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Abstract: Stress is the physical and psychological tension felt by an individual while adapting to
difficult situations. Stress is known to alter the expression of stress hormones and cause neuroin-
flammation in the brain. In this study, miRNAs in serum-derived neuronal exosomes (nEVs) were
analyzed to determine whether differentially expressed miRNAs could be used as biomarkers of
acute stress. Specifically, acute severe stress was induced in Sprague-Dawley rats via electric foot-
shock treatment. In this acute severe-stress model, time-dependent changes in the expression levels
of stress hormones and neuroinflammation-related markers were analyzed. In addition, nEVs were
isolated from the serum of control mice and stressed mice at various time points to determine when
brain damage was most prominent; this was found to be 7 days after foot shock. Next-generation
sequencing was performed to compare neuronal exosomal miRNA at day 7 with the neuronal ex-
osomal miRNA of the control group. From this analysis, 13 upregulated and 11 downregulated
miRNAs were detected. These results show that specific miRNAs are differentially expressed in nEVs
from an acute severe-stress animal model. Thus, this study provides novel insights into potential
stress-related biomarkers.

Keywords: acute severe stress; neuroinflammation; exosomes; miRNA; biomarkers

1. Introduction

Stress is considered to be physical and psychological tension resulting from an adverse
situation or environment to which an individual struggles to adapt and maintain home-
ostasis [1]. According to the type and severity of the stimulus, stress can not only dis-
rupt homeostasis but may also cause various diseases and can even prove fatal [2]. Several
studies have shown that stress is associated with diseases, such as ischemic stroke, cardio-
vascular disease, cancer, inflammatory bowel disease, and atopic dermatitis, as well with
psychiatric disorders [3–8]. Other studies have indicated that neuroinflammation is exac-
erbated by the stress-activated hypothalamic-pituitary-adrenal (HPA) axis without direct
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brain damage [9]. Stress is also related to neurodegenerative diseases, such as Alzheimer’s
disease and Parkinson’s disease [9].

The HPA axis is an important neuroendocrine system that moderates responses to
psychological and physical stress and inflammation [6]. When an individual is stressed,
a corticotropin-releasing hormone secreted by the hypothalamus stimulates the pituitary
gland to release adrenocorticotropic hormone, which in turn stimulates the adrenal gland
to release glucocorticoid hormones, i.e., effector hormones [10]. Glucocorticoid hormones,
such as cortisol and corticosterone, are used as stress biomarkers. However, the most
effective method by which stress is currently diagnosed clinically is through a combination
of intensive interviews/surveys, glucocorticoid hormone measurements, and physiological
measurements [11]. Although glucocorticoids are promising stress biomarkers, glucocor-
ticoid levels can be affected by several factors, such as the circadian rhythm, sex, and
stressor type [12–14]. Thus, it is difficult to quantify and analyze stress qualitatively using
the expression patterns of these hormones. With the aim of overcoming such limitations,
potential stress-related biomarkers were established, analyzed, and characterized in the
present study.

Extracellular vesicles are classified into several types according to their size and
biogenesis [15]. Among these types, exosomes are spherical, phospholipid, bilayered
vesicles that are 30–200 nm in diameter and present in almost all body fluids, including
cerebrospinal fluid, saliva, breast milk, and blood [16]. Exosomes are first secreted as
vesicles from various cell types through a process of multivesicular endosome fusion with
the plasma membrane, and they subsequently regulate intercellular communication [17].
These exosomes contain components, such as proteins, lipids, mRNA, and microRNAs
(miRNAs), that are expressed in the cells of origin [17]. These components can exist in
a stable state within the exosomes, which can themselves pass through the blood-brain
barrier in both directions [18]. Thus, exosomes are being actively studied as potential
diagnostic tools for many diseases including cancer, inflammatory bowel disease, and
cardiovascular disease [19–21]. Additionally, exosomal miRNAs in cerebrospinal fluid have
been studied as biomarkers for Parkinson’s disease and Alzheimer’s disease; the expression
of miRNA in the exosomes of patients is known to differ from that in the exosomes
of healthy controls [22,23].

