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Abstract: The ever-growing development of sensor technology brings new opportunities to investi-
gate impacts of the outdoor environment on human health at the individual level. However, there is
limited literature on the use of multiple personalized sensors in urban environments. This review
paper focuses on examining how multiple personalized sensors have been integrated to enhance
the monitoring of co-exposures and health effects in the city. Following PRISMA guidelines, two
reviewers screened 4898 studies from Scopus, Web of Science, ProQuest, Embase, and PubMed
databases published from January 2010 to April 2021. In this case, 39 articles met the eligibility
criteria. The review begins by examining the characteristics of the reviewed papers to assess the
current situation of integrating multiple sensors for health and environment monitoring. Two main
challenges were identified from the quality assessment: choosing sensors and integrating data. Lastly,
we propose a checklist with feasible measures to improve the integration of multiple sensors for
future studies.

Keywords: human sensors; individual data; physiological response; environment measurement

1. Introduction

The World Health Organization (WHO, 2018) recommends collective efforts to combat
environment-related disease given the evidence on the effect of the environment on health
and wellbeing. Research shows that stressors from the urban environment [1] are related to
humans’ mental and psychological states whilst conducting outdoor activities in their daily
lives. For instance, urban airborne particulate matter [2] poses serious health risks such as
lung cancer and asthma, and road traffic noise [3] is associated with sleep deprivation and
poor mental health. In addition urban form [4] effects our ability to do physical activity,
leading to risk of being overweight, and all these health outcomes can vary by ethnicity
and socio-economic status. In view of this, an in-depth investigation is advocated to assess
the health effects of outdoor stressors in the urban environment.

With the advancement of sensing and wearable technology, personalized wearable
sensors are now becoming ubiquitous. Coming from the Internet of Things (IoT) and
quantified self (QS) (coined by Gary Wolf and Kevin Kelly in 2007, the term embodies
self-knowledge through self-tracking) paradigms, personalized wearable sensors are now
regularly used to track one’s own biological, physical, and behavioral [5] information,
including psychological [6] and mental states [7] and physical activities [8]. Especially
for outdoor activities, wearable sensors have the distinct advantages of portability and
usability, enabling tracking people’s states during daily activity in the city [9,10]. Mean-
while, low-cost sensors for environmental exposure monitoring, carried by individuals,
also benefit the self-tracking of personal exposures to specific outdoor stressors, such as
PM2.5 (particulate matter with an aerodynamic diameter <2.5 µm) [11], noise [12] and
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radiation [13] in the urban environment. In light of these developments, employing person-
alized sensors can become an effective tool to monitor human’s outdoor physical activities
and the health effect of outdoor stressors on humans.

The latest personalized devices such as the SENSg [14], are equipped with multiple
sensors enabling the simultaneous monitoring of environmental exposures and human
activity in the city. However, for the majority of studies, a more practicable and feasible
method is to integrate multiple personalized sensors as a package to assess human health
and environment during outdoor physical activity.

However, research articles and reviews to date are limited to discussing the employ-
ment of sensors for environment monitoring [15] or health monitoring [16,17], but rarely to
discuss the integrations between different kinds of sensors. Compared with employing
one sensor, integrating multiple sensors brings more practical questions, such as the inter-
operability of multiple data from sensors [18], which have not been fully addressed yet
in the literature. This significant knowledge gap regarding the implications of integrating
multiple sensors makes it challenging for future research.

In view of the gap in the literature, this systematic review aims to investigate the
application of integrating multiple sensors for health and outdoor environment monitoring
in the city. Specifically, the review will:

• Assess current applications integrating multiple sensors for health and outdoor envi-
ronment monitoring,

• Examine the main challenges related to the integration, and
• Propose workable approaches to optimize the integration and improve the feasibility

of integration for future studies.

By reviewing current sensor-driven case studies, we hope to provide a framework
upon which future studies can be based.

2. Methods
2.1. Search Strategy

We reviewed papers published between January 2010 and April 2021. The rapid
development of sensing technology significantly promoted the application of “personalised
sensor” in recent years hence the rationale for using 2010 as the starting year. While studies
prior to 2010 may use the words “monitor” or “device” in reference to “sensors”, they do
not generally refer to personalized or mobile or miniature sensors. Our review adhered to
the recommendations of the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses). Figure 1 shows the PRISMA flow chart of inclusion and exclusion
of articles in the study’s identification steps. In this study, searches were conducted in
five databases, namely: Scopus (244), Web of Science (3389), ProQuest (507), Embase (103),
and PubMed (1570). Four categories of keywords and their combinations were used in
the search: (1) ‘physical activity’ OR ‘outdoor activity’ OR ‘walking’ OR ‘cycling’; (2)
‘physical health’ OR ‘mental health’ OR ‘wellbeing’ OR ‘emotion’ OR ‘psychology’ OR
‘exposure’; (3) ‘environment’ OR ‘place’ OR ‘space’ OR ‘spatial’; (4) ‘wearable sensors’ OR
‘personal sensors’ OR ‘human sensors’. The combinations of searching results were “(#2
AND #3 AND #4) OR (#1 AND #3 AND #4)”. This review selected articles focusing on
the integration of personalized sensors on monitoring environmental impacts on human’s
responses during outdoor activities. Considering language barriers, only articles in English
were included in the literature review. In addition, the reference list of relevant articles was
reviewed to identify potential sources missed in the database search.
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Figure 1. Article selection process.

2.2. Selection Criteria

The search results were imported into ‘COVIDENCE’ (https://www.covidence.org
(accessed on 20 August 2021)) for further assessment. After removing duplicates, the
assessment in COVIDENCE left 4898 documents for the title and abstract screening. Two
reviewers (ZZ and PMA) conducted the titles and abstract screening based on the prede-
fined study inclusion criteria select papers, independently to avoid potential bias. The
abstract and title screening resulted in 378 articles that met the inclusion criteria. The same
reviewers conducted an independent full-text screening for eligibility. For the full-text
review, studies were considered eligible for our review if they: (1) related to environmental
impacts and health outcome; (2) were conducted in a real-world setting and an urban
environment; (3) collected data via sensing technology; and (4) employed multiple person-
alized sensors (at least two different sources of personalized data). We excluded reviews
and reports. Disparities in the assessment were resolved by consensus discussion between
the two reviewers.

2.3. Data Extraction

For each study, the following basic study characteristics were extracted (Table 1):
the year of publication; temporal resolution (e.g., hours, days, months, seasons); study
setting (natural and predefined settings); area of publication (e.g., social science, environ-
mental science, geography, medical research); region of study (e.g., Asia, Europe, North
America); participants’ gender and sample size; types of environment (e.g., nature, social
environment, built environment and physical environment); types of health (behavior,
physiological health); other contextual (Yes/No) and geospatial data (Yes/No). In addition,
information about data collection, such as measures for the environment and health-related
outcome, sensor packages, statistical analysis and supplementary data, were extracted
(Supplementary Table S1) to provide a summary of the multiple sensors used in the study
of environment and health.

https://www.covidence.org
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2.4. Quality Assessment

To assess the methodological quality of reviewed studies, we used the assessment
checklists adapted from the assessment tool Evaluation of Public Health Practice Projects
(EPHPP) [19] and Guidelines for Critical Review of Qualitative Studies [20]. It has been
shown that EPHPP is an effective tool to systematically assess the quality of quantitative
studies [21]. The tool has previously been used in systematic reviews on the environmen-
tal effects on human wellbeing [22,23] and physical activity [24,25]. EPHPP has seven
categories: selection bias, study design, confounders, blinding, data collection method,
withdrawals and analysis.

Concerning that the integration of multiple personalized sensors is a new and interdis-
ciplinary method, we hope to assess the completeness and systematics of its applications.
Hence, we added criteria covering the qualitative research from the Guidelines for Critical
Review which are not covered by the EPHPP, including study purpose, literature review,
and conclusion. In reference to the adaption used by Won, et al. [26], the checklist (Supple-
mentary Table S2) was applied in this paper on the basis of assessment criteria for study
purpose, literature, sampling (description, representation, consent), study design, data
collection method (description and tool), withdrawals, confounders, data analysis and
conclusions.

