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Abstract: Various bioorthogonal chemistries have been used for fluorescent imaging owing to the
advantageous reactions they employ. Recent advances in bioorthogonal chemistry have revolu-
tionized labeling strategies for fluorescence imaging, with inverse electron demand Diels–Alder
(iEDDA) reactions in particular attracting recent attention owing to their fast kinetics and excellent
specificity. One of the most interesting features of the iEDDA labeling strategy is that tetrazine-
functionalized dyes are known to act as fluorogenic probes. In this review, we will focus on the
synthesis, molecular-design strategies, and bioimaging applications of tetrazine-functionalized fluo-
rogenic probes. Traditional Pinner reaction and “Pinner-like” reactions for tetrazine synthesis are
discussed here, as well as metal-catalyzed C–C bond formations with convenient tetrazine intermedi-
ates and the fabrication of tetrazine-conjugated fluorophores. In addition, four different quenching
mechanisms for tetrazine-modified fluorophores are presented.

Keywords: tetrazine; click chemistry; fluorogenic; bioimaging

1. Introduction

Fluorescence imaging is one of the most important scientific tools for understanding
biological systems [1]. To monitor the ongoing processes in innate biological systems, many
different fluorescent bioprobes have been developed [2–6]. For successful fluorescence
imaging, the preparation of fluorescent bioprobes must include minimal perturbation of
the original properties of the biomolecule and the synthetic molecule during their labelling.
In addition, it is desirable to reduce the number of steps required for imaging experiments
to avoid perturbation of the biological system. Recently, many bioorthogonal, chemistry-
based techniques have been developed to study innate biological systems [7–10]. Owing to
the small size, high selectivity, and spatiotemporal controllability of biomolecules, various
strategies have been used to label them. These biomolecules include nucleic acids, sugars,
lipids, and proteins. In bio-orthogonal chemistry, inverse electron demand Diels–Alder
(iEDDA) reactions have recently attracted attention owing to their fast kinetics and excellent
specificity [11–13]. The iEDDA reaction is based on the interaction between tetrazine [14]
and strained olefins (such as norbornene, trans-cyclooctene (TCO), and cyclopropane).
Regarding the development of a fluorescent probe, one of the most important features of
the iEDDA labeling strategy is its potential to impart fluorescence. Tetrazine-functionalized
dyes are known to act as fluorogenic probes, where they significantly increase the flu-
orescence intensity upon their reaction with a strained dienophile such as TCO. These
tetrazine-functionalized fluorogenic probes are especially interesting for live-cell labeling
and fluorescence imaging applications because the fluorogenic reaction could lower the
background noise and potentially eliminate the need to wash off any excess fluorophore.
In addition, this feature could be particularly useful for monitoring fast, highly dynamic,
biological processes via the in situ fluorescence labeling of cellular compartments that can
then be visualized and tracked by various microscopy techniques with spatiotemporal
control. Furthermore, the fast kinetics and biocompatibility of tetrazine-functionalized
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dyes give them great potential for use in fluorescence bioimaging. In this review, we
will focus on the syntheses, molecular-design strategies, and bioimaging applications of
tetrazine-functionalized fluorogenic probes.

2. Synthesis of Tetrazines

As tetrazine-based fluorogenic probes enable a molecular-level understanding of bio-
logical systems, synthetic methods have been widely investigated to obtain various types
of tetrazine-functionalized fluorophores. There are two distinct approaches for synthesiz-
ing tetrazines [13]. Traditionally, tetrazines were obtained via Pinner and “Pinner-like”
reactions, which involve condensation and subsequent oxidation reactions with nitriles
and hydrazine. Although these conventional approaches have significantly contributed to
the synthetic accessibility of tetrazines, they are not applicable to many kinds of tetrazines.
Recently, metal-catalyzed C–C bond formation using convenient tetrazine intermediates
has received significant attention as an alternative method. In this section, we discuss
recent findings that can successfully improve the utility and scope of the reaction. Finally,
examples of the synthesis of tetrazine-conjugated fluorophores, which can act as bioprobes,
using recently developed methods are presented.