One of the constituents of exosomes mentioned above, miRNAs, are small (17–24 nt),
noncoding, endogenous RNAs that regulate post-transcriptional silencing of target mRNAs
by binding to the 3′-untranslated region or open reading frame [24,25]. They can exist
stably in various body fluids within exosomes and high-density lipoproteins or by binding
to the argonaute2 protein [24]. Comparative analysis studies have revealed that miRNA
expression patterns can be used as biomarkers in diseases, such as pancreatic cancer,
allergic diseases, cardiovascular disease, and major depression [26–29].

In the current study, stress biomarkers were investigated by inducing stress in rats
through the electric foot-shock method. Electric foot shock causes both physical and psy-
chological stress and affects the subject animal both behaviorally and neurochemically [30].
Thus, this method is suitable for studying acute severe-stress-induced inflammation of
the brain because it causes a significant stress response [30–32]. As advantages over other
animal models of stress, the electric foot-shock model can be applied with a variety of
intensities, durations, and frequencies [30,33].

Given that brain damage may be induced by stress [34], the expression of stress-
specific biomarkers was measured following damage to the hippocampus in the stress-
related animal model, while neuronal exosomes (nEVs) were isolated from the serum of
these animals, and miRNA expression patterns were comparatively analyzed against the
respective expression patterns of normal animals. Our findings suggest that neuronal
exosomal miRNAs could be used as stress-specific biomarkers.
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2. Results
2.1. Stress Hormone Levels Increased in the Acute Severe-Stress Group

Cortisol and corticosterone levels in serum were measured using an enzyme-linked
immunosorbent assay (ELISA). Blood was collected at 0 h, 2 h, 4 h, 6 h, 9 h, 18 h, 20 h, 24 h
(1 day), 72 h, (3 days), and 168 h (7 days) after stress induction. The acute severe-stress
group exhibited significantly increased cortisol levels compared to those of the control
group at all time points (Figure 1A: 0 h = 13.45 ± 4.91 ng/mL vs. control (4.21 ± 0.41),
p = 0.00099, fold-change = 3.19; 2 h = 8.82 ± 2.45 vs. control (4.36 ± 0.85), p = 0.0018,
fold-change = 2.02; 4 h = 9.77 ± 2.69 vs. control (4.56 ± 0.92), p = 0.0012, fold-change = 2.14;
6 h = 7.36 ± 1.83 vs. control (4.99 ± 0.85), p = 0.016, fold-change = 1.47; 9 h = 9.67 ± 2.25
vs. control (5.4 ± 1.33), p = 0.0025, fold-change = 1.79; 18 h = 6.37 ± 2.66 vs. control
(2.51 ± 0.57), p = 0.0060, fold-change = 2.54; 20 h = 11.24 ± 4.39 vs. control (4.71 ± 1.29),
p = 0.0058, fold-change = 2.39; 1 day = 10.08 ± 4.42 vs. control (3.37 ± 0.65), p = 0.0043,
fold-change = 2.99; 3 days = 5.91± 1.45 vs. control (3.9± 1.27), p = 0.029, fold-change = 1.52;
7 days = 5.58 ± 1.3 vs. control (3.35 ± 0.81), p = 0.0051, fold-change = 1.67).
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Figure 1. The hypothalamic-pituitary-adrenal (HPA) axis was influenced by acute severe stress.
(A) Changes in cortisol concentrations induced by acute severe stress. (B) Alterations in corticosterone
caused by acute severe stress. All data are expressed as means ± SD; * p < 0.05 and ** p < 0.001, n = 6
per group.