In the checklist, ¨0¨ means ¨Weak¨ (“no”), ¨1¨ means ¨Moderate¨ (“yes”), ¨2¨ means
¨Strong¨, the total score range from 0 to 20. The papers scores ranges from 8 to 19 with
eight studies (20.5%) with scores of 8–11 in the low-quality category, 21 studies (53.8%)
with scores of 12–15 in the middle-quality category and 10 studies (25.6%) reached the
high-quality category with scores of 16–19. The result of the assessment is provided in
Supplementary Table S3.
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Table 1. Characteristics of the reviewed studies.

NO RE Temporal
Resolution Subject Area 1 Location Study

Setting Gender
Sample Size

(Include)
(Age Group)

Environment
Type Geo-Data Contextual

Data Health

1 Benita, et al. [27] 10 min
Social science,

Environmental
Science

Singapore
Pre-defined

(700 m
walking)

Female 10
(aged 21–25) Physical Yes Yes

Activity
and Mental

health

2 Benita and
Tunçer [28] 10 min

Environmental
Science,

Agricultural and
Biological
Sciences

Singapore
Pre-defined

(700 m
walking)

Female 10
(aged 21–25)

Physical and
Urban Yes Yes

Activity
and Mental

health

3 Birenboim, et al. [29] 30 min

Social science,
Earth and
Planetary
Sciences

Netherlands
Pre-defined

(3 km
walking)

Male

15
(12)

(average age
of 21.8)

Urban Yes Yes Mental
health

4 Bohmer, et al. [30] 7–10 days

Arts and
humanities,
Medicine,

Neuroscience

Netherlands Natural Both

82
(48)

(average age
of 62.3)

Physical No No Activity

5 Boissy, et al. [31] 14 days Medicine Canada Natural Both
75

(54)
(aged 55–85)

Urban Yes No Activity

6 Bolliger, et al. [32] 15 days
Environmental

Science,
Medicine

Belgium Natural Both 5
(Adults) Social Yes No

Mental
health and
Psychology

7 Borghi, et al. [33]
14 days

(repeat in
two seasons)

Environmental
Science,

Medicine
Italy

Pre-defined
(90 km home-

to-work)
- 1

(Adult) Physical Yes No Physical
health

8 Burgi, et al. [34] 7 days Multidisciplinary Switzerland Natural Both
123

(119)
(aged 11–14)

Urban Yes Yes Activity

9 Butt, et al. [35] 14 days Medicine USA Natural Both
20

(11)
(aged 24–35)

Social No No Activity
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Table 1. Cont.

NO RE Temporal
Resolution Subject Area 1 Location Study

Setting Gender
Sample Size

(Include)
(Age Group)

Environment
Type Geo-Data Contextual

Data Health

10 Cerin, et al. [36] 7 days
Medicine,

Health
Professions

USA Natural Both

84
(73/66)

(aged 3–5
children and
their parents)

Urban Yes No Activity

11 Chaix, et al. [37] 7 days
Medicine,

Health
Professions

France Natural Both

319
(285)

(average age
of 50.2)

Urban Yes No Activity

12 Chrisinger and
King [38] 20–25 mins

Medicine,
Computer

Science
USA

Pre-defined
(One walk

route)
Both 14

(Adults)
Social and

urban Yes No Mental
health

13 Dessimond,
et al. [39] 6.5/8 days

Engineering,
Medicine,
Computer

Science

France Natural - 1
(Adult) Physical Yes Yes Activity

14 Do, et al. [40] 7 days

Environmental
Science,

Engineering,
Earth and
Planetary
Sciences

USA Natural Both 18
(Adults) Physical Yes Yes Activity

15 Doherty and Oh [41] 3 days
Medicine,

Health
Professions

Canada Natural Both
40

(37)
(aged 32–75)

Urban Yes No
Physical

health and
Activity

16 Donaire-Gonzalez,
et al. [42]

1 day (repeat
in three
seasons)

Environmental
Science

Europe (Five
cities) Natural Both

158
(average age

of 61)
Physical Yes Yes Activity

17 Doryab, et al. [43] 16 weeks Medicine USA Natural Both

188
(160)

(college
student)

Social Yes No Activity
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Table 1. Cont.

NO RE Temporal
Resolution Subject Area 1 Location Study

Setting Gender
Sample Size

(Include)
(Age Group)

Environment
Type Geo-Data Contextual

Data Health

18 El Aarbaoui and
Chaix [44] 7 days

Environmental
Science,

Medicine
France Natural Both

78
(75)

(aged 34–74)
Physical Yes No

Physical
health and

Activity

19 Engelniederhammer,
et al. [45]

Around
Midday Social science China

Pre-defined
(walk route
with 4 street

paths)

Both
30

(average age
of 24.77)

Social Yes No
Mental

health and
Psychology

20 Huck, et al. [46] days
Environmental

Science,
Medicine

UK
Natural

(different
routes)

Male 1 Physical Yes No Physical
health

21 Johnston, et al. [47] 18 h
Environmental

Science,
Medicine

USA Natural Both
18

(10)
(aged 15–17)

Physical Yes No Psychology

22 Kanjo, et al. [48] 45 min Computer
Science UK

Pre-defined
(shopping

route)
Female

40
(average age

of 28)
Physical Yes No

Mental
health and
Psychology

23 Kim, et al. [49] Hours
Social science,

Environmental
Science

USA

Pre-defined
(1.26 km
walking
route)

Both
30

(average age
of 24.2)

Urban Yes No
Physical

health and
Activity

24 Kou, et al. [50]
A weekday

and a
weekend day

Social science,
environmental

Science,
Engineering

USA Natural Both
46

(33)
(18–65)

Physical Yes No Activity

25 Laeremans,
et al. [51]

7 days
(three times
in different

seasons)

Environmental
Science

Europe
(three cities) Natural Both

122
(average age

of 35)
Physical No No

Physical
health and

Activity

26 Ma, et al. [52]
A weekday

and a
weekend day

Environmental
Science China Natural Both

177
(97)

(aged 18–60)
Physical Yes No Activity
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Table 1. Cont.

NO RE Temporal
Resolution Subject Area 1 Location Study

Setting Gender
Sample Size

(Include)
(Age Group)

Environment
Type Geo-Data Contextual

Data Health

27 Ma, et al. [53]
A weekday

and a
weekend day

Social science,
Earth and
Planetary
Sciences

China Natural Both
177

(112)
(aged 18–60)

Physical Yes Yes Activity

28 Millar, et al. [54] Hours
Social science,

Environmental
Science

Netherlands

Pre-defined
(18 km long

between
urban and

rural)

Both

12
(half aged
18–24, the
remaining
half were
older 55)

Urban Yes Yes Mental
health

29 Novak, et al. [55] 7 days

Engineering,
Medicine,
Computer

Science

Slovenia Natural Both
2

(Adult) Physical No No Physical
health

30 Ojha, et al. [56] Hours
Engineering,

Computer
Science

Switzerland
Pre-defined

(1.3 km
walking)

- 30
(-)

Physical and
Urban Yes Yes Mental

health

31 Rabinovitch,
et al. [57]

4 days
(twice in two

non-
consecutive

weeks)

Medicine USA Natural -

30
(schoolchildren
average age

of 10)

Physical Yes No Physical
health

32 Resch, et al. [58] Hours
Environmental

Science,
Medicine

Europe
(two cities) Natural Both 56

(over 18) Urban Yes No
Mental

health and
Psychology

33 Roe, et al. [59]
Unassisted
walking for
15–20 min

Medicine USA

Pre-defined
(two routes:
“green” and

“gray”)

Both 11
(aged 65) Physical Yes No

Physical
Activity and

Mental
health

and
Psychology
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Table 1. Cont.

