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ABSTRACT Soil microbes are considered the second genome of plants. Understanding
the distribution and network of aluminum (Al)-tolerant microorganisms is helpful to alleviate
Al toxicity to plants in acidic soils. Here, we examined soluble Al31 and bacterial commun-
ities carrying Al resistance genes in paddy soils with a soil pH range of 3.6 to 8.7. In the
acidic soil with pH ,5.1, the content of Al31 increased significantly. There were abundant
and diverse Al-tolerant microorganisms in acidic soils, including Clostridium, Bacillus,
Paenibacillus, Desulfitobacterium, and Desulfosporosinus, etc. Moreover, compared with
neutral and alkaline soils, the network structure of Al-tolerant microorganisms was
more complex. The potential roles of major Al-tolerant microbial taxa on each other in
the ecological network were identified by a directed network along 0.01 pH steps. The
influential taxa in the network had a broader niche and contained more antioxidant
functional genes to resist Al stress, indicating their survival advantage over the sensitive
taxa. Our study is the first to explore the distribution of Al-tolerant microorganisms in
continental paddies and reveal their potential associations mediated by pH, which pro-
vides a basis for further utilization of microbial resources in acidic agricultural soils.

IMPORTANCE Aluminum (Al) toxicity is the primary limiting factor of crop production
in acidic soils with pH ,5.0. Numerous studies have focused on the mechanism of Al toxic-
ity and tolerance in plants; however, the effects of Al toxicity on soil microorganisms and
their tolerance remain less studied. This study investigated the distribution and association
patterns of Al-tolerant microorganisms across continental paddy fields with a soil pH range
of 3.6 to 8.7. The results showed that soil pH filters exchangeable Al31 content, diversity,
and potential associations of Al-tolerant microbial community. The influential taxa in com-
munity network play an important role in Al tolerance and have potential applications in
mitigating Al toxicity and promoting crop growth in acidic soils.

KEYWORDS aluminum toxicity, Al-tolerant bacteria, functional genes, directed
network, niche breadth

Acidic soils account for approximately 30% of global arable land, and their associated
aluminum (Al) toxicity severely limits crop yields worldwide (1, 2). Al will be dissolved

in the form of soluble Al31 in the soil with pH ,5.0, and a micromolar concentration
of Al31 in acidic soil will seriously interfere with the normal metabolic activities of
soil biological communities and produce toxic effects on plants (3, 4). The continu-
ous increase in soil acidity from anthropogenic activity and/or acid rain can further
worsen the problem of Al toxicity and reduce agricultural productivity (5). The analysis of
the existing literature shows that the current studies mainly focus on the mechanisms of
Al tolerance in plants, including symplast tolerance and Al exclusion, while less attention
has been paid to the Al tolerance of microorganisms (see Fig. S1 in the supplemental
material).

Microorganisms, known as the second genome of plants, also have a variety of character-
istics of Al toxicity resistance (6–8) that may play a vital role in alleviating plant growth stress.
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Microorganisms that can tolerant high concentrations of Al (for example, more than 100mM
or up to 200 mM) are termed Al-tolerant microorganisms. For example, Rhodotorula sp.
strain RS1 can tolerate high levels of Al toxicity at 200 mM by thickening its cell wall (9).
Some microorganisms secrete organic acid to chelate Al31 outside their cells and thereby
reduce Al toxicity (10). Cyanobacteria can induce antioxidant defense systems by increasing
polyphenols, flavonoids, tocopherols, and glutathione levels as well as peroxidase, catalase,
glutathione reductase, and glutathione peroxidase enzyme activities to resist Al-induced oxi-
dative stress (11). It was also reported that Klebsiella species and Serratia species in rhizo-
sphere soil can alleviate Al stress by forming complexes of Al31 and siderophores (12). Most
previous studies on Al-tolerant microorganisms and their mechanism of resistance to Al
toxicity are focused on isolated superresistant microorganisms, especially fungi (such as
Aspergillus flavus, Penicillium species, Penicillium janthinellum, and Trichoderma asperellum)
and yeast strains (such as Cryptococcus humicola, Rhodotorula glutinis, and Rhodotorula
species) (9, 13) as well as some bacterial strains (such as Pseudomonas fluorescens and
Burkholderia species) (7, 14). Microorganisms harbor a diverse range of genes that encode
Al resistance proteins. For example, AANH_like, AAT_I, and Alr1p_like are important genes
encoding proteins and enzymes related to transport of Al31 across membranes. YnbB enco-
des cystathionine beta-lyase family protein, which is involved in Al resistance by mediating
inorganic ion transport and metabolism (Table S1) (15). To better explore Al-tolerant micro-
bial resources and their potential ability to help crops reduce Al toxicity in acidic soils, it is
necessary to study Al-tolerant microbes at the community level and clarify the factors affect-
ing the community.