Significant increases in corticosterone were observed at 0 h and 1 day after expo-
sure to stress, and a significant decrease was confirmed at 6 h after stress induction
(Figure 1B: 0 h = 224.31 ± 93.41 ng/mL vs. control (82.88 ± 62.32), p = 0.012, fold-
change = 2.71; 6 h = 34.24 ± 17.22 vs. control (105.91 ± 68.10), p = 0.031, fold-change = 0.30;
1 day = 119.58 ± 80.09 vs. control (19.73 ± 13.38), p = 0.013, fold-change = 6.061). At
all other time points, corticosterone levels were not significantly different from those in the
controls (Figure 2B: 2 h = 45.66± 31.58 vs. control (75.28± 38.15), p = 0.174, fold-change = 0.61;
4 h = 106.94± 45.64 vs. control (94.71± 68.77), p = 0.726, fold-change = 1.13; 9 h = 100.79± 72.11
vs. control (94.66 ± 60.06), p = 0.876, fold-change = 1.064; 18 h = 36.08 ± 32.38 vs. control
(20.84 ± 19.65), p = 0.348, fold-change = 1.73; 20 h = 134.43 ± 75.67 vs. control (87.40 ± 76.77),
p = 0.310, fold-change = 1.78; 3 days = 22.51 ± 22.17 vs. control (68.79 ± 73.10), p = 0.169, fold-
change = 0.33; 7 days = 85.69 ± 76.35 vs. control (65.22 ± 35.14), p = 0.564, fold-change = 1.31).
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Figure 2. Acute severe stress led to changes in the expression patterns of neuroinflammation markers
in the hippocampus. Representative hematoxylin and eosin (H&E) staining images of the hippocam-
pus: (A) Control; (B) Day 1; (C) Day 3; and (D) Day 7. Images of immunohistochemical (IHC) staining
of brain-derived neurotrophic factor (BDNF) in the hippocampus: (E) Control; (F) Day 1; (G) Day 3;
and (H) Day 7. Images of IHC staining of cyclooxygenase-2 (COX2) in the hippocampus: (I) Control;
(J) Day 1; (K) Day 3; and (L) Day 7. Images of IHC staining of glial fibrillary acidic protein (GFAP) in
the hippocampus: (M) Control; (N) Day 1; (O) Day 3; and (P) Day 7.

2.2. Pathological Analysis of Neuroinflammation Marker Levels in the Hippocampus of the Acute
Severe-Stress Group

Acute severe-stress-induced changes in the levels of neuroinflammation marker pro-
teins were detected following hematoxylin and eosin (H&E) staining and immunohis-
tochemistry (IHC). According to H&E staining, there were no significant differences in
the hippocampuses of stress-exposed rats and control rats at 1, 3, and 7 days after severe-
stress induction (Figure 2A–D). IHC staining and quantification were performed to confirm
the expression levels of neuron-associated inflammation markers, i.e., brain-derived neu-
rotrophic factor (BDNF), cyclooxygenase-2 (COX2), and glial fibrillary acidic protein (GFAP)
(Figure 2E–P). BDNF expression levels in the hippocampus did not differ across time points
(Figure 3A: Day 1 = 1.75 ± 0.061 related to control, p = 0.051; Day 3 = 0.51 ± 0.055 related
to control, p = 0.12; Day 7 = 1.45 ± 0.084 related to control, p = 0.16). However, COX2
expression levels were significantly upregulated at 1, 3, and 7 days after stress induction
(Figure 3B: Day 1 = 1.66 ± 0.16, p = 0.013 related to control; Day 3 = 1.40 ± 0.052 related to
control, p = 0.0041 related to control; Day 7 = 2.31 ± 0.34 related to control, p = 0.013). Simi-
larly, GFAP expression levels were significantly altered at 1, 3, and 7 days after exposure
to stress (Figure 3C: Day 1 = 1.51 ± 0.14 related to control, p = 0.021; Day 3 = 1.59 ± 0.16
related to control, p = 0.017; Day 7 = 1.92 ± 0.17 related to control, p = 0.0041).
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Figure 3. Quantification of acute severe-stress-induced changes in neuroinflammation marker
expression in the hippocampus. Acute severe-stress-altered neuroinflammation marker expression
in the hippocampus. Changes in the expression of brain-derived neurotrophic factor (BDNF),
cyclooxygenase-2 (COX2), and glial fibrillary acidic protein (GFAP) were quantified using ImageJ:
(A) BDNF; (B) COX2; and (C) GFAP expression changes in the hippocampus. Data are expressed as
means ± SD; * p < 0.05, n = 6 per group.

2.3. Characterization of Total Exosomes (tEVs) Isolated from Serum

EVs were initially isolated to determine the time at which brain damage was most
prominent, which was 7 days after electric foot shock. Before the separation of the nEVs,
the characteristics of the tEVs isolated from serum were confirmed using several methods.
First, transmission electron microscopy (TEM) was used to confirm their shape and size;
images showed that the exosomes isolated from serum had spherical bilayer membranes
and were 30–200 nm in diameter (Figure 4A). Next, nanoparticle tracking analysis (NTA)
was conducted to validate the size of the exosomes, which were confirmed to be 30–200 nm
in diameter (Figure 4B). Finally, flow cytometry (FACS) was performed to identify and
quantify the presence of CD9 and CD63, which are exosome markers; results showed
that 98.96% and 78.36% of the particles present in the exosomes were CD9-positive and
CD63-positive, respectively (Figure 4C).
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Figure 4. Characterization of total exosomes (tEVs) isolated from serum: (A) Transmission electron
microscopy (TEM) images showing exosome morphology and size. Scale bar: 100 nm; (B) Nanoparti-
cle tracking analysis (NTA) of exosomes to confirm size distribution; (C) Flow cytometry (FACS) data
confirming the detection of exosome markers (CD9 and CD63).