NO RE Temporal
Resolution Subject Area 1 Location Study

Setting Gender
Sample Size

(Include)
(Age Group)

Environment
Type Geo-Data Contextual

Data Health

34 Runkle, et al. [60] 5 days Environmental
Science

USA
(three sites) Natural Both

66
(35)

(Average age
around
38/39)

Physical Yes No Physical
health

35 Rybarczyk, et al. [61] Hours Social science,
Engineering Germany

Natural
(within 1.1

km2)
Both 28

(aged 20–70) Urban Yes Yes
Physical

health and
Activity

36 Shoval, et al. [62] 1 day Social science Israel Natural Both

144
(68)

(aged over
18)

Urban Yes No
Mental

health and
Psychology

37 Steinle, et al. [63]

days,
Repeat in

winter and
summer

Environmental
Science Scotland Natural - 17

(-) Physical Yes Yes Activity

38 West, et al. [64] 14 days
Social science,

Environmental
Science

Kenya Natural Both 6
(aged 18–55) Physical Yes Yes Psychology

39 Zhang, et al. [65]
A weekday

and a
weekend day

Medicine,
Computer

Science
China Natural Both

156
(138)

(aged over
18)

Physical and
social Yes No Psychology

1 The subject area of publication can be found on the website of SCImago Journal and Country Rank (https://www.scimagojr.com/ (accessed on 8 November 2021)), which is a public platform to assess and
analyze scientific domains of journal.

https://www.scimagojr.com/
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3. Results
3.1. Assessment of Current Application

To assess the current development of applying multiple sensors, we present the
characteristics of the reviewed studies in Table 2. Of the 39 studies, more than 95%
of studies were published after 2015, with 41.0% of studies were published after 2020,
indicating that the application of multiple sensors is a rapidly evolving research topic.
Most of our reviewed papers were in Europe (46.2%) and North America (33.3%), which
may be attributed to limiting the publication language to English. Nonetheless, the number
of papers in Asia has increased in the most recent years (3 of 16 from 2020 to 2021 April).
In the reviewed studies, the application of multiple sensors occurred mainly in single cities.
Only 10.3% of them compared their application between cities (three in Europe and one in
the USA).

Table 2. Characteristics of included studies (k = 39).

Study Characteristics No. %

Publication year
2010–2015 1 2.6%
2015–2020 22 56.4%
2020–2021 April 16 41.0%
Temporal resolution
Level 1 (Minutes/Hours
within a day) 13 33.3%

Level 2 (Days/Weeks) 21 53.8%
Level 3 (Months and Seasons) 5 12.8%
Subject area
Social science 9 23.1%
Environmental science 18 46.2%
Engineering 6 15.4%
Arts and humanities 1 2.6%
Medicine 19 48.7%
Computer Science 6 15.4%
Multidisciplinary 1 2.6%
Earth and Planetary Sciences 3 7.7%
Neuroscience 1 2.6%
Health Professions 3 7.7%
Agricultural and Biological
Sciences 1 2.6%

Region of study
Asia 6 15.4%
Europe 18 46.2%
North America 13 33.3%
Other 2 5.1%
Locations
Single area/city 35 89.7%
Two or more areas/cities 4 10.3%
Study setting
Natural settings 28 71.8%
Pre-defined settings 11 28.2%
Gender
Both male and female 29 74.4%
Female only 3 7.7%
Male only 2 5.1%
Not mentioned 5 12.8%
Sample size
<10 6 15.4%
10–49 18 46.2%
50–100 6 15.4%
>100 9 23.1%
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Table 2. Cont.

Study Characteristics No. %

Domains of environment
Social environment (such as
crowdedness, sociality) 4 10.3%

Urban environment (such as
built environment, traffic) 11 28.2%

Physical environment (such as
noise, air, wind, light) 20 51.3%

Physical and urban
environment 2 5.1%

Social and urban environment 1 2.6%
Physical and social
environment 1 2.6%

Geo-location data
Yes 35 89.7%
No 4 10.3%
Other contextual data
Yes 13 33.3%
No 26 66.7%
Domains of health
Human activity (such as,
physical activity, sleep) 14 35.9%

Physical health (such as,
health condition, disease) 5 12.8%

Mental health (such as, stress) 4 10.3%
Psychology 3 7.7%
Human activity and Mental
health 2 5.1%

Human activity and physical
health 5 12.8%

Human activity and
psychology 0 0.0%

Mental health and psychology 5 12.8%
Mental health and physical
health and psychology 1 2.6%

The majority of applications (74.4%) recruited male and female participants, and 46.2%
of them recruited 10–50 participants, while a small number of studies focused on children
and elderly groups of people [57,59]. 71.8% of the studies applied multiple sensors in a
natural setting, while 28.2% chose to collect data in pre-defined and controlled settings. For
example, in one study, participants wore sensors and walked along a 3 km path without
talking [29]. 33.3% of studies employed multiple sensors merely for several hours within
a day, 53.8% measured for over one day and up to weeks, and only 12.8% repeated the
experiment in different months during a year.

Although integrating multiple sensors for health and environment monitoring is
increasingly used these days, it is still at the early stage of development. First, the current
applications are not applicable to all age groups and the small samples make it hard to
generalize the results for the wider population. Second, a few studies repeated the tracking
for a longer time, but we are still far away from monitoring environment-related chronic
disease through a life course [66]. Lastly, the integration is not integrated enough to track
in a natural manner in various urban settings, and the results are not comparable between
different cities. Therefore, there is a lot of room to improve integration between sensors.

3.2. Two Challenges for Integration

The review examined the grade of papers—based on the quality assessment checklist—to
identify the current challenges that might limit the quality of the reviewed studies. For the



Sensors 2021, 21, 7693 12 of 36

low-quality category of papers, all of the 8 studies that performed weakly on the criterion
of representative sampling due to small sample size or selection bias, also had a weak
performance on the data analysis. The primary challenge identified for reviewed studies
in the middle-quality category (21 studies) was the study design. For example, over 50%
(12 of 21 studies) only employed the sensors for a short period (e.g., half hour, 45 min) or
short distance (e.g., 3 km), which may “miss” hidden problems, such as people’s tolerance of
sensors, and not be enough to test the integration for long-distance tracking. Around 70%
of them did not acquire a high score on data analysis, indicating the prevalence of technical
weakness in analyzing the data.

The aforementioned challenges show that recruitment and measurement are essential
to the research quality, however, they depend on the sensors used. That is to say, the
integration may skew the result of recruitment in practice. In addition, in contrast with
traditional data, it is essential to fuse data from different sensors and extract the features
before conducting any advanced analysis. The potential use of data may be limited without
proper data fusion.

Therefore, two unsolved challenges were found in the reviewed papers:

• Sensors and sampling: how to choose and integrate sensors reasonably and form a
workable integration in fieldwork to solve the research questions effectively; and

• Data fusion and database: what are the techniques required to link up data and build
up a high-quality database for the subsequent analysis.

To cope with the challenges, the next section of this review focuses on issues related
to sensor integration and data fusion (Table 3). In the following analysis, we illustrate the
considerations of sensors and optional data fusion techniques that may lead to the success
of integration. Lastly, we will summarize the knowledge learnt from the 39 reviewed
papers and recommend a new approach to cope with these challenges.
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Table 3. Characteristics of the reviewed studies.

Reference Integrate Sensors Integrate Data from Sensors

RE Q 1 N 2 Environment
Sensor GPS Activity Health Tracker Data Logging Pre-Processing Data Fusion Aggregation

1 Benita,
et al. [27] M 3

(1) Kestrel 5400
: temperature,

relative humidity,
wind and

atmospheric
pressure (one

reading every 2 s);
(2) Phone: Noise (10

readings per
second).

(2)
Phone-based

GPS and speed
(one reading

every 4 or 5 s)

-
(3) Empatica 4
(four readings

per second)
Sensors

(a) Filter the noise;
(b) Extract feature by
Ledalab software 3.

A moving
average to

smooth data
(f = 1 Hz)

Over spatial
units (stress

hotspot)

2 Benita and
Tunçer [28] M 3

(1) Kestrel 5400
: temperature,

relative humidity,
wind and

atmospheric
pressure (f = 0.5 Hz);

(2) Phone: Noise
Noise (f = 10 Hz).

