novel imaging
marker of early blood-brain barrier disruption. Stroke 35, 2659–2661. doi: 10.1161/
01.STR.0000144051.32131.09

Yu, Y., Guo, D., Lou, M., Liebeskind, D., and Scalzo, F. (2018). Prediction of
Hemorrhagic Transformation Severity in Acute Stroke From Source Perfusion
MRI. IEEE Trans. Biomed. Eng. 65, 2058–2065. doi: 10.1109/TBME.2017.2783241

Frontiers in Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2022.923708
https://doi.org/10.1016/j.cmpb.2008.08.005
https://doi.org/10.1016/j.clinimag.2020.06.013
https://doi.org/10.1016/j.clinimag.2020.06.013
https://doi.org/10.1161/01.STR.0000144051.32131.09
https://doi.org/10.1161/01.STR.0000144051.32131.09
https://doi.org/10.1109/TBME.2017.2783241
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Predictive value of magnetic resonance imaging-based texture analysis for hemorrhage transformation in large cerebral infarction
	Introduction
	Materials and methods
	Patients
	Magnetic resonance imaging protocol and imaging analysis
	Assessment of the prediction model for hemorrhagic transformation based on magnetic resonance imaging-based texture features
	Statistical analysis

	Results
	Characteristics of the patients
	Texture analysis to classify individuals with hemorrhagic transformation or without hemorrhagic transformation
	Efficacy of the magnetic resonance imaging-based prediction model in predicting hemorrhagic transformation

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