2.4. Identification of Serum-Derived nEVs

The nEVs were isolated using an anti-L1 cell adhesion molecule (L1CAM; i.e., CD171)
biotinylated antibody for immunoprecipitation (Figure 5A). Western blotting was then used
to characterize the nEVs. Results showed that the nEV marker CD171 and neuronal markers,
such as neuron-specific class III beta-tubulin (TUJ1), neuron-specific enolase (NSE), and
neuronal nuclei (NeuN) were present in the nEVs isolated from serum. On the other hand,
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these markers were rarely identified in the tEVs. Additionally, tumor susceptibility gene
101 (TSG101) and β-actin were confirmed in both the tEVs and nEVs (Figure 5B).
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Figure 5. Isolation and characterization of neuronal exosomes (nEVs) in serum: (A) Protocol for the
isolation of nEVs; (B) Western blot images showing the enrichment of nEV-associated markers (nEV
marker: CD171; neuronal markers: neuron-specific class III beta-tubulin (TUJ1), neuron-specific eno-
lase (NSE), and neuronal nuclei (NeuN); exosome marker: tumor susceptibility gene 101 (TSG101)).

2.5. Changes in Exosomal miRNA Expression Induced by Acute Severe Stress

Next-generation sequencing (NGS) was performed to confirm that miRNA expression
patterns were altered by stress. We conducted NGS on the control group and the Day 7
group, which showed the greatest change in the expression of neuroinflammatory markers
in the hippocampus. Results confirmed that 13 miRNAs were upregulated and 11 miRNAs
were downregulated in the stress group relative to the control group (Figure 6). In the stress
group, the upregulated miRNAs were as follows: let-7a-1-3p, let-7a-5p, let-7b-3p, let-7b-5p,
let-7c-2-3p, let-7c-5p, let-7d-3p, let-7f-1-3p, let-7f-5p, miR-126a-5p, miR-3473, miR-466b-3p,
and miR-98-3p. The downregulated miRNAs in the stress group were as follows: let-7d-5p,
let-7g-5p, let-7i-5p, miR-140-3p, miR-17-5p, miR-191a-5p, miR-19b-3p, miR-24-3p, miR-30c-
5p, miR-425-5p, and miR-93-5p (Table 1, with sequences in Supplementary Materials S1).

Table 1. Up/downregulation of miRNAs induced by acute severe stress.

Mature miRNA Predicted Target
Genes

Fold Change
(Severe Stress/Control)

miRNA Expression in
Acute Severe Stress

rno-let-7a-1-3p 697 48.12 Upregulation
rno-let-7a-5p 379 3.05 Upregulation
rno-let-7b-3p 696 8.42 Upregulation
rno-let-7b-5p 383 4.2 Upregulation

rno-let-7c-2-3p 697 48.12 Upregulation
rno-let-7c-5p 379 3.99 Upregulation
rno-let-7d-3p 15 3.3 Upregulation

rno-let-7f-1-3p 696 10.53 Upregulation
rno-let-7f-5p 380 3.51 Upregulation
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Table 1. Cont.

Mature miRNA Predicted Target
Genes

Fold Change
(Severe Stress/Control)

miRNA Expression in
Acute Severe Stress

rno-miR-126a-5p 389 10.99 Upregulation
rno-miR-3473 114 3.23 Upregulation

rno-miR-466b-3p 487 6.62 Upregulation
rno-miR-98-3p 696 54.13 Upregulation

rno-let-7d-5p 352 0.32 Downregulation
rno-let-7g-5p 382 0.19 Downregulation
rno-let-7i-5p 382 0.11 Downregulation

rno-miR-140-3p 343 0.06 Downregulation
rno-miR-17-5p 525 0.04 Downregulation

rno-miR-191a-5p 53 0.23 Downregulation
rno-miR-19b-3p 485 0.29 Downregulation
rno-miR-24-3p 443 0.18 Downregulation
rno-miR-30c-5p 980 0.45 Downregulation
rno-miR-425-5p 186 0.27 Downregulation
rno-miR-93-5p 520 0.27 Downregulation

1 
 

 
 Figure 6. Heatmap of differential miRNA expression in neuronal exosomes (nEVs) induced by acute

severe stress. In total, 13 miRNAs were upregulated and 11 miRNAs were downregulated in the Day
7 group compared with the control group.