(2)
Phone-based

GPS and speed
(f = 0.2 Hz)

- (3) Empatica 4
(f = 4 Hz) Sensors

(a) Filter the noise;
(b) Extract feature by

Ledalab software.

A moving
average to

smooth data
(f = 1 Hz)

Over spatial
units (stress

hotspot)

3 Birenboim,
et al. [29] M 3

(App) -
(1) GPS
receiver

(f = 1 Hz)
-

(2) Microsoft
Band (f = 1 Hz);
(3) Empatica 4

(f = 4 Hz).

Sensors/Phone
App

(a) Extract feature by
Ledalab Software;

(b) Use t-test to
detect significant

differences between
“neutral” and

“stressful”.

Reduction
(f = 1 Hz)

Over spatial
units

(Average per
walking
segment)
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Table 3. Cont.

Reference Integrate Sensors Integrate Data from Sensors

RE Q 1 N 2 Environment
Sensor GPS Activity Health Tracker Data Logging Pre-Processing Data Fusion Aggregation

4 Bohmer,
et al. [30] H 2

(1) Light sensor
(measured in 1-min

epochs)
-

(2) Ac-
celerometer

(sum activity
counts for

1-min
epochs)

- Sensors

(a) Transform lux to
log lux;

(b) Only include
timeframe with

<25% missing data;
(c) Actant –Activity
Analysis Toolbox to

calculate the
bedtimes;

(d) Filter by
thresholds of 50 min

>1000 lux.

Average
illuminance
(log lux) per

minute

Over
Time

(Average per
timeframe)

5 Boissy,
et al. [31] H 2 -

(1) GPS
receiver

(-)

(2) Ac-
celerometer

(-)
- Sensors

(a) Filter
accelerometer data
by low-pass filter at
5 Hz and high-pass

filter at 1 Hz;
(b) Use algorithm to

detect step and
remove noise;

(c) Filter GPS points
with lower presion.

Time
interpolation;
(Open-source
software 4 to
format data

coming from
the different

sensors).

Over spatial
units (clusters

and transit
detected by a

rolling
window).

6 Bolliger,
et al. [32] L 2

(App)

(1) Phone: Light
sensor, temperature

sensor and voice
sensor.

(1) Phone
based GPS -

(2) Empatica 4
(f = 4 Hz)

(App based
ecological

momentary
assessment).

Sensors - - -
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Table 3. Cont.

Reference Integrate Sensors Integrate Data from Sensors

7 Borghi,
et al. [33] L 4

(1) DiSCmini: UFP
exposure levels;

(2) A PM2.5
concentration

monitor;
(3) CairClip NO2;
(All sensors: an
acquisition rate
equal to 60 s).

(4)
Sensor-based

GPS
(Suunto 9)

-
(4) Heart rate

monitor:
Suunto 9

Sensors

Correct the
particulate matter

(PM) data by a
correction factor;
Exclude zero and
unreliable data.

Average values
over time

Over Time
(season)

8 Burgi,
et al. [34] M 2 -

(1) GPS
receiver
(at 10 s

intervals)

(2) Ac-
celerometer

(-)
- Sensors Manually reviewed

Software
(Actilife 6.5.2,

Actigraph,
Pensacola, FL,

USA)

Over spatial
units (based on

the activity
settings) and

Individuals (by
gender).

9 Butt,
et al. [35] M 2

(App)

(1) A software
platform on phone:

(actual time a person
spent interacting

and the number of
people with whom

there were
interactions).

- -
(2) Wireless

system (sleep,
eye movement)

Sensors
(Digital card);

(a) Calculate the
median value of

paramters;
(b) Normalize value

of social exposure
between 0 and 1;

(c) Performe
Spearman’srank
correlations to

understand data.

-

Over
Individuals
(Wilcoxon

sign-ranked
test and 2D

k-means
clustering).
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Table 3. Cont.

Reference Integrate Sensors Integrate Data from Sensors

10 Cerin,
et al. [36] H 2 -

(1) GPS
receiver

(30 s epochs)

(2) Ac-
celerometer

(15 s epochs)
- Sensors

(a) Remove periods
of 30+ minutes of

zero accelerometer
counts;

(b) Extract valid
Accelerometer data

(≥480 min of
activity data/day);

(c) Classify into
sedentary time and

MVPA 5 by cut
points;

(d) Use a web
application

(PALMS) 6 to clean
and filter

accelerometer and
GPS data.

Reduction
(Average

accelerometer
counts per

30 s)

Over spatial
units (Average

based on
specific

Locations with
50 m

buffer/100 m
buffer) and

over
individuals
(average by
gender and

weight status).

11 Chaix,
et al. [37] M 2+1 7 -

(1) GPS
receiver

(one point
every 5 s)

(2) Ac-
celerometer

(-)
(Phone

mobility
Survey in a

web
mapping

application)

- Sensors

(a) Use Web
application

(TripBuilder) to
process GPS data;

(b) Removed
incorrect trips

manually;
(c) Use software

(ActiLife 6.11.9) to
process

accelerometer data.

-

Over spatial
units (calculate
the percentage

of the walk
distance in
main travel

modes and test
the differences

by
KruskalWallis

test).
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Table 3. Cont.

Reference Integrate Sensors Integrate Data from Sensors

12
Chrisinger

and
King [38]

M 2
(App) -

(1)
Phone-based
GPS in App

(Audio and
image from
phone App)

(2) Empatica 4
(f = 4 Hz) Sensors

(a) Normalize the
Electrodermal

activity (EDA) from
E4 by subtracting

the minimum;
(b) center

(subtracting the
mean) and scaled
(dividing by the

standard deviation
of the centered data)

the EDA data;
(c) Use an algorithm
to remove the noise

from EDA data.

-

Over spatial
units (set 5-m

grid cells along
the walk path

to use
Getis-Ord Gi*
local statistic
and kernel
density to

detect cluster).

13 Dessimond,
et al. [39] L 2 (1) Canarin

(Air pollution)

(2)
Tablet-based

GPS
- -

Remote
server/
Sensor

- -

Over spatial
units (based on

specific
Locations) and

over time
(hour).

14 Do, et al. [40] L 3

(1) PM monitor for
Air pollution (15 s

sampling rate);
(2) Temperature

logger.

(3) GPS
receiver (5 s

sampling rate)
and a Wi-Fi

hotspot

- -

Cloud server/
Sensors
(If Wi-Fi

connectivity
was

unavailable)

(a) Assigned all
missing PM

measurements as
“−9999”;

(b) Clean GPS data
by the distance

between two points;
e.g., assign distance

> 50 as “NaN”;
(c) Co-locate the PM

data with air
monitoring site to

adjust the data.

Time
interpolation
(from 15 s to

5 s)

Over
Time and

spatial units
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Table 3. Cont.

Reference Integrate Sensors Integrate Data from Sensors

15 Doherty and
Oh [41] M 3+1

(App) -
(1) GPS
receiver

(every 1 s)

(2) Ac-
celerometer
from Electro-
cardiogram

(2) Electrocardio-
gram (25

measurements
per second);
(3) Glucose
monitoring
(every 10 s).

Phone App
and remote

server

(a) A rule-based
algorithm to detect

human activity from
GPS data;

(b) Average glucose
readings every

5-min.

A Web-based
retrospective

data
analysis

software.

-

16
Donaire-

Gonzalez,
et al. [42]

M 5+1
(App)

(1) Black carbon
monitor MicroAeth;

(2)UFP monitor
DiSCmini;
(every 1 s).

(3)Phone-
based GPS in

App;
(4) GPS 8

receiver
(every 10 s).

(3)
Phone-based
Acceleromer

in App;
(5) Ac-

celerometer
(every 10 s).

-
Phone App
and cloud

server

Phone App used to
process the data by

algorithm.

Phone App
(every 10 s) -

17 Doryab,
et al. [43] H 2

(App)

(1) Phone App to
record social activity

(1 sample per 10
min).