2.1. Typical Pinner and “Pinner-Like” Reactions

The first synthetic route to tetrazine, reported by Adolf Pinner, involves the conden-
sation reaction of imidoesters with hydrazine to afford dihydrotetrazine intermediates
(Scheme 1a) [15]. The final tetrazines were prepared by the subsequent oxidation of the
dihydrotetrazine intermediates. Based on this study, alternative, one-pot syntheses of
tetrazines using nitriles and hydrazine (Scheme 1b), commonly known as “Pinner-like”
reactions, were reported [16]. Although beneficial, the practical applications of these
approaches are restricted because the preparation of unsymmetrical 3,6-disubstituted
tetrazines using two different nitriles results in the formation of inevitable byproducts
such as symmetrical tetrazines. Moreover, they are not suitable for the synthesis of alkyl
tetrazines from aliphatic nitriles [13]. To overcome these limitations, Devaraj et al. de-
veloped a metal-catalyzed reaction for the synthesis of a series of alkyl tetrazines, where
Zn(OTf)2 and Ni(OTf)2 act as Lewis acids to promote the addition of hydrazine to inac-
tivate alkyl nitriles (Scheme 1c) [17]. This approach has significantly improved access
to alkyl and unsymmetrical tetrazines. Additionally, monosubstituted, unsymmetrical
tetrazines can be synthesized in high yields via the condensation of a formamidine salt
and nitrile in the presence of a Ni or Zn catalyst. However, this method is limited by the
use of reactive and hazardous anhydrous hydrazine. Hydrazine is a good reductant and a
good nucleophile; thus, the reactions it is employed in usually offer poor substrate scopes
and harsh conditions [14]. To overcome these limitations, organocatalytic approaches
for the preparation of unsymmetrical tetrazines were developed by Wu et al. in 2019
(Scheme 1d) [18]. It was suggested that a thiol-containing organocatalyst could promote
the formation of unsymmetrical tetrazines at room temperature from hydrazine hydrate
and nitriles bearing reactive functional groups. These mild reaction conditions expanded
the access to gram-scale synthesis and imparted a broad substrate scope.

Additionally, several studies have been conducted to address unmet needs. For exam-
ple, applications of N,N′-diacylhydrazines for the synthesis of unsymmetrical tetrazines
have been reported (Scheme 1e) [19]. N,N′-Diacylhydrazines were prepared by the se-
quential introduction of acyl groups into hydrazine. They were first converted to 1,2-
dichloromethylene hydrazines by treatment with PCl5, followed by the condensation of
hydrazine and subsequent oxidation to yield unsymmetrical tetrazines with aliphatic
substituents. Sulfur-mediated “Pinner-like” reactions generating reactive nucleophile
NH2NHSH were generally used to synthesize aromatic tetrazines [20]. Recently, Audebert
et al. demonstrated that dichloromethane (DCM) could be used as an alternative reagent
for the formamidine salt when preparing monosubstituted unsymmetrical tetrazines via
sulfur-mediated “Pinner-like” reactions (Scheme 1f) [21].
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2.2. Tetrazine Synthesis Based on C–C Bond Formation