2.6. Prediction of Target Genes

We predicted the miRNA target genes using the mirWalk. The target gene prediction
results are shown in Supplementary Materials S2. Gene ontology (GO) analysis was
performed to confirm that the genes differentially expressed under acute severe stress were
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associated with neurons. Analysis of each biological process (BP), cell component (CC),
and molecular function (MF) showed the 10 most enriched GO terms (Figure 7A–C). Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway was then performed to identify
that expression under acute severe stress was associated with neuron-related pathways. As
a result, it can be seen that it is related to neuron-related signaling pathways (Figure 7D). 

2 

 
 

Figure 7. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis indicating that neuronal exosomal miRNAs with different expression patterns
under acute severe stress regulate neuron-related genes. (A–C) Bar graph represents the top 10
GO terms in the three categories: biological process (BP), cell component (CC), and molecular
function (MF). (D) The most significant 10 KEGG pathways are displayed. * p < 0.05, ** p < 0.01
and *** p < 0.001.

3. Discussion

The objective of this study was to identify and analyze indicators expressed in a
specific stress situation that could potentially be used as stress-related biomarkers. nEVs
were isolated from the sera of electric foot-shock-induced acute severe-stress model rats,
and the expression patterns of miRNAs contained in the exosomes were compared with
those of unstressed animals. This model was used as previous studies have shown that
electric foot shock causes activation of the HPA axis and psychiatric disorders, such as
anxiety and post-traumatic stress disorder, in animals [32,35,36].

To determine whether electric foot shock caused stress as anticipated, glucocorticoids
were analyzed in model rats; the concentrations of cortisol and corticosterone in serum
were increased in shocked animals. These results are in agreement with those of other
studies of rodents demonstrating that electric foot shock induces acute psychological stress
and increases the secretion of corticosterone through the HPA axis [37,38]. Although
corticosterone is the main upregulated stress-related hormone in rodents, an earlier study
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showed that cortisol was upregulated following electric foot shock; indeed, corticosterone
levels were rapidly reduced compared with cortisol levels after incremental induction by
several stressful states [35].

Changes in the expression patterns of neuron-related markers, such as BDNF, COX2,
and GFAP, in the hippocampus were confirmed in the acute severe-stress model. BDNF is
involved in processes related to learning and hippocampal memory, as well as the main-
tenance, survival, and plasticity of neurons [36,39]. Changes in BDNF expression have
been identified in studies of conditions such as stress, psychiatric disorders, and neu-
rodegenerative disorders [39,40]. In the present study, BDNF expression in the acute
severe-stress model increased compared with that in the normal animals at the initial
stage of stress induction and then decreased rapidly. However, these changes were not
statistically significant. It has been reported that when neuroinflammation is induced
with lipopolysaccharides, the expression pattern of BDNF is similar [41]. Additionally, a
previous study has shown that BDNF initially decreases when acute stress is induced in
rats but that this decrease does not persist [42].

The expression of COX2 and GFAP were significantly increased in the hippocampuses
of acute severe-stress model rats. COX2 is known to be involved in cytokine-induced
depression and sickness behavior [43]. It is also a prostaglandin-endoperoxide synthase
and a marker of neural damage in the injured brain [44]. Furthermore, increased expression
of COX2 can be a major factor in brain injury and stress-induced neuroinflammation [45,46].
GFAP is a marker of astrocytes, which are critical regulators of neuroinflammation in the
central nervous system [47]. In previous studies, similar to the present study, GFAP was
upregulated following the induction of acute severe stress [48,49]. Taken together, these
results confirm that the acute severe-stress model used in this study exhibits a phenotype
suitable for stress-related studies.