(1)
Phone-based
GPS in App

-

(2) A Fitbit Flex
(sleep at 1

sample per min,
and steps at 1

sample per
5 min).

Sensor and
server

(a) Develope a
feature extraction

component (FEC) to
extract features;

(b) Handle Missing
Values, e.g.,
removed a

participant if 20%
data were missing.

-

Over
time (all day,

night,
morning,
afternoon,

weekdays and
weekend).

18
El Aarbaoui

and
Chaix [44]

H 4
(1) Personal
Dosimeter

(every second)

(2) GPS
receiver

(3) Ac-
celerometer
(5 s epochs)

(4) BioPatch
BHM 3 Sensors -

Over 5-min
and 1-min

windows with
the coefficient
of variation.

Over
spatial units

(based on
different
contexts).
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Table 3. Cont.

Reference Integrate Sensors Integrate Data from Sensors

19
Engelnie-

derhammer,
et al. [45]

M 3
(1) Infrared motion

sensor
(f = 10 Hz)

(2) GPS
receiver -

(3) A wristband
developed by
Bodymonitor

(EDA data with
f = 10 Hz).

The Infrared
data was

transmitted to
wristband and

stored in
sensor

(a) A classification
algorithm to detect
emotion based on

EDA data;
(b) Reduced the data

to binary
information and use

the logit model to
deal with them.

- -

20 Huck,
et al. [46] L 3+1

(App)
(1) NO2 sensor

(f = 1 Hz)

(2) Phone
based GPS
(f = 1 Hz)

-
(3) Airflow

Sensor
(f = 1 Hz)

Phone App Phone App Phone App Over spatial
units

21 Johnston,
et al. [47] L 2+1

(App)

(1) PM2.5 monitor
(every second);

(2)Phone:Tempera-
ture, humidity.

(2)
Phone-based

GPS
(every second)

- - Phone App Phone App Phone App

Over spatial
units and time

(hour) and
individuals.

22 Kanjo,
et al. [48] H 2+1

(App)

(1) Phone: Noise
sensor;

(2) Microsoft band:
Air pressure and

Light.

(1)
Phone-based

GPS
-

(2) Microsoft
band

(App-based
self-report)

Phone App

(a) The first and the
last 30 s were cut;

(b) Remove
abnormal ones by
lagged Poincare

plots.

Phone App -

23 Kim,
et al. [49] M 3

(App) -
(1)

Phone-based
GPS in App

(2)
Accelerom-

eter

(3) Empatica 4
(f = 4 Hz) Sensors

(a) Use Butterworth
low-pass filter with
a cut-off frequency
of 4 Hz to remove

noise from
accelerometer data;

(b) Use time
interpolation to

unify the frequency
of GPS data
(f = 1 Hz).

Average value
over

subsegment
(61 in total)

-
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Table 3. Cont.

Reference Integrate Sensors Integrate Data from Sensors

24 Kou,
et al. [50] M 2

(1) Sound sensor:
sound level

(minute-by-minute).

(2)
Phone-based

GPS
(at a resolution
of 1 m or 3 s)

- - Sensors

Classify activity
time into day,

evening and night;
Classify activity
companion into

“alone” and “with
others”; Classify
activity type into

“work and study”,
“personal affairs”,

“housework”,
“shopping” and

“recreation”.

-

Over time (use
a logarithmic

function to
aggregate the

fluctuating
sound levels
over a period

of time).

25 Laeremans,
et al. [51] H 2

(1) MicroAeth:
expsoure to black

carbon
(on a five-minute

basis).

-

(2) Ac-
celerometer

from
SenseWear

(2) SenseWear
armband

(on a one-minute
basis).

Sensors

(a) Use SenseWear
professional

software to extract
feature;

(b) Choose bouts of
at least 10

consecutive minutes
with an intensity

≥3 METs 9;
(c) Raw black carbon

(BC) data were
smoothened with

the Optimized
Noise-reduction

Algorithm
(ONA) 10.

-

Over
individuals

(amount,
percentage,
mean and
standard

deviation).
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Table 3. Cont.

Reference Integrate Sensors Integrate Data from Sensors

26 Ma, et al. [52] H 2
(1) Sound Meters:

Noise level
(1 min).

(2)
Phone-based

GPS
- - Sensors

(a) Classify the
activities into

categories;
(b) Use a-weighted
equivalent sound
pressure level to

estimate
the average noise

exposure.

-

Over time
and spatial

units (Average
the parameters

based on the
time and

duration for
each category
of activity or

travel mode on
a weekday and
weekend day).

27 Ma, et al. [53] M 2
(1) Portable Air

monitor
(1 s)

(2)
Phone-based

GPS
(1 s)

- - Sensors - -

Over spatial
units and

individuals
(sum of the per

second
exposure for
each person).
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Table 3. Cont.

Reference Integrate Sensors Integrate Data from Sensors

28 Millar,
et al. [54] M 3

(App)
(1) Camera

(participants’ view)

(2)
Phone-based

GPS
From App
(f = 1 Hz)

(head
activity from

camera)

(2) (Empatica 4
(f = 4 Hz) Sensors

(a) Use weighted
moving average

with a 60-s moving
window to compute

smoothed speed
from GPS App;

(b) Weights were
re-normalized and
they summed to 1;

(c) Extract Skin
conductance

responses(SCRs)
from EDA by

Ledalab;
(d) Use a moving
window of 20 s to
identify deviations

of SCR;
(e) Standardized the

SCR to reduce
differences between

participants.

Time
interpolation

(f = 4 Hz)

Over spatial
units and time
(a web-based

mapping
system to

visualize high-
resolution

spatiotempo-
ral data).

29 Novak,
et al. [55] M 2

(1) PM measuring
unit (1 min)
A reference
instrument:
GRIMM 11

- -

(2) Smart
Activity tracker:

Garmin
Vivosmart 3
(in minute)

Sensors - -
Over time

(5-min
averages).
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Table 3. Cont.

Reference Integrate Sensors Integrate Data from Sensors

30 Ojha,
et al. [56] M 3

(1) Sensor backpack
monitoring

Sound and dust
(f = 0.4 Hz),

Temperature,
illuminance
(f = 1 Hz).

(2) GPS
receiver

(f = 1 Hz)
- (3) Empatica 4

(f = 4 Hz) Sensors

(a) Remove
unusable EDA data;
(b) Filter EDA data
to remove artifacts;
(c) Smooth data by
Stationary Wavelet

Transform;
(d)Time window

marking;
(e) Extract Skin

conductance
responses(SCRs)

from EDA by
Ledalab;

(f) Data labeling:
“normal” and

“aroused”.

Apply Time
interpolation
(f = 1 Hz) to
environment

data, and keep
health data at

original
frequency
(f = 4 Hz).

Over
individuals
(the mean

physiological
response
across all

participants
and

normalized
between 0

and 1).

31 Rabinovitch,
et al. [57] M 3

(1) Aerosol,
nephelometer: fine
PM concentrations;

(2) Temperature
sensor

(10 s intervals).

(3) GPS
receiver

(10 s intervals)
-

(An electronic
monitor of
school-time

albuterol use:
total number)

Sensors

(a) Use an algorithm
to classify the types

of microenviron-
ment;

(b) Use a
normalization factor

to correct
measurement.

-

Over time
(both mean
and 1-min
maximum)
and spatial

units (based on
contexts).

32 Resch,
et al. [58] M 4+1

(App)

(1) GoPro camera
(First-person video

camera).

(2)
Phone-based

GPS
-

(3) Empatica 4,
Zephyr,

(4) Bioharness
(ECG, HRV).

(eDiary App)

Sensors/Phone
App

(a) Filter data by a
low-pass filter

(f = 0.5 Hz) and a
high-pass filter

(f = 0.05 Hz);
(b) Use a rule-based
algorithm to detect

pattern of stress.

-

Over spatial
units

(aggregated to
raster cells and
use Getis–Ord

Gi hotspot
analysis).
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Table 3. Cont.

Reference Integrate Sensors Integrate Data from Sensors

33 Roe,
et al. [59] M 4

(App)
(1) Noise sensors,
(2) Air monitor.