Soil pH is one of the most important environmental factors influencing the diversity,
interaction, activity, and function of the microbial community (16–18). The direct filtering effect
of soil pH on microorganisms may be the consequence of their different optimal pH ranges
for growth and activity (19, 20). Soil pH can affect soil characteristics, including Al31 content
and nutrient availability, which are important in shaping microbial community structure and
associations (21). For example, the competition between bacteria and fungi changes along a
continuous pH gradient (pH 4.0 to 8.3). This is due to the unfavorable bacterial physiology at
low pH, which reduces bacterial fitness and, thus, enhances the growth of fungi (22). In turn,
these changes may alter the functioning of the microbial community (23). The critical pH level
at which reactive Al31 increases notably and becomes toxic is 5.0 in most soils (3, 24).
However, it is still unclear how soil pH alters the diversity and associations among Al-tolerant
microorganisms. To develop Al-tolerant microbial resources suitable for growth and function
under particular soil pH conditions, it is essential to investigate the diversity and association
patterns of Al-tolerant microorganisms under a wide range of soil pHs.

Microbial network analysis has been widely used to explore microbial associations
in complex environments (25–27). Although a cooccurrence network may not always
reflect true ecological associations (28, 29), it can help to understand how the complex-
ity of microbial community changes in response to environmental factors (30–32). Recently, a
directed network has been used to infer the directionality of associations in ecology networks
(33–35). In addition, the dependencies among the microbes in the community revealed
by the directed network may have implications for their functions (34). Thus, it may pro-
vide an opportunity to understand the roles of different Al-tolerant microbial taxa in a
community.

In this study, we analyzed the distribution of soil Al31 and Al-tolerant microbial
communities across continental rice paddies with a wide soil pH range of 3.6 to 8.7. A
directed network was constructed to explore the associations among Al-tolerant
microorganisms on a continuous pH scale. We also determined the niche breadth and
main influencing factors of different microbial roles in the associations. Here, we pro-
pose the following hypotheses (Fig. 1): (i) in rice paddy soils, pH filters the diversity and
potential associations among Al-tolerant microorganisms and (ii) influential species in
a community network play an important role in maintaining community-level Al toler-
ance in acidic rice paddy soils.
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RESULTS
Distribution of Al-tolerant bacteria and functional genes in the rice fields. Significant

differences in exchangeable Al31 content were observed in paddy soils from 13 regions
in China from north to south (Fig. 2a). Al31 content exponentially decreased with increasing
soil pH (R2 = 0.56, P, 0.01). The lower the soil pH value, the higher the content of Al31 for
pH # 5.1. In addition, the content of exchangeable Al31 was also related to soil properties
such as soil organic matter, nitrogen, and phosphorus contents and climate conditions (see
Fig. S2 in the supplemental material).

Al-tolerant bacterial communities were identified according to the microorganisms
carrying Al-resistant functional genes detected by GeoChip 5.0 (36). In total, 233 unique Al-re-
sistant functional genes were detected by GeoChip 5.0 (Table S1), and 233 source organisms
were considered potential Al-tolerant microorganisms, belonging to 92 genera (Table S2).
Finally, 461 operational taxonomic units (OTUs) of 55,519 OTUs (0.83%) detected by 16S were
found to belong to these 92 genera. These OTUs were inferred to be Al-tolerant microorgan-
isms for subsequent analysis. The Shannon index and richness of Al-tolerant bacteria varied
across the sampling area (Fig. 2b and c). Unexpectedly, the Shannon index and richness of Al-
tolerant bacteria were not significantly higher at sites of higher Al content. A possible explana-
tion is that Al content may not be the most important driving factor of Al-tolerant bacterial
communities. Redundancy analysis indicated a clear biogeographic distribution pattern of Al-
tolerant bacteria (Fig. 2d). The community structure of Al-tolerant bacteria was influenced by
mean annual temperature (MAT), mean annual precipitation (MAP), soil pH, cation exchange
capacity (CEC), organic matter (OM), available phosphorus (AP), and exchangeable Al31