Despite notable advances in “Pinner-like” reactions, it is challenging to develop syn-
thetic methods for unsymmetrical 3,6-disubstituted tetrazines with a broad substrate scope
and high utility. While previous studies mostly focused on the synthesis of tetrazines
through the condensation of nitriles and hydrazine, the feasibility of metal-catalyzed C–C
bond formation reactions has rendered versatile tetrazine intermediates as attractive tar-
gets for the synthesis of unsymmetrical disubstituted tetrazines. Kotschy et al. reported
a new method for the preparation of alkynyl tetrazines through Sonogashira or Negishi
cross-coupling reactions with chlorotetrazine intermediates (Scheme 2a) [22]. The coupling
partners, 3-amino-6-chlorotetrazine intermediates, were synthesized by nucleophilic aro-
matic substitution, where one chlorine atom of 3,6-dichlorotetrazine was replaced with
different amine nucleophiles. Although the substrate scope of tetrazine intermediates is
limited due to decomposition, this method has significant potential for the synthesis of new
tetrazines via C–C bond formation. As a result, significant efforts have been devoted to
the application of other metal-catalyzed cross-coupling reactions and the development of
tetrazine intermediates. Recently, Lindsley et al. reported the use of a Suzuki cross-coupling
reaction to introduce aryl, heteroaryl, and vinyl groups onto 3-amino-6-chlorotetrazines
(Scheme 2b) [23].
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Thioether tetrazines are one of the most useful intermediates for the synthesis of
unsymmetrical disubstituted tetrazines. Suzenet et al. reported the Liebeskind–Srogl
cross-coupling reaction of disubstituted thioether tetrazines with various boronic acids
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and organostannanes to yield tetrazines with aryl, heteroaryl, and vinyl substituents
(Scheme 2c) [24]. Similar to 3-amino-6-chlorotetrazines, 3-amino-6-methylthiotetrazines
were easily obtained from 3,6-bis(methylthio)-1,2,4,5-tetrazine through nucleophilic dis-
placement. This approach has sparked great interest in the development of other valuable
thioether tetrazine intermediates. In 2019, Fox et al. demonstrated that 3-thioalkyl-6-
methyltetrazines, especially 3-((p-biphenyl-4-ylmethyl)thio)-6-methyltetrazine (b-tetrazine),
could serve as a useful intermediate for the synthesis of 3-aryl-6-methylterazines through
Ag-mediated Liebeskind–Srogl cross-coupling reactions (Scheme 2d) [25]. To prepare
b-tetrazine on a decagram scale, thiocarbohydrazide was subjected to S-alkylation with
4-bromomethylbiphenyl, followed by the condensation of the resultant salt with triethy-
lorthoacetate and subsequent Cu(OAc)2-catalyzed air oxidation. Compared to those of
the typical, copper(I)-mediated Liebeskind–Srogl cross-coupling reaction, the synthetic
scope and utility of this Ag-mediated reaction were significantly broader. Furthermore,
this new Liebeskind–Srogl cross-coupling protocol is an outstanding synthetic method
for the preparation of unsymmetrical tetrazines. In 2020, the same group also synthe-
sized 3-substituted-6-thiomethyltetrazines intermediates bearing various alkyl or aryl
groups (Scheme 2e) [26]. This versatile synthetic route begins with the conversion of
(3-methyloxetan-3-yl)methyl carboxylic esters into oxabicyclo [2.2.2]octyl (OBO) orthoester
intermediates in the presence of BF3·OEt2. These compounds then undergo further con-
densation reactions with S-methylisothiocarbohydrazide hydroiodide and subsequent
oxidation to afford the 3-substituted-6-thiomethyltetrazines intermediates. These interme-
diates can be converted into unsymmetrical tetrazines through the Liebeskind–Srogl cross-
coupling reaction, as well as into monosubstituted tetrazines through catalytic thioether
reduction. It is worth mentioning that these synthetic methods provide convenient access
to various unsymmetrical, aliphatic, aromatic, and heterocycle-substituted tetrazines.

Furthermore, Devaraj et al. prepared a novel mesylate tetrazine precursor that could
react with aryl halides through cascades of eliminations and Heck cross-couplings reaction,
affording various (E)-3-substituted-6-alkenyltetrazines (Scheme 2f) [27]. Using this method,
tetrazine derivatives with different π-conjugation lengths can be easily prepared.

2.3. Conjugation of Tetrazine to Fluorophores

In addition to the synthetic endeavors to address the challenges associated with
tetrazine, various studies have been conducted on the conjugation of tetrazine to fluo-
rophores for applications in the field of bioorthogonal chemistry. As mentioned previ-
ously, 3-thioalkyltetrazine can be converted into various unsymmetrical 3,6-disubstituted
tetrazines. Thus, Fox et al. synthesized 3-BODIPY-6-methyltetrazine (BODIPY = 4,4-difluoro-
4-bora-3a,4a-diaza-s-indacene) modifying a BODIPY core with b-tetrazine and phenyl
boronic acid through an Ag-mediated Liebeskind–Srogl coupling reaction (Scheme 3a) [25].
Additionally, they demonstrated the application of (3-methyloxetan-3-yl)methyl carboxylic
esters with BODIPY for the synthesis of a BODIPY dye with mono-or di-substituted
tetrazines (Scheme 3b) [26]. Wombacher et al. utilized Stille cross-coupling to prepare
3-fluorescein-6-methyltetrazine (Scheme 3c) [28]. They prepared another tetrazine in-
termediate, 3-bromo-6-methyltetrazine, from 3-(methylthio)-6-methyltetrazine through
nucleophilic addition of hydrazine followed by bromination. Park et al. utilized Pd-
mediated C–H activation for the incorporation of the tetrazine moiety into the Seoul-Fluor
(SF) scaffold to synthesize SFTz01 (Scheme 3d) [29]. SFTz02 could also be synthesized
through a Zn-catalyzed “Pinner-like” reaction (Scheme 3d). In addition, Oregon-Green
and tetramethylrhodamine (TMR) derivatives with π-conjugated tetrazines were prepared
via cascades of eliminations and Heck cross-couplings reaction using a mesylate tetrazine
precursor (Scheme 3e) [27].
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Scheme 3. Synthetic examples of tetrazines conjugated with various fluorophores. (a) Ag-mediated Liebeskind–Srogl cross-
coupling reaction for modification of BODIPY core. (b) Liebeskind–Srogl cross-coupling reaction or reduction for synthesis
of a BODIPY dye with mono-or di-substituted tetrazine. (c) Stille cross-coupling reaction for preparation of 3-fluorescein-
6-methyltetrazine. (d) Pd-mediated C–H activation or Zn-catalyzed “Pinner-like” reaction for synthesis of Seoul-Fluor
(SF) scaffold with tetrazine. (e) Elimination/Heck cross-coupling cascade reaction for preparation of Oregon-Green and
tetramethylrhodamine (TMR) derivatives with π-conjugated tetrazine.
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3. Development of Fluorogenic Tetrazine Fluorophores