(3) GPS from
App

(f = 1/60 Hz)
(Phone App)

(3) Ac-
celerometer
from App
(f = 60 Hz)

(3) Huawei
watch

(Photoplethysm-
ogram with
f = 100 Hz).

Sensors (noise
and air

monitor)
and phone
App(smart

watch)

t-test to determine
any significant

difference between
parameters.

- -

34 Runkle,
et al. [60] H 2 (1) Temperature

sensor (5-min)

(2) GPS from
Garmin

smartwatch

(2) Garmin
smartwatch

(1-min)
Sensors

(a) Categorize
temperature data

into “extreme heat”
and “moderate

heat”;
(b) Caculate the

average of
maximum heart rate

over a 5-min
interval.

Reduction
(5-min) -

35 Rybarczyk,
et al. [61] M 3

(App)
(1) GoPro Hero

(images about road)

(2)
Tablet-based

GPS from App

(3) Ac-
celerometer

from Garmin

(3) Garmin
VívoSmart

(1-s)
Sensors

(a) Removed GPS
errors and missing

data in GIS
manaully and by the
“remove duplicate”

records tool in
ArcGIS;

(b) Normalize
physiological data
by using inverse

distance weighting
(IDW) in ArcGIS to
create a smoothed

raster surface.

Interpolation
(spatially
joined the

interpolated
values to track
point layer to

produce a
completed and

normalized
database).

Over spatial
units (Average

based on
spatial

configuration
of the

environment).
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Table 3. Cont.

Reference Integrate Sensors Integrate Data from Sensors

36 Shoval,
et al. [62] M 2+1

(App) -

(1)
Phone-based

GPS from App
(1 min)

-

(2) Empatica4
(f = 16 Hz)
and phone

(Phone App
based location-
triggered and
time-triggered

surveys).

Sensors and
phone

Calculate z-scores
for each

measurement to
normalize Skin

Conductance Level
(SCL).

Frequency
Reduction
(mean SCL

z-scores over
1 min)

Over
individuals
and spatial

units (based on
20 m× 20 m

cellular
network).

37 Steinle,
et al. [63] L 2

(1) Dylos 1700 for
measuring PM
concentrations

(1 min)

(2) GPS
receiver

(every 10 s)
- - Sensors

(a) Classify
Microenvironment

into six types

Match data by
the Feature

Manipulation
Engine

software (Safe
software Inc.,

2014)
at every full

minute.

Over time
(hours) and
spatial units

(Microenviron-
ment types)

and
individuals.

38 West,
et al. [64] L 2 (1) Dylos 1700

(2) GPS
receiver

(every 10 s)
- - Sensors -

Average in
timeframes

(1 min)

Over time
(each 30 min
period) and
spatial units

(based on each
50 m grid

square) and
individuals.
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Table 3. Cont.

Reference Integrate Sensors Integrate Data from Sensors

39 Zhang,
et al. [65] H 4

(App)

(1) Noise sensors
(one-minute

intervals);
(2) Air sensors

(1 s)
connected a Phone

App;
(3) A mobile signal
detection device.

(4)
Phone-based

GPS
(f =1 Hz)

- - Sensors and
Phone App

Use A-weighted
equivalent sound
pressure level to

calculate the sound
exposure.

-

Over time
(Average value

of A sound
level for a

certain period
of time).

1 Q indicates the result of quality assessment. 2 N indicates the number of equipment used in each application. 3 Ledalab software is a free MATLAB-based tool to process Electrodermal activity (EDA) and identify
skin conductance response (SCR). 4 WIMU Studio is an in-house developed open-source software (https://github.com/introlab/openwimu (accessed on 8 November 2021)). 5 MVPA, moderate-to-vigorous
physical activity, assessed by accelerometry. 6 Personal Activity Location Measurement System (PALMS) is an encrypted web application to simultaneously processes time-stamped accelerometer and GPS data.
7 “+1” indicates the additional assistance from smartphone and phone-based application. 8 To validate the accuracy of GPS and accelerometry from the phone, participants also carried a GPS tracker and an
accelerometer, attached to the same belt of the smartphone. 9 METs stands for Metabolic Equivalent of Task, used to express exercise intensity. 10 Optimized Noise-reduction Algorithm (ONA), developed by the
United States’ Environmental Protection Agency. 11 GRIMM (Durag Group, Hamburg, Germany) Model 11-A (1.109) Aerosol Spectrometer (GRIMM) is a reference instrument for PM measurements with
five-minute resolution.

https://github.com/introlab/openwimu
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3.3. Challenge 1: Sensors and Sampling
3.3.1. The Form of Integration

Nearly 50% of the reviewed studies integrated portable environment monitors and
health trackers (“Environmental monitors”+ “health trackers” + . . . ) in order to measure
the health effects triggered by specific environmental factors. Most of them (89.7%) added
location tracking sensors (e.g., GPS receiver, phone-based GPS, sensor-based GPS) to cap-
ture the geo-information. Additionally, 25.6% combined GPS with portable environmental
monitors (“GPS” + “Environmental monitors”) to map the spatial features of environmental
stressors and around 7.7% combined GPS with health trackers (“GPS” + ”health trackers”)
to study the spatial relationship between geography and physiological effects. As an
accelerometer can examine the speed, direction and acceleration of a user, around 10.3 % of
reviewed studies combined accelerometer and GPS to record the trajectories of physical
activity, and 25.6% integrated GPS and accelerometers with environment monitor/health
trackers (“GPS” + “Accelerometer” + . . . ) to measure the activity-centric exposures or
lifestyle-related diseases.

3.3.2. Number of Sensors

Is using as many as possible sensors be good for research? 53.8% of reviewed papers
employed two sensors, and 30.8% integrated three kinds of sensors as a package, while
12.8% employed four sensors and only 2.6% employed five sensors. A sensor package
consisting of five sensors might be challenging for long-distance walking [56] and might
increase the weight for carrying, which could lead to onerous experiences and fatigue.
Research papers emphasized that sensors should be light and small, and not be burdensome
for participants [63]. Therefore, it is fundamental to build a simply and light integration
of sensors. Additionally, with increasing numbers of sensors, data fusion becomes more
challenging.

3.3.3. The Cost-Effectiveness of Sensors

The cost-effectiveness of sensors relates to the cost, function, accuracy and applicability,
which is crucial to the decision-making process of choosing sensors. Supplementary Table
S4 shows more than 30 sensors from the 39 reviewed studies. Here, the aim is not to analyze
each sensor’s usability, but to generalize the considerations of every category of sensors.

Foremost, GPS data is widely used to locate sensors. 35.9% of studies employed GPS
receivers, and the cost of a GPS receiver is around $70–$240. An accelerometer is a light and
cheap sensor, enabling monitoring the level of physical activity (PA) in outdoor activities,
and which costs around $35–$150. Additionally, 56.4% utilized smartphone-based/tablet-
based/sensor-based GPS or accelerometers to lower the expense of sensors. As for the
effectiveness, the reliability of phone/sensor-based GPS or accelerometer depends on
the accuracy of the mobile device and the position of the smartphone device [67], and
researchers stated that the GPS receiver might miss data when the GPS signals from
satellites are weak [68]. In Donaire-Gonzalez, et al.’s [42] study, participants also carried a
GPS receiver and an accelerometer to validate the data collected by phone application.

The most commonly applied health tracker in the integration is the wristband (46.2%).
Compared with a lab-based medical instrument, wristbands are light and user-friendly,
which are easy to use in normal life. The cost of a wristband varies from hundreds to
thousands of dollars. For example, the medical-level wristband Empatica 4(E4) costs
$1690 [38,49], while the fitness-level wristbands (e.g., Fitbit and Garmin) cost $150 to
$400 [43,60], but E4 has higher resolution of data (f = 4 Hz). In addition, data from E4
is accessible in its raw form [62] and is visualized on an online cloud platform, while
Microsoft Band 2 (MS Band) does not permit straightforward raw data exportation [29],
thus a third-party application is required to log raw data. As for Fitbit, the data can be
retrieved by the Fitbit app programming interface (API), but the data quality has not been
reported [43]. Birenboim, et al. [29] compared the cost-effectiveness between Empatica and
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Microsoft band in their paper and suggested to test the devices in different environments
for longer exposure time.