(P = 0.001). Partial Mantel analysis also suggested that soil pH was the most important soil
factor affecting the Al-tolerant bacterial community (Table S3). Similarly, the abundance of
microbial Al-resistant genes varied with soil pH, with more functional genes that encode Al
resistance protein, such as AANH_like, Beta_elim_lyase, MetC, QueC, Met_gamma_lyase, and
others, showing higher abundance at pH ,5.1 than those at pH .7 and 5.1 , pH , 7
(Fig. 3a, Table S1). Since resistance to metal oxidative stress is an important mechanism for
microbial tolerance to Al toxicity in acidic soils, we also analyzed the diversity of microbial
antioxidant functional genes, including cat_arc, cat_bac, cat_fun, per_arc, per_bac, per_fun,
sod_CuZn, sod_FeMn, and sod_nickel (Table S4). The highest levels of antioxidant gene

FIG 1 Hypothesis of this study. Reassembly of the soil microbial communities and prediction of the
roles in microbial associations in acidic and highly exchangeable Al31 soils.
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richness and abundance were found in soils with pH ,5.1, followed by soils with 5.1,
pH , 7, while soils with pH .7 showed the lowest levels of richness and abundance
(Fig. S3a). The abundances of AAT_I, Met_gamma_lyase, and other Al-resistant genes were
significantly correlated with the abundances of these antioxidant genes (r = 0.30 to 0.81,
P , 0.001), while the abundance of Alr1p_like was positively correlated with that of cat_arc,
cat_bac, cat_fun, per_arc, per_bac, and per_fun (P , 0.05) and the abundance of YnbB was
related to that of cat_bac, per_bac, per_fun, sod_CuZn, and sod_FeMn (P, 0.05) (Fig. S3b).

The network between Al-tolerant bacteria and Al-resistant genes showed different
association patterns across the three pH ranges (Fig. 3b). The network was most complex at
pH,5.1 with strong connections between bacterial taxa and Al-resistant genes. In contrast,
at pH .7, Al-tolerant bacteria and Al-resistant genes were rarely linked. These results sug-
gest that soil pH is a key factor in determining the diversity of Al-tolerant bacteria and Al-re-
sistant genes and their association patterns, and that the diversity of Al-tolerant bacteria and
Al-resistant genes is the highest and the association is the strongest at pH,5.1.

Directed network to distinguish the different roles of microorganisms. To fur-
ther explore the potential roles of Al-tolerant microorganisms under stress from low
pH, we constructed a directed network that could infer their potential interactive relation-
ships. First, we used four types of noise (black, brown, pink, and white noise) to evaluate the