Tetrazine has been used as a fluorescence quencher. Depending on the design strategy,
tetrazine can non-radiatively release molecular energy via different mechanisms, thereby
quenching the fluorescence. After the iEDDA reaction, pathways for the non-radiative
release of energy are no longer available; therefore, fluorescence is restored. Consequently,
fluorophores conjugated with tetrazine could be used as bioorthogonal fluorogenic probes
for wash-free molecular imaging. Fluorophores modified by various tetrazines and four
different types of quenching mechanisms have been used to develop tetrazine-modified
fluorophores. These include electronic energy transfer (EET) (e.g., Förster resonance energy
transfer (FRET), Dexter, and through-bond energy transfer (TBET)), monochromophoric
design, and the formation of new fluorophores after an iEDDA reaction. EET-type fluo-
rogenic probes typically employ the energy of an excited molecule. FRET is one type of
EET that takes place between the excited states of donor molecules and the ground states
of acceptor molecules via non-radiative dipole–dipole interactions. For this process, the
distance between the donor and acceptor is important, and the emission spectrum of the
donor must overlap with the absorption of the acceptor. Due to the uniqueness of this
process, there are many applications employing FRET phenomena for the development
of molecular sensors and investigations into bioimaging probes [30]. In contrast to FRET,
Dexter-type EET [31] does not require spectral overlap between the donor and acceptor
molecules. Instead, electron hopping occurs from the donor to the acceptor molecule;
therefore, the wavefunctions of both the donor and acceptor must overlap. In general,
Dexter-type EET requires a shorter distance between the donor and acceptor molecules
than that required by FRET-type EET. TBET [32,33] is the EET between a donor and accep-
tor that occurs through an electronically conjugated, rigid π-system linker, which twists
the donor and acceptor groups out of co-planarity. It is still difficult to explain the exact
mechanism of TBET or to differentiate TBET from FRET; however, the fast energy transfer
rate of TBET, which can be suppressed at low temperatures, is a key characteristic of this
process that could be used to examine the mechanism behind its occurrence. The basic
principle of EET-type strategies is based on the non-radiative decay of fluorophore energy,
where the energy is transferred to a fluorescence quencher (e.g., tetrazine) from the fluo-
rophore; thus, it is important to optimize the efficiency of this energy transfer. In contrast
to EET-type quenching, the monochromophoric-design strategy is based on the dark-state
quenching of tetrazine. Before the iEDDA reaction, the optically forbidden n→π* transition
dominates the S0–S1 transition of the molecule, which becomes a π→π* transition after the
reaction. The main advantage of the monochromophoric-design strategy is that the unique
mechanism it employs allows for the development of a wider range of fluorogenic probes
than that offered by EET-type quenching strategies. On the other hand, several studies
have reported the formation of new fluorophores after an iEDDA reaction. Because there is
no fluorescent molecule before the reaction, this strategy provides a high turn-on ratio. In
the subsequent Sections 3.1–3.5, we present an example of each strategy and the biological
applications of the resultant probes.