As for the sensors monitoring environments, the majority of integration was applied
in the measurement of the physical environment: mainly 38.5% employed air pollutant
sensors, 25.6% employed noise sensors, 20.5% employed temperature sensors. In contrast
with health trackers, the price of portable environment monitors is flexible, since self-
assembled environment monitors can decrease costs [39], but they are not as accessible as
the health wristbands from the market. To test the accuracy, researchers often co-located
sensors with fixed monitors in the city [53] or compared the data from sensors with the
official environmental indexes [55].

Another workable way to lower the number, cost and weight of sensors is employing
phone-based sensors and applications (43.6%), for example, phone-inbuilt temperature
sensors [47], microphone to measure noise [28], and Bluetooth to measure the social
distance [35]. In addition, phone-based application can assist the measurement in the
field [41] and control data [46], such as “ExpoApp” [42], which is an integrated system to
assess multiple personal environmental exposures.

3.4. Challenge 2: Data Fusion and Database
3.4.1. Data Logging

Modern mobile technology encourages loading data from multiple sensors easily. In
this case, 10 papers (25.6%) employed a phone application to control streaming data, which
enables compressing, and data integration. Five papers (12.8%) could transmit data to a
remote project server [41,46]. In these two situations, some of them can store data in the
sensors if Wi-Fi connectivity was unavailable [40]. However, for most studies (66.7%), data
was only stored locally in the sensors, leaving data to be exported via Universal Serial Bus
(USB) to computer, then the following techniques are important to quality of integrating
data.

3.4.2. Pre-Processing

Pre-processing data aims to review the data, enabling: (1) extracting features (23.1%);
(2) exclusion of malfunctioned, negative or zero values (20.5%); (3) classification of data
or label data (17.9%); (4) the use of corrections or weights to the data (12.8%); (5) filtering
noise (23.1%); (6) including data by the threshold (7.7%); (7) normalizing or standardizing
data (12.8%); and (8) smoothing data (7.7%). In our reviewed papers, the pre-processing
usually includes three to five steps to clean data and make it ready for analysis (Table 3).
Since manually reviewing data requires a higher workload [34], 20.5% took advantage of
specific software/toolbox and 28.2% used algorithms to observe and deal with the data,
while 7.7% finished this procedure through a smartphone application.

Sometimes, to remove noise caused by technical inaccuracies, advanced signal pro-
cessing techniques are utilized. Usually, the Butterworth filter performed well on removing
higher or lower frequency variations. For example, Resch, et al. [58] filtered Galvanic
skin response (GSR) by a low-pass filter at 0.5 Hz and a high-pass filter at 0.05 Hz; Boissy,
et al. [31] filtered accelerometer data by the low-pass filter at 5 Hz and high-pass filter
at 1 Hz; and Kim, et al. [49] filtered accelerometer data by a low-pass filter with cut-off
frequency at 4 Hz. The frequency response of a filter is dependent on the sensor/data
frequency.

3.4.3. Unification

Unifying the temporal components and frequency is crucial for fusing data, due to the
fact that health trackers usually have higher resolution than other kinds of sensors (Table 3).
There are two ways to process the sampling rate of a signal: (1) Time interpolation (12.8%),
also called as “up sampling”; and (2) Frequency reduction (10.3%), also known as “down
sampling”.
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Time interpolation, to increase the sampling rate of low-resolution data to the same
level as high-resolution data, preserves the higher frequency. It can obtain higher resolu-
tion datasets [40] and enhance the precision in the analysis [54], but it may increase the
computation as well. Otherwise, frequency reduction, to decrease the sampling rate of
high-resolution data to the same level with low-resolution data, is often used to merge
health data [29,62], accelerometer data [36] with GPS points, since it can save the calculation
time of spatial analysis, but may lead to the loss of resolution to some degree.

For studies employing sensors with many variations of frequency, it is critical to
decide the sampling rate for fusing data; 15.4% employed a moving average to decrease
the possible loss of resolution. For example, in Benita and Tunçer [28], they use a moving
average (f = 1 Hz) to link up temperature, wind and atmospheric pressure (f = 0.5 Hz),
phone-based GPS and speed (f = 0.2 Hz), EDA data (f = 4 Hz) and noise (f = 10 Hz). In
the reviewed papers, the window size for moving average varies from 1 min [44,64] to 5
min [44], which is dependent on the data features. For health data, we recognize that the
window size should also follow the related health metric, since human responses have
different latency time. For example, a 5-min window for measuring short-term Heart Rate
Variability (HRV), and 1-min windows for assessing HRV dynamics that may be masked
within 5-min windows [44]. In the process of finding the best window size, Ojha, et al. [56]
observed that for EDA data time-windows vary from 0 to 12 sec, then standardized at 5-sec
time-windows.

Therefore, the decision-making around unified frequency and window size for mov-
ing averages is a critical process. It is essential to take the considerations of research
objectives, variables, the capacity of calculation and related knowledge of regulations into
consideration.

3.4.4. Data Aggregation

There are three main forms of aggregation: (1) Aggregating the data (15.4%) over time
to compare changes within a period of time (e.g., from morning to night, weekdays and
weekend); (2) Aggregation by multiple individuals (7.7%) to indicate the difference between
individuals, genders, age groups and socioeconomic factors [62]; and (3) Aggregation
by spatial units (25.6%) based on geographical information. Three papers used three
aggregations at the same time to describe data from the perspective of “time”, “individuals”
and “location” [63,64]. For deeper analysis, 12.8% of studies aggregated the data over time
and space to explore the spatial-temporal features of human activities on site, 10.3% of
them combined spatial analysis and socioeconomic analysis to explore the interrelationship
between society and geography.

Benefitting from GPS data, over 50% of reviewed papers aggregated data over spatial
units, such as based by 20 m × 20 m cellular network [62], 50 m grid squares [64], microen-
vironment types [63] and specific Locations with 50 m/100 m buffers [36]. Having spatial
data, some papers utilized spatial clustering algorithms such as Hotspot analysis [27,28],
Getis-Ord Gi* local statistics and kernel density [38,58] to understand spatial features of
environmental effects in Geography Information System (GIS).

3.5. How to Improve the Integration

The integration of multiple sensors includes two processes: combining different
sensors smartly and effectively integrating data from different sensors. Compared with
previous sensor research, although integrating multiple personalized wearable sensors is
dependent on the tracking, this method requires more critical decision-making regarding
the costs, recruitment of participation, implementation and validity of data. By critically
reviewing 39 papers, this paper identifies a checklist with crucial issues: preparation, sensor
selection, data collection, data integration and analysis (Table 4) to improve the feasibility
of integration in the future. The general recommendations made in Table 4 are necessarily
generic guidelines. For specific health outcomes or environmental exposures, modifications
to these guidelines would be expected.
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Table 4. How to improve the quality of integration.

Preparation

Recruitment of
participants

• Follow the requests of ethics approval to protect data [36,37,48,51,60].

• Larger samples in terms of gender, age and socioeconomic
background [35,49]; random selection will be suggested [59].

• Measure participants’ demographics [38];
• Subpopulations or vulnerable groups such as children and older

people who have more complex demands need attentions [41].

Fieldwork design

• Focus on the narrower geographic area to find similar discrepancies
between individual assessments of the same feature [38], but diverse
assumed conditions [45,60];

• More cities and locations [42,45,51,58];
• Culture, language and ethnicity [34];
• Season and weather [34].
• Confounders controlling will be suggested [44,52].

Time-series
measurement

• Ranging from a few days to several months [29] to collect longer-term
data may reveal additional information [43];

• Repeat in the different seasons [33,51].