FIG 2 Distribution of Al-tolerant microorganisms in paddy soils. (a) Al content in 39 typical paddy fields from north to south China. (b and c) Shannon
index (b) and richness (c) of Al-tolerant bacteria. The horizontal bars within the boxes indicate median values. The tops and bottoms of the boxes indicate
the 75th and 25th percentiles, respectively. (d) Redundancy analysis of the Al-tolerant bacterial community structure. MAT, mean annual temperature; MAP,
mean annual precipitation; DON, dissolved organic nitrogen; DTN, dissolved total nitrogen; TN, total nitrogen; OM, organic matter; DOC, dissolved organic
carbon; TP, total phosphorus; AP, available phosphorus; TK, total potassium; AK, available potassium; CEC, cation exchange capacity.
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dependence of microbial communities within each pH range, which ranges from black in
case of the strongest dependency to white in the absence of any dependency (Fig. S4). The
higher percentage (50%) of non-white noise types indicated a stronger dependence
between bacteria in the continuous series of pH ,5.1. According to the in-degree
(the number of associations pointing to the node, indicating the degree of the spe-
cies affected by others) and out-degree (the number of associations pointing out of
the node, indicating the degree of the species affecting others) of the directed net-
work in the acidic soil (pH , 5.1), the Al-tolerant microorganisms were inferred to be
divided into three functional taxa: the influential taxa (out-degree only), the sensitive
taxa (in-degree only), and the bidirectional taxa (both out-degree and in-degree)
(Fig. 4a, Table S5). These microorganisms mainly belong to the genera Clostridium,
Bacillus, Paenibacillus, Desulfitobacterium, and Desulfosporosinus (Table S5). The Shannon
diversity of the sensitive taxa and relative abundance of the influential and sensitive taxa
were higher than those of the bidirectional taxa, while the bidirectional taxa showed higher
richness (P, 0.05) (Fig. 4b).

As shown by the nonmetric multidimensional scaling (NMDS) ordination of the
communities (Table 1, Fig. S5), MAP, and pH explained more variations in influential
community structure (12.90% by MAP and 11.90% by pH). dissolved organic carbon
(DOC) and Al31 contributed more to the sensitive community structure (12.30% by
DOC and 8.33% by Al31). The community structure of bidirectional taxa was explained
most by MAP (18.30%), exchangeable Al31 (15.20%), and pH (12.50%).

FIG 3 Associations between Al-tolerant microorganisms and Al-resistant genes in three pH ranges. (a) Intensity of Al-resistant functional genes at the
different pH values. (b) Networks between Al-tolerant microorganisms and Al-resistant functional genes at different pH values. A connection indicates a
strong (Spearman’s r . 0.6) and significant (false discovery rate-corrected P , 0.01) correlation. The size of each node is proportional to the degree; the
thickness of a connection between two nodes (i.e., an edge) is proportional to the value of Spearman’s correlation coefficient. Yellow indicates the
bacterial OTUs, and purple indicates the Al-resistant functional genes. Some Al-resistant functional genes without specific region names were labeled with
their potential source strains, which belong to the other Al-resistant functional genes. The red lines indicate the connections between genes and species,
and the gray lines indicate the connections between genes and genes and/or species and species.
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Niche breadth and potential resistance of three taxa of Al-tolerant microorganisms.
Niche analysis explained the different responses of the three taxa in the Al-tolerant bacterial
community. The mean community-level B value (Bcom) values for sensitive taxa were signifi-
cantly lower under all pH conditions compared to the other two taxa, suggesting that sensi-
tive taxa typically occupy the smallest niche breadths in the environment (Fig. 5a). Notably,
the niche breadths of the influential and bidirectional taxa were 23.4% and 67.7% larger
than that of the sensitive taxa at pH .7, 27.7% and 73.6% larger at 5.1 , pH , 7, and
161.7% and 147.7% larger at pH ,5.1. The difference between the niche breadths of the
sensitive taxa and the influential and bidirectional taxa was greater at pH ,5.1 than at
pH.5.1. The niche breadth of sensitive taxa at pH,5.1 was significantly smaller than those
at 5.1, pH, 7 and at pH.7 (P, 0.05) (Table 2), suggesting that stress from low pH further
narrows the niche width of sensitive taxa. In contrast, influential and bidirectional taxa may be
less affected or even promoted because of their greater niche breadth. Major climatic and eda-
phic variables explained more variation of the sensitive taxa community composition (26.4%
with the first two axes) than that of the influential taxa (16.0% with the first two axes) and the
bidirectional taxa (8.0% with the first two axes) (Fig. 4c). The community composition of the
sensitive taxa was more affected by stress from low pH (r2 = 20.3%, P, 0.001) than the influ-
ential taxa (r2 = 6.6%, P, 0.001) and the bidirectional taxa (r2 = 18.9%, P, 0.001).