3.1. FRET-Type EET Strategy

The most convenient way to modify a fluorophore is to conjugate the fluorophore by
amide coupling with the amine form of tetrazine [34]. This approach is based on FRET-type
fluorescence quenching, wherein energy is transferred from the excited fluorophore to
the tetrazine units. The transferred energy is released by the tetrazine in a non-radiative
manner. The first example of the fluorescence quenching effect of tetrazine was reported
by Weissleder et al. in 2010 [35]. They conjugated 3-H-6-phenyl-1,2,4,5-tetrazine (H-Tet)
derivatives with BODIPY-FL, Oregon Green 488, BODIPY TMR-X, and Vivotag-680 dyes
and found a 15- to 20-fold enhancement in fluorescence in Phosphate Buffered Saline (PBS)
for green- and red-emitting tetrazine dyes (Figure 1). However, there was no quenching
observed for near-IR-emitting dyes with this molecular design.
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They confirmed that TCO-modified Taxol® could inhibit tubulin polymerization. In ad-
dition, they confirmed that tetrazine–BODIPY-FL could be successfully used to visualize
microtubule bundles with Taxol®–TCO. Although H-Tet was used earlier for the develop-
ment of fluorogenic tetrazine-functionalized fluorophores, the majority of the commercially
available tetrazine-functionalized fluorophores exhibiting FRET behavior are conjugated
with 3-methyl-6-phenyl-1,2,4,5-tetrazine (Me-Tet) derivatives. Since tetrazine acts as the
lowest occupied molecular orbital (LUMO) for the iEDDA reaction, an increase in the
electron-withdrawing character at the 3-position of tetrazine would promote the reaction
rate by lowering the LUMO energy level. Enhancing the reactivity of tetrazine by increas-
ing the electron-withdrawing character makes them susceptible to nucleophilic attack.
Therefore, the most prominent differences between Me-Tet and H-Tet for fluorescence
imaging are the reaction kinetics and chemical stability. Consequently, H-Tet has faster
reaction kinetics but lower chemical stability than those of Me-Tet.

3.2. Dexter-Type, Electron-Exchange EET Strategy

Because the FRET-based strategies for fluorescence quenching have higher efficiency
with regard to the spectral overlap of the donor and acceptor fluorophores, their quench-
ing efficiency is wavelength-dependent. Since tetrazine has an absorption maximum of
approximately 530 nm, the quenching efficiency of tetrazine decreases with fluorophores
exhibiting a red shift. To overcome this limitation, Dexter-type electron exchange strategies
have been examined, which involve the direct incorporation of tetrazines into fluorophores
to decrease the distance between the donor (fluorophore) and acceptor (tetrazine) molecules.
For instance, Wombacher et al. reported green- to far-red-emitting fluorogenic tetrazine
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probes, which were prepared by the direct conjugation of tetrazine with xanthene fluo-
rophores via C–C bond-forming reactions [28]. As this molecular design provides a short
distance between tetrazine and the fluorophore, this strategy allowed for the development
of xanthene–tetrazine derivatives that exhibited fluorescence over the broad visible range
of emission, from green to far-red (Figure 2). This could not be achieved with previous
FRET-type molecular-design strategies.
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Two- to four-fold fluorescence enhancement, with a far-red emission wavelength
(~660 nm), was achieved with silicon rhodamine [37,38] derivatives (SiRh) in this study.

Recently, Wombacher et al. reported some cell-permeable and impermeable dyes,
including highly fluorogenic far-red emitting derivatives [39]. To increase the fluorescence
quenching efficiency, they synthesized tetrazine-functionalized fluorophores using TMR
and SiRh with a phenyl ring pendent in the xanthene core having different tetrazine posi-
tions (ortho, meta, or para) with short flexible oxymethyl spacers (Figure 3a). Density func-
tional theory (DFT) calculations suggested that the regioisomers with tetrazine connected
at different positions have different proximities between the fluorophore and tetrazine,
resulting in better quenching efficiency (Figure 3b). Dexter-type electron exchange was
confirmed by recording the femtosecond transient absorption spectra. ortho-Tetrazine
substituents provided higher fluorescence quenching efficiency than those of meta- or
para-tetrazine substituents, with a 95-fold increase in fluorescence turn-on. In this study,
HD653 (em = 676 nm) exhibited a 50-fold increase in fluorescence turn-on. Furthermore,
the probe was used for multicolor, no-wash imaging of the target-of-interest (TOI) pro-
tein. By modifying the chemical structure, the cell permeability of this tetrazine probe
was controlled and it was successfully used for fluorogenic bioorthogonal imaging of the
TOI protein labeled with Bicyclononyne-containing, unnatural amino acids (Figure 4). In
addition, the self-blinking tetrazine probe allowed for the stimulated emission depletion
(STED) imaging of the TOI protein and organelles, including UAA-labeled vimentin, H2A
protein, mitochondria, and actin filaments [39,40].
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3.3. TBET-Type EET Strategy