Multiple sensor selection

Objective • Synthesize the elements related to the objectives;
• Study from literature and make current applications as a reference;

Choose sensors

These should be considered:

• Choose commercial sensors or self-developed sensors;
• The cost-effectiveness and availability, including the price, sources

and data protection [37,49];
• The functionality and comfortability, including appearance, size,

weight, and carrying [30,42];
• The total weight, number and size of sensor package and the

processing of carry sensors package [63].

Test the accuracy of
sensors

• Test the generality and performance in different areas and
situations [43,52,53];

• Consider using additional sensors to improve the prediction
accuracy [42];

• Co-locating the sensors with monitoring sites to test or adjust the
data [40].

• All devices should be synchronized using the timestamp and internal
clocks before the study [36].

Data collection

User’s operation

Decrease human factors:

• All the participants, research assistants and technicians should be
trained before real implementation [41,50,51] to follow the steps of
operation of sensors, since incorrectly wearing may lead to
inaccuracy [30].

Ensure high quality data:

• Follow the guidelines of usage [33].
• Check, charge and calibrate the sensors daily to prevent sensor

failure [31,33,44,64,65].
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Table 4. Cont.

Avoid

Decrease non-human factors include environmental noises and technical
noises:

• Signal weakness/loss [30,64];
• Low battery [63];
• Incomplete measures and underestimations [34];

Data load

• Store data in the sensors [29–31].
• Store data in the smartphone [20–22].
• Transmit data to the central server [40,41].
• Data fusion can be done during data collection [48].

Data integration

Data processing

Clean the noise and unwanted signals:

• Utilize specific software to automate the matching process and extract
features [27,34,63];

• Utilize algorithm to remove malfunctioned, negative or zero
values [51,56];

• Utilize a “filter” to cut off data below the threshold [30,31,49].

Normalization
• Average data within the time window [30,49].
• Normalize all data between 0 and 1 [35].
• Use statistics/algorithm to normalize the data [38,57].

Frequency
unification

Pair the frequency:

• Time interpolation [49,56];
• Frequency reduction [29,62].

Aggregation

Aggregate data for statistics and visualization

• Aggregate over multiple individuals [35,62];
• Aggregate over space [38,62];
• Aggregate over time [43,50].

New development
Develop an integrated system (e.g., smartphone, web-platform, software)
to automatically process sensor data, store and visualize due to its
portability and accessibility [41,42].

4. Discussion and Conclusions
4.1. Discussion

The integration of multiple personalized wearable sensors offer an opportunity to
contribute to environment and health research, but it is still at the preliminary stage. The
weaknesses of integrating multiple personalized wearable sensors cannot be ignored either.
First, many studies [35,41,43] admitted that bias exists in sampling (e.g., approach and
size). For example, Butt, et al. [35] emphasized that their subjects tended to be healthy,
well-educated young adults, predominantly married mixed-gender couples, while Doryab,
et al. [43] purposely chose university students. The sub-discipline of using wearable sensors
might thus still be in its infancy, with results not yet generalizable to a broader population.

Cost remains a significant factor in the success of a campaign. To improve the cost-
effectiveness, issues related to the weight of the sensor packages [42], cost and accessibil-
ity [37], operability [41], accuracy [54], comfort or ease of use [49] and the accessibility
of raw data [62] should be taken into considerations. That may explain why studies that
employ various kinds of environmental sensors and health trackers only recruit a small
number of volunteers, since the cost, weight and number of sensors can skew the small
sample size.

Many studies conducted their research in a single city, but the local weather and
season [34,49], geography [42] and culture [45] could make it challenging to switch locations
and completely duplicate the experimental settings [44]. Participants are also limited to a
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predefined environment or path in different studies, thus the results are non-comparable
between different environmental settings.

Longitudinal tracking provides the ability for in-depth investigations, but so far, this
has rarely been done. Current experiments mainly focus on specific groups, such as Type 2
diabetic patients [41], teenagers [14], and children and parents [34,36]. In addition, some
low-cost sensors for environmental monitoring are not applicable in longitudinal tracking
due to the weight and size of sensors.

Based on the above discussion, the integration of sensors is a process of critical
decision-making. The employment of sensors is not only associated with the costs and
functions but also tightly connected with the participants (age, gender, education, sample
size), their willingness, and careful thinking of whether the sensors are user-friendly,
whether the sensors enable longitudinal tracking, how long the participants need to wear
and whether it may cause risks for participants. We summarized all the factors related to
the preparation and the integration of sensors in the checklist (Table 4), hoping to inspire
more studies to complete this process.

In the field, some studies attributed missing data to unavailable or weak signals,
non-response of sensors, loss of battery power and the failure of the application while
using a phone [56]. Since the real-world situation is complex and filled with interference, it
is necessary to consider the data quality in fieldwork, such as battery expiration, signal
loss, data loss, and data noise [30,64,65].

As shown in Table 4, before implementation, it is essential to test the reliability of
sensors, including to check, charge, calibrate and set up the sensors prior to use [14,43]. It
is also recommended to use an extra sensor as validation [42] or to co-locate the mobile
data from a fixed monitor station [55]. Lastly, it is essential to have pre-training to teach
participants the operation of sensors [14].

Smartphone applications show a great potential to log, store data, integrate and
visualize data automatically [41]. Some commercial companies such as Empatica and
Fitbit also provide accessible APIs (Application Programming Interface) to connect sensors
with other applications [43]. Software developers can develop applications, enabling the
monitoring of numerous sensors to assure continuous functionality in the field [41].

To extract the data features, professional software is useful, but often needs a paid li-
cense, which increase the cost. Further, advanced methodological and analytical techniques,
such as machine learning [43], can be utilized to deal with the ever-growing data from
multiple-sources, but it might demand high computing power [54], which also requires
further financial support.

To compare the data from different sensors, it is helpful to comply with standardized
terminology and nomenclature according to the official regulations [55]. For example, the
duration of sleep in our reviews was assessed by “total sleep time (TST)”, “the number of
wakenings”, and “time taken to fall asleep” by medical devices [35], and by the average
length of “asleep” or “awake” by Fitbit [43]. The inconsistency of terminology may in-
crease the difficulties to repeat the experiment with different sensors, thus we recommend
describing the features of sensors and data by unified criteria. For example, the format of
sensor frequency is not uniform (Table 3) in reviewed papers; there are many descriptions,
such as “1 HZ”, “every 1 s”, “1 recording 1 s”, “10 readings per 1 s”, ”1-min epochs”.

Recent advancements in information technology have led to the emergence of various
wearable products such as clothes, belts, watches, wristbands and cameras [69]. An
integrated system with multiple sensing functions will promote the development of IoT
(Internet of Things), and the tendency of integrating a variety of sensors is irresistible.
However, there is still a long distance from now to the future. The factors related to
integration discussed in this review are crucial to the next exploration.

4.2. Strengths and Limitations of Our Review

Integrating multiple personal wearable sensors enables an individual-centered re-
search paradigm, but this is still an embryonic field with few research outputs. In view of
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this shortfall, this review paper is the first to assess the feasibility of integrating multiple
sensors for monitoring environment and health. The overarching contribution of this
paper is reviewing the above knowledge in integrating multiple sensors and suggesting a
checklist to improve feasibility and overcome the deficiencies.

The main limitation is that we were unable to rank the performance of each sensor
package, since there was a huge variety of devices amongst the papers we reviewed, and
these papers were not consistent in reporting performance. Another limitation is that this
paper did not address the combination of objective measurement and subjective survey
(e.g., mobile-survey, questionnaire), since this review mainly centers on the integration of
different sensors and data. Future review studies might discuss how to combine sensors
with qualitative surveys to understand human motivations, preferences and experiences.

4.3. Conclusions

In conclusion, this review assessed and characterized the state-of-the-art in integration
of multiple personal sensor packages for outdoor environments, and summarized improve-
ments needed in the future. Integration of personalized wearable sensors can enhance
the ability to reveal relationships between environmental context and health outcome(s).
Lastly, it is hoped that the rigorous methodology demonstrated in this review paper will
provide a framework to enhance the ability of future studies to address further challenges
in investigating the complex relationships between natural and social environments and
human health, using multiple, personal sensors.
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