To further understand the mechanism of Al tolerance, we linked distance-corrected
differences in community composition of the three taxa to differences in microbial antioxi-
dant genes (Fig. 5b). Overall, influential taxa showed the strongest linkages with antioxidant

FIG 4 Roles and diversity of the three microbial taxa in the directed network. (a) Inferred potential microbial interdependent associations in acidic soils.
The nodes are the OTUs labeled with their genus-level taxon name, and the directed edges are the nonzero entries in the inferred interaction matrix. The
directed positive and negative edges are colored in red and blue, respectively. Orphan nodes are not shown. (b) Alpha diversity (Shannon index, richness,
and relative abundance) of three functional taxa. The horizontal bars within the boxes indicate median values. The tops and bottoms of the boxes indicate
the 75th and 25th percentiles, respectively. (c) Redundancy analysis of community compositions of three functional taxa. MAT, mean annual temperature;
MAP, mean annual precipitation; DON, dissolved organic nitrogen; DTN, dissolved total nitrogen; TN, total nitrogen; OM, organic matter; DOC, dissolved organic
carbon; TP, total phosphorus; AP, available phosphorus; TK, total potassium; AK, available potassium; CEC, cation exchange capacity.
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genes, including cat_arc, cat_bac, cat_fun, per_arc, per-bac, per_fun, sod_CuZn, sod_FeMn,
and sod_nickel. Sensitive taxa only correlated with cat_bac, sod_FeMn, and sod_nickel. These
results suggest that antioxidant gene composition is more relevant to the community struc-
ture of influential taxa and less related to sensitive taxa.

DISCUSSION

Our study of Al-tolerant microbes in the continental-scale paddy soils showed that
soil pH was the most important factor driving the diversity and association patterns of
Al-tolerant bacterial communities. As expected, Al-tolerant microorganisms in acidic
soils with high Al content exhibited a more complex network. Microorganisms with
similar habitat and environmental preferences (e.g., low pH or high pH) tend to coexist
in ecosystems (37, 38). Our results suggested distinct association patterns of Al-tolerant
bacteria and functional genes in three different pH ranges, implying the contrasting
habitat preferences of bacteria in paddy fields across continental scales. The associa-
tions among Al-tolerant bacteria were the most complex in soil with pH ,5.1, which
are mainly distributed in southern China. These may result from more Al-tolerant mi-
crobial populations induced in acidic soils through dispersal or evolutionary processes.
It was reported that some microorganisms may adapt to soil acidification through evo-
lution, and endemic species already adapted to the acidic pressure can colonize the
acidic soils through dispersal (39). Similarly, long-term high exchangeable Al31 concen-
tration in acidic soils may enhance bacterial tolerance to Al toxicity, whereas non-Al-tolerant
bacteria dominated under neutral or weakly alkaline conditions. Another possible expla-
nation is that these Al-tolerant microbial populations exhibit more functional inter-
dependence in acidic environments. To survive under the poor soil condition with
low pH, nutrient deficiencies, and high Al toxicity, more associations among species may
help them to perform functions better, such as participating in nutrient cycling and mitigating
toxicity (40).

Different functional taxa of soil microorganisms may show different interdependen-
cies and establish complex networks of interactions due to their specific functional
traits (41). Environmental stresses can collectively affect various microbial functions to
resist selective stresses (42). In turn, the function of microbial communities affects their
environment, leading to further changes in associations with its members (43). For
example, resistant microorganisms may coexist to relieve environmental stress and
provide favorable conditions for the survival of sensitive microorganisms (44). As we
inferred from the directed network, the influential and bidirectional taxa may have

TABLE 1 Role of environmental variables in determining the community composition of three functional taxa as measured with GAMsa

Variable

Influential taxa Sensitive taxa Bidirectional taxa

Deviance explained (%) Significance Deviance explained (%) Significance Deviance explained (%) Significance
MAT 5.03 0.003 2.73 .0.05 10.20 ,0.001
MAP 12.90 ,0.001 6.84 0.001 18.30 ,0.001
Exchangeable Al31 2.69 0.003 8.33 ,0.001 15.20 ,0.001
pH 11.90 ,0.001 6.44 0.005 12.50 ,0.001
NH4