Weissleder et al. reported a fluorogenic tetrazine-functionalized fluorophore based on
the TBET mechanism [41]. By directly conjugating tetrazine with BODIPY, they achieved
a highly fluorogenic probe whose fluorescence turn-on magnitude was on the order of
103. These super-dark probes are important for the fluorescence imaging of less abundant
proteins or for super-resolution imaging [5]. They also synthesized tetrazine-functionalized
BODIPY derivatives (Figure 4a) to enhance the spatial donor–acceptor proximity and to
provide predictable donor–acceptor transition-dipole orientations, which could enable
access to alternative modes of fluorescence quenching. In this study, the conjugation
of a phenyl pendent to a tetramethyl BODIPY fluorophore exhibited 1600-fold fluores-
cence enhancement after an iEDDA reaction (Figure 4a,b). The authors claimed that their
molecular design resulted in a parallel alignment of the tetrazine absorption dipole and
BODIPY emission dipole, thereby maximizing the TBET (Figure 4c). Using phalloidin-TCO,
they successfully visualized actin filaments via fluorescence with a high signal-to-noise
(S/N) ratio.
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Soon after, Weissleder et al. reported a fluorogenic bioorthogonal probe based on a
coumarin fluorophore [42]. Employing their TBET strategy, they modified the coumarin
fluorophore to synthesize hyperemissive ligation-initiated orthogonal sensing (HELIOS)
probes having a phenyl pendent with tetrazine at the meta-position of the coumarin core
(Figure 5). Depending on the coumarin structure, the HELIOS probe can have a varying
blue-green spectrum (from 455 to 502 nm) with a high turn-on ratio (2500- to 11,000-
fold enhancement). This study again highlighted that the transition dipole between the
fluorophore and tetrazine is important for efficient fluorescence quenching (Figure 5a).

The HELIOS probe was used to visualize the actin cytoskeleton to investigate the
imaging potential of the probe. By sequential addition of phalloidin-TCO and HELIOS
probes, vivid fluorogenic images of the actin filament with excellent S/N ratios were
successfully obtained (Figure 5b).
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Figure 5. Coumarin-tetrazine probes for fluorogenic imaging. (a) Schematic representation of the
orientation of the transition dipole between coumarin and tetrazine. (b) No-wash, bio-orthogonal
fluorogenic imaging of actin filament with phalloidin-TCO. COS-1 cells were sequentially incubated
with phalloidin-TCO and DRAQ5. After brief rinsing, cells were imaged upon the addition of the
coumarin–tetrazine probe. Reproduced from [42] with permission from Wiley-VCH.
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3.4. Monochromophoric Design

Recently, a dark-state quenching phenomenon has been reported. This is based on
the monochromophoric design strategy, which involves a coupled, conjugated π system
between the fluorophore and tetrazine in the same plane. This strategy is not based on
donor-to-acceptor energy transfer or on the general design strategy for biochromophores.
Moreover, the quenching efficiency of the system was preserved regardless of the emission
wavelength of the parent fluorophores. For example, Park et al. reported a new molecular-
design approach, which provided a 600- to 1000-fold increase in turn-on efficiency for blue
to red emission (Figure 6a).
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They confirmed full integration between tetrazine and a model, SF fluorophore sys-
tem [43] by acquiring the absorption spectra. In addition, they found that the oscillator 
strength (f) of the structure significantly increased after the iEDDA reaction. Based on this 
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S0–S1 transition of the probes from the optically forbidden n→π* transition to the optically 
active π→π* transition, thereby promoting the fluorescence emission process (Figure 6b). 
Considering the increased interest in mitochondrial biology, a new tetrazine fluorophore 
was used to visualize the mitochondria (Figure 7). Triphenylphosphonium (TPP)–TCO 
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Figure 6. Development of a monochromophore-based, tetrazine-functionalized fluorophore. (a) Upper panel: Normalized
emission spectrum of SFTz (SF = Seoul-Fluor) probes after reaction with TCO. Lower panel: Photograph of the SFTz probes
before (left cuvette) and after (right cuvette) reaction with TCO; irradiated under 365-nm UV light. (b) Molecular orbital
distribution, vertical transition energy, and oscillator strength (f ) of SFTz02 (left) and the corresponding iEDDA reaction
product (right) obtained by Time-Dependent-DFT calculations (CAM-B3LYP/6-31G*) of the corresponding first excited-state
optimized structures. Reproduced with permission from [29]. Copyright (2018) American Chemical Society.