The possibility of using exosomes as disease-specific biomarkers in various dis-
eases has previously been suggested by other researchers. In the current study, exo-
somes from acute severe-stress model rats were isolated and analyzed with results being
confirmed by TEM and NTA. In addition, FACS analysis showed the presence of the
traditional exosome markers CD9 and CD63 in the isolated exosomes. Previous stud-
ies have identified exosomes using tetraspanins such as CD9, CD63, and CD81 (which
organize membrane microdomains), along with TSG101 (which is involved in multivesicu-
lar endosome biogenesis) [25,50,51].

Because stress is closely related to brain damage, nEVs were also isolated and char-
acterized here. After exosomes are isolated from serum, immunoprecipitation of CD171
is typically used to isolate nEVs [52,53]. CD171, also known as L1CAM, is expressed in
nervous tissue and some cancer cells; it is known as a cell surface antigen in the central
nervous system [54,55] and plays an important role in neural development [55]. After
the isolation of tEVs from serum, nEVs were isolated by immunoprecipitation using bi-
otinylated antibodies against the neuronal surface marker CD171, as described in previous
studies [52]. Consistent with previous studies, the nEVs isolated in the present work
included neuronal markers specifically expressed in neurons as well as CD171 [52,53], i.e.,
TUJ1, NSE, and NeuN were also identified as neuronal markers [50,51,56].

Many studies have investigated exosomes as biomarkers for diseases. In particular,
miRNAs and proteins in exosomes have been studied using bioinformatics [57,58]. Thus,
in the current study, NGS was performed to identify differentially expressed miRNAs in
nEVs following electric foot shock. Expression patterns of miRNAs in the nEVs differed
between stressed and unstressed animals. Differently expressed miRNAs in the stressed
state were identified in the miRDB database (miRDB.org) and found to target several genes,
including some neuron-related genes. For example, let-7b suppresses the proliferation of
neural stem cells and accelerates the differentiation of neural stem cells in the mammalian
brain [59]. In addition, let-7a-1-3p regulates the function of microglia, i.e., immune cells
in the brain associated with BDNF signaling [60,61]. Moreover, several of the miRNAs
identified are associated with psychological disorders such as major depressive disorder.
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Previous studies have confirmed that let-7a-5p, let-7c-5p, and let-7i-5p are upregulated
in acute social defeat stress and chronic unpredictable mild stress (CUMS)-induced de-
pression [62,63]. Here, let-7a-5p and let-7c-5p were upregulated, whereas let-7i-5p was
downregulated. Additionally, let-7b-5p and miR-126a-5p, which are upregulated in de-
pression, were upregulated in the acute severe-stress model rats, whereas miR-140-3p,
which is downregulated in repeated social defeat stress and CUMS-induced depression,
was downregulated in these animals [62,63]. These data confirm that some miRNAs in
nEVs were affected by stress and that these miRNAs could be used as biomarkers of both
stress and stress-induced psychiatric disorders.

In addition, we analyzed genes targeted by neuronal exosomal miRNAs with signif-
icantly altered expression. As a result, it has been shown to regulate a variety of genes,
including neuron-related genes. For example, Forkhead Box O (FoxO) deficiency is known
to affect the development of neurons [64]. There are also studies confirming that oxytocin,
a neuropeptide, is related to the development of neuronal precursor cells in the brain [65].
Additionally, oxytocin was associated with cortisol level in psychological stress [66,67].
However, the genes analyzed are diverse and further studies in other stressful situations
must be performed to find genes associated with stress.

In summary, nEVs were successfully isolated from a stress-related animal model and
analyzed to confirm specific changes in miRNA expression compared with the respec-
tive expression in unstressed animals. Consequently, biomarkers related to stress were
potentially identified. However, stress-related diseases are diverse and the causes, types,
and phenotypes of disease can differ. Therefore, it will be necessary to conduct further
research into various stress-related conditions, such as inflammatory colitis, neuropathic
pain, and noise-induced hearing loss, to further study and validate the expression of these
candidate stress-related biomarkers. Additionally, only miRNAs in nEVs were analyzed in
this study, but other components, such as mRNAs, proteins, and lipids, need to be analyzed
in further studies.