1-N 4.35 .0.05 2.53 .0.05 3.00 .0.05
NO3-N 3.76 .0.05 1.88 .0.05 7.43 0.004
DON 4.94 .0.05 2.42 .0.05 1.83 0.019
DTN 4.08 .0.05 1.32 .0.05 5.58 0.030
TN 6.48 ,0.001 5.13 .0.05 5.89 0.016
OM 3.64 ,0.001 4.46 0.024 7.58 ,0.001
DOC 4.47 .0.05 12.30 ,0.001 1.85 0.019
TP 2.60 0.004 1.60 .0.05 3.75 0.044
AP 6.50 0.007 4.45 .0.05 9.14 ,0.001
TK 2.76 .0.05 2.13 .0.05 0.63 .0.05
AK 6.87 ,0.001 1.07 .0.05 5.64 ,0.001
CEC 7.45 ,0.001 1.37 .0.05 6.96 0.004
aMAT, mean annual temperature; MAP, mean annual precipitation; DON, dissolved organic nitrogen; DTN, dissolve total nitrogen; TN, total nitrogen; OM, organic matter;
DOC, dissolved organic carbon; TP, total phosphorus; AP, available phosphorus; TK, total potassium; AK, available potassium; CEC, cation exchange capacity.
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FIG 5 Niche breadth of three functional taxa and their relationship with antioxidant functional genes. (a) Comparison of mean
habitat niche breadths (Bcom) of different functional taxa in bacterial community in all samples and in samples with different pH

(Continued on next page)
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effects on sensitive taxa and benefit them under acidic stress. In microbial community
dynamics, species always evolve with other species and adapt not only to the environment
itself but also to the biological environment formed by other species (43). Here, different
microbial functional roles may be determined in part by their different ecological niches.
The influential and bidirectional taxa occupy multiple niches and can use more resources
to promote their growth under acidic stress. In contrast, the sensitive taxa with narrow
niche breadth may be more affected by low pH. This finding is consistent with previous
observations that habitat generalists with wider niche breadth were generally less affected
by environmental factors (45). The distributions of influential and bidirectional taxa may
remain more stable than those of sensitive taxa when microbial communities are dis-
turbed by environmental stress, resulting in advantages in complementary resource acqui-
sition and stress tolerance (46, 47).

Environmental filtration regulates the connections between microbial communities,
thereby affecting their roles and ecological functions (38, 48). In life history strategies,
certain traits tend to be interrelated due to physiological or evolutionary tradeoffs, and
different strategies are adopted under different environmental conditions (47). In this
study, most of the influential species in acidic soils belonged to genus Clostridium,
while most of the sensitive species belonged to genera Bacillus and Clostridium.
Aerobic Bacillus and anaerobic Clostridium are two genera of Gram-positive bacteria
belonging to the phylum Firmicutes (49, 50). Sporulation is an important strategy for
Clostridium and Bacillus species to survive longer in many environmental niches, espe-
cially under stressed conditions (51). Bacillus and Clostridium have been shown to be
closely related in their sporulation mechanism, i.e., the regulatory protein Spo0A and
its downstream pathways (52). Although the activation of the Spo0A pathway is differ-
ent between the two taxa (53, 54), Clostridium species may complement the Al toler-
ance of Bacillus species and help them survive in acidic paddy fields.

Another possible strategy to improve acid and Al tolerance of organisms is to
manipulate antioxidant defense system (55, 56). Al-induced accumulation of reactive
oxygen species and changes in cell wall properties are considered two intrinsic factors
in Al toxicity (57, 58). We found that the influential taxa were strongly correlated with
multiple antioxidant functional genes, while the sensitive taxa were weakly correlated
with these genes. It implies that antioxidant genes tend to be possessed more by influ-
ential taxa than sensitive taxa. For example, superoxide dismutase (SOD) encoded by
sod_CuZn, sod_FeMn, and sod_nickel genes is a universal enzyme involved in regulating
intracellular reactive oxygen species and protecting cells from the exogenous toxicity
of oxidants (59).