They confirmed full integration between tetrazine and a model, SF fluorophore sys-
tem [43] by acquiring the absorption spectra. In addition, they found that the oscillator
strength (f ) of the structure significantly increased after the iEDDA reaction. Based on this
observation, they proposed that the iEDDA reaction changed the major contributor of the
S0–S1 transition of the probes from the optically forbidden n→π* transition to the optically
active π→π* transition, thereby promoting the fluorescence emission process (Figure 6b).
Considering the increased interest in mitochondrial biology, a new tetrazine fluorophore
was used to visualize the mitochondria (Figure 7). Triphenylphosphonium (TPP)–TCO was
synthesized and incubated with HeLa cells. After treatment with SFTz02* or SFTz08* (the
more soluble forms of SFTz02 and SFTz08, respectively), crisp fluorescent mitochondrial
images with exceptional contrast were obtained. They further confirmed the specificity of
the probe through a co-staining experiment with a conventional fluorescent mitochondrial
probe, MitoTracker Deep Red.
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observed without washing. (d) Plot intensity values of pixels along the red line in (c) were analyzed with the ImageJ
program. ROI = region of interest. Reproduced with permission from [29]. Copyright (2018) American Chemical Society.

3.5. Formation of New Fluorophore

Owing to their structure, tetrazines are intrinsically unstable under biological condi-
tions. Therefore, this instability could restore the fluorescence signal of a tetrazine-modified
fluorophore without the iEDDA reaction. To address this, Vrabel et al. reported a new
concept involving the formation of fluorescent products upon the iEDDA reaction between
tetrazine and a particular TCO (Figure 8) [44]. It was found that the reaction between
3,6-di(2′-pyridyl)-5-tetrazine (DiPyTet) and the axial TCO isomer (TCOa) generated a flu-
orescent product. Through a Heck cross-coupling reaction, symmetric and asymmetric
tetrazine derivatives bearing various substituents were synthesized. Interestingly, they
found that the iEDDA reaction products of tetrazine derivatives and TCOa exhibited
varying photophysical properties. The products exhibited a broad range of emissions
(478–605 nm) and varying turn-on ratios (9- to 91-fold enhancement). By conjugating TPP
and Taxol® to tetrazine (TPP–Tet and Taxol®–Tet, respectively), the modified tetrazines
were successfully applied to bioorthogonal fluorogenic bioimaging.

Recently, Varbel et al. reported an extended approach of their strategy. Compared to
previous studies, wherein TCOa was used for fluorescent product formation, in this study,
they developed new tetrazine derivatives that could afford fluorescent products from both
TCOa and equatorial-TCO (TCOe) [45]. Similar to their previous study, they synthesized
alkenyl tetrazine derivatives with different substituents. Interestingly, many of the tetrazine
derivatives afforded fluorescent products after undergoing iEDDA reactions with TCOa,
and most of the 4,5-dihydropyridazine products exhibited red-shifted emissions (626 to
643 nm) and reasonable turn-on ratios (3- to 18-fold enhancement). Furthermore, they
conjugated tetrazine with TPP and concanavalin A (ConA-TCO) and used the resultant
tetrazine derivative for bio-orthogonal fluorogenic imaging.
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Figure 8. Formation of a new fluorophore after an iEDDA reaction. (a) Reaction between 3,6-di(2′-pyridyl)-5-tetrazine
(DiPyTet) and TCO gave different products. In this study, the reaction of the axial TCO isomer (TCOa) with DiPyTet resulted
in new fluorophore formation. (b) Chemical structure of tetrazine modified with Taxol® and TPP (Taxol®–Tet and TPP–Tet,
respectively) in this study. (c) Confocal laser microscope images of U2OS cells treated with Taxol®–Tet (upper row) or
TPP–Tet (lower row), followed by DMSO (left column) or TCOa (middle column) treatment. The merged images obtained
from co-staining experiments with commercial mitotracker or tublin tracker (right column) confirmed the specificity of the
probes. Reproduced from [44].