4. Materials and Methods
4.1. Animals

Eight-week-old male Sprague-Dawley rats were housed under controlled temperature,
light, and humidity conditions (24 ± 2 ◦C, 12/12 h light/dark cycle with lights on at
07:00, and 50% ± 20% relative humidity). Additionally, animals had ad libitum access
to food and water. All animal experiment protocols were reviewed and approved by
the Institutional Animal Care and Use Committee of KPC Co., Ltd., Kyunggido, Korea
(KPC-IACUC; approval no. P181112, 14 February 2018) and were conducted in accordance
with their guidelines.

4.2. Acute Severe-Stress Model Protocol

Animals were divided, with six animals in each group. Acute severe stress was
induced by electric foot shock. Stress groups were exposed to the foot-shock test for
20 min (8-s shock duration at 5-min intervals; four shocks in total). To measure stress-
related hormone levels using ELISA, blood was collected at 0 h, 2 h, 4 h, 6 h, 9 h, 18 h,
20 h, 24 h (1 day), 72 h (3 days), and 168 h (7 days) after stress induction. Cortisol and
corticosterone were measured using a Cortisol ELISA Kit (FineTest, Wuhan, China) and
Corticosterone ELISA Kit (Enzo Life Sciences, Ann Arbor, MI, USA) according to the
manufacturers’ instructions.

In addition, Day 1, Day 3, and Day 7 groups were sacrificed at 1 day, 3 days, and 7 days
after stress induction for histopathological analysis and exosomes isolation (Figure 8). At
these respective times, all animals were anesthetized with 3% isoflurane (Hana Pharm,
Seoul, Korea) to minimize pain, and then 1.5 mL blood was collected from the abdominal
vein.
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Figure 8. Study design for the induction of acute severe stress. After acute severe stress was induced
using electric foot shock, groups were sacrificed at 1 day, 3 days, or 7 days after stress exposure.

4.3. Histopathology

Brain samples were fixed in 10% neutral buffered formalin. Following fixation, the
tissues were dehydrated, cleared, and embedded in paraffin. Sections from the brain
paraffin blocks were cut to a thickness of 4 µm. H&E staining was performed using Dako
CoverStainer (Agilent, Santa Clara, CA, USA). To confirm the expression of neuroinflamma-
tion marker proteins, IHC was performed. The brain sections were stained with antibodies
against BDNF, COX2, and GFAP (1:500; Abcam, Cambridge, UK) primary antibodies, and
the labeled polymer Dako EnVision + System-HRP (Agilent) was used according with
the manufacturer’s instructions. After staining, the brain sections were scanned with a
Pannoramic SCAN II scanner (3DHISTECH Kft., Budapest, Hungary). Neuroinflammation
markers in the hippocampus were quantified using ImageJ software version 1.53a (NIH,
Bethesda, MD, USA).

4.4. Isolation of tEVs and nEVs

tEVs were isolated from serum using ExoQuick solution (System Bioscience, Palo Alto,
CA, USA) with some modifications to the manufacturer’s instructions. After centrifugation
to remove cell debris, the serum of six animals in each group were pooled. A total of 2 mL
of serum and 500 µL of solution were mixed. After the mixture was centrifuged, the pellet
was resuspended in 200 µL phosphate-buffered saline (PBS).

nEVs were isolated as described by Mustapic et al. [52] with some modifications.
Exosomes isolated from serum were incubated with anti-CD171 (L1CAM; Bioss Antibodies,
Beijing, China) antibody for 1 h at 4 ◦C on a rotating mixer. After adding Pierce Streptavidin
Plus Ultralink Resin (Thermo Fisher Scientific, Waltham, USA) and PBS, the samples were
again incubated for 1 h at 4 ◦C on a rotating mixer. The samples were then pelleted
by centrifugation at 200× g for 10 min at 4 ◦C. The supernatants were removed from
the samples and the pellets were resuspended in 200 µL 0.1-M glycine-HCl (Biosesang,
Seongnam, Korea). After mixing for 10 s and vortexing for 30 s, the samples were pelleted
by centrifugation at 4500× g for 10 min at 4 ◦C. Finally, the supernatants were transferred
to new tubes before Tris-HCl (Biosesang) and PBS were added.

4.5. Flow Cytometry (FACS)

Exosomes isolated from serum were incubated with aldehyde/sulfate latex beads
(Invitrogen, Carlsbad, CA, USA) for 15 min at room temperature (RT). PBS supplemented
with 3% bovine serum albumin was then added and the samples were incubated overnight
on a rotating mixer. The bead-coupled exosomes were pelleted by centrifugation at 3000× g
for 10 min and washed with PBS. The samples were then pelleted by further centrifugation
at 3000× g for 10 min. Subsequently, the supernatants were removed from the samples
and the pellets were resuspended in PBS containing anti-CD9 and anti-CD63 antibodies
(BioLegend, San Diego, CA, USA) for 1 h at RT. Afterwards, the samples were again
pelleted by centrifugation at 3000× g for 10 min before the pellets were resuspended in
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PBS. Exosome markers were detected using flow cytometry (Galios, Beckman Coulter, Brea,
CA, USA). Following detection, analysis was performed with Kaluza analysis software
(Beckman Coulter, Brea, CA, USA).

4.6. TEM

Exosomes isolated from serum were resuspended in cold distilled water. These exo-
some suspensions were loaded on Formvar carbon-coated grids (Ted Pella, Inc., Redding,
CA, USA) and fixed in 2% paraformaldehyde for 10 min. The solution was then removed
and the samples were dried. Grids were observed by bioTEM (Hitachi HT7700) (Hitachi,
Chiyoda, Tokyo, Japan).

4.7. NTA

NTA was performed using a Nanosight NS300 (Malvern, UK) according to the manu-
facturer’s instructions.

4.8. Western Blot

Western blotting was used to identify the exosome marker (TSG101), nEV marker
(CD171), and neuronal markers (TUJ1, NSE, and NeuN). For lysis, M-PER and Halt Protease
and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific) were added to each tEV and
nEV sample isolated from serum. Sample concentrations were measured using a Pierce BCA
Protein Assay Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions.
Twenty micrograms of exosome lysates were loaded on Bolt 4–12% Bis-Tris Plus Gels
(Invitrogen, Carlsbad, CA, USA) and transferred to polyvinylidene fluoride membranes
(Invitrogen). The membranes were then blocked with TBS-T supplemented with 5% skim
milk for 1.5 h at RT. Following blocking, the membranes were incubated with TSG101
(1:1000; Novus Bio, Littleton, CO, USA), CD171, β-actin (1:1000; Santa Cruz Biotechnology,
Inc., Santa Cruz, CA, USA), TUJ1, NeuN, and NSE (1:1000; Abcam, Cambridge, UK)
primary antibodies overnight at 4 ◦C. After the membranes were washed with TBS-T,
they were incubated with horseradish peroxidase-conjugated secondary antibody (diluted
1:2000) for 1 h at RT. Following the reaction, the membranes were again washed with TBS-T.
The bands were developed using EzWestLumi Plus (ATTO, Tokyo, Japan) and analyzed
using ImageQuant LAS 4000 (GE Healthcare, Buckinghamshire, UK). Western blot was
performed in triplicate.

4.9. NGS for Exosomal miRNA Analysis

We performed NGS using neuronal exosomes isolated from the pooled serum of each
Day 7 group (n = 6) and control group (n = 6), which showed the greatest difference in
expression of neuroinflammatory markers in the hippocampus. Exosomal smRNA isolation
and library preparation were performed by Macrogen (Seoul, Korea) using the SMARTer
smRNA-Seq Kit (Clontech Laboratories, Inc., Mountain View, CA, USA) according to
the manufacturer’s instructions. Subsequently, miRNA sequencing was conducted by
Macrogen using the HiSeq 2500 system following the HiSeq 2500 System User Guide
Document #15035786 v02 HCS 2.2.70. Differentially expressed miRNAs were identified
with a threshold p < 0.05.

GO analysis was performed to analyze the functional enrichment of differentially
expressed miRNAs, and KEGG pathway analysis was performed to identify significantly
enriched signaling pathways. We used mirWalk to predict miRNA target genes that
showed significant expression changes by stress, and then performed analysis. All the
enrichment analysis was conducted using the database for annotation, visualization, and
integrated discovery (DAVID) v6.8 (http://david.abcc.ncifcrf.gov/) (Access date: 20 May
2021). *** p < 0.001 was applied as the criterion.

http://david.abcc.ncifcrf.gov/
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4.10. Statistical Analysis

All data were statistically analyzed using Student’s t test. The level of statistical signif-
icance was set at p < 0.05. The statistical data were analyzed by Microsoft Excel software.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22189960/s1.
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