4. Conclusions

Herein, we briefly summarized the synthetic methods and molecular-design strategies
for tetrazine-functionalized fluorogenic bioprobes. The high selectivity, exceptional reaction
kinetics, and fluorescence-quenching ability of tetrazine render its use in iEDDA reactions
as an effective platform for bio-orthogonal and catalyst-free fluorogenic bioimaging. A
basic understanding of the quenching mechanism of tetrazine allows for the fine-tuning of
tetrazine-functionalized fluorophores for enhanced emission and fluorescence. Considering
the super-resolution imaging capabilities of tetrazine-functionalized fluorophores produced
via iEDDA reactions, this reaction serves as a molecular tool for fluorescent bioimaging and
will provide a better understanding of the dynamic nature of biological systems. Although
tetrazine-functionalized fluorophores exhibit promising potential [46–49], there are several
limitations that must be overcome. For instance, (1) the strained olefin still needs to be
washed off before treatment with the tetrazine fluorophore, (2) the electrophilic nature of
tetrazine renders it unstable (depending on its substituents) against nucleophiles, and (3)
the hydrophobic nature of tetrazine increases the possibility of it partaking in non-specific
binding. These limitations must be addressed in future studies.
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Development of Fluorogenic trans-Cyclooctene–Tetrazine Cycloadditions. ChemBioChem 2019, 20, 886–890. [CrossRef]

46. Mao, W.; Tang, J.; Dai, L.; He, X.; Li, J.; Cai, L.; Liao, P.; Jiang, R.; Zhou, J.; Wu, H. A General Strategy to Design Highly Fluorogenic
Far-Red and Near-Infrared Tetrazine Bioorthogonal Probes. Angew. Chem. Int. Ed. 2021, 60, 2393–2397. [CrossRef]

47. Knorr, G.; Kozma, E.; Herner, A.; Lemke, E.A.; Kele, P. New Red-Emitting Tetrazine-Phenoxazine Fluorogenic Labels for Live-Cell
Intracellular Bioorthogonal Labeling Schemes. Chem.–Eur. J. 2016, 22, 8972–8979. [CrossRef]

48. Loredo, A.; Tang, J.; Wang, L.; Wu, K.-L.; Peng, Z.; Xiao, H. Tetrazine as a general phototrigger to turn on fluorophores. Chem. Sci.
2020, 11, 4410–4415. [CrossRef]

49. Mboyi, C.D.; Vivier, D.; Daher, A.; Fleurat-Lessard, P.; Cattey, H.; Devillers, C.H.; Bernhard, C.; Denat, F.; Roger, J. Bridge-Clamp
Bis(tetrazine)s with [N]8 π-Stacking Interactions and Azido-s-Aryl Tetrazines: Two Classes of Doubly Clickable Tetrazines. Angew.
Chem. Int. Ed. 2019, 59, 1149–1154. [CrossRef]

http://doi.org/10.1002/anie.200906120
http://www.ncbi.nlm.nih.gov/pubmed/20306505
http://doi.org/10.1021/ar200037t
http://www.ncbi.nlm.nih.gov/pubmed/21627112
http://doi.org/10.1038/nchem.1546
http://www.ncbi.nlm.nih.gov/pubmed/23344448
http://doi.org/10.1021/jacs.6b04782
http://doi.org/10.1101/2020.08.07.241687
http://doi.org/10.1002/anie.201906806
http://doi.org/10.1002/anie.201301100
http://doi.org/10.1002/anie.201403890
http://www.ncbi.nlm.nih.gov/pubmed/24915832
http://doi.org/10.1021/ar500370v
http://doi.org/10.1002/anie.201610491
http://www.ncbi.nlm.nih.gov/pubmed/28026913
http://doi.org/10.1002/cbic.201800711
http://doi.org/10.1002/anie.202011544
http://doi.org/10.1002/chem.201600590
http://doi.org/10.1039/D0SC01009J
http://doi.org/10.1002/anie.201911947

	Introduction 
	Synthesis of Tetrazines 
	Typical Pinner and “Pinner-Like” Reactions 
	Tetrazine Synthesis Based on C–C Bond Formation 
	Conjugation of Tetrazine to Fluorophores 

	Development of Fluorogenic Tetrazine Fluorophores 
	FRET-Type EET Strategy 
	Dexter-Type, Electron-Exchange EET Strategy 
	TBET-Type EET Strategy 
	Monochromophoric Design 
	Formation of New Fluorophore 

	Conclusions 
	References