As the second genome of plants, Al-tolerant microorganisms can alleviate Al toxicity in
acidic soils and improve the tolerance of plants to Al stress. Al-tolerant microorganisms may
reduce soil Al toxicity by absorbing, adsorbing, and secreting organic acids to chelate Al31

(10). Some Al-tolerant microorganisms, such as Pseudomonas simiae N3, Chryseobacterium
polytrichastri N10, and Burkholderia ginsengiterrae N11-2, can increase the plant tolerance

FIG 5 Legend (Continued)
conditions (nonsignificant [n.s.], P . 0.05; *, P , 0.05; Duncan’s test). (b) Pairwise comparisons of the antioxidant function genes
are shown, with a color gradient denoting the Spearman correlation coefficient. The taxonomic community composition is related to
each antioxidant function gene via partial Mantel tests. The edge width corresponds to Mantel’s r statistic for the corresponding
distance correlation, and the edge color denotes the statistical significance based on 9,999 permutations.

TABLE 2 Bcom of different functional taxa in samples under different pH conditionsa

Habitat niche breadth Influential taxa Sensitive taxa Bidirectional taxa
pH.7 3.426 0.36 b 2.776 0.13 c 4.646 0.40 b
5.1, pH, 7 3.046 0.27 a 2.386 0.08 b 4.136 0.20 a
pH,5.1 4.656 0.21 c 1.786 0.10 a 4.406 0.18 b
aThe different letters indicate that niche breadths of the influential taxa, the sensitive taxa, or the bidirectional
taxa are significantly different (Duncan’s test at P, 0.05) under different pH conditions.
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against Al stress by inducing expression of Al stress-related genes (AtAIP, AtALS3, and
AtALMT1) (60). In addition to tolerance to high Al concentration, Klebsiella sp. strain RC3,
Stenotrophomonas sp. strain RC5, Klebsiella sp. strain RCJ4, Serratia sp. strain RCJ6, and
Enterobacter sp. strain RJAL6 exhibit multiple plant growth-promoting traits (P solubiliza-
tion, indole acetic acid production, 1-aminocyclopropane-1-carboxylate deaminase activ-
ity, and exudation of organic acid anions and siderophores) (12, 61). Moreover, some Al-
tolerant microorganisms may support the growth of some sensitive microorganisms that
carry out functions essential to plant growth in acidic soil. As microbial associations
revealed by the directed network, the influential and bidirectional taxa may provide ben-
efits to the sensitive taxa. Thus, diverse Al-tolerant microorganisms and their potential
associations can be used in the future for the new approach to promote plant resistance
and growth in acidic soils.

In conclusion, our study of Al-tolerant bacterial communities across continental paddy
soils revealed that soil pH is a major determinant of exchangeable Al31 content as well as
diversity and association patterns of Al-tolerant microbial communities. Al-tolerant micro-
organisms exhibited the most complex network structure and potential functional interde-
pendence in acidic soil of pH,5.1. For the first time, we provide a continental distribution
of Al-tolerant microorganisms at the community level. By constructing a directed network,
potential interdependence of microorganisms in stress tolerance were inferred from the
functional relationships among influential, sensitive, and bidirectional taxa. Further analysis
suggests that different microbial functional roles in the associations are driven in part by
niche differences among microbes. The functional taxa identified from the microbial com-
munities have potential applications in the development of microbial resources to mitigate
Al toxicity and promote crop growth. This study provides a basis for further utilization of
microbial resources in acidic agricultural soils. If the plant growth-promoting bacteria are
sensitive to Al, they may be protected in the community by other highly resistant species.
The tolerance of rhizosphere and plant microbiota to Al stress may be improved by adjust-
ing the proportion of influencing taxa.

MATERIALS ANDMETHODS
Site description and sampling. A total of 429 soil samples were obtained in 2013 from 39 paddy

fields in 13 regions along a north-south transect across eastern China (110°41'E to 126°92'E, 19°76'N to
47°58'N): Hailun (HL), Changchun (CC), Shenyang (SY), Yuanyang (YY), Fengqiu (FQ), Linan (LA), Quzhou
(QZ), Zixi (ZX), Jianou (JO), Changting (CT), Henyang (HY), Qingxin (QX), and Haikou (HK) (Fig. 2a). The
sampled paddy fields represented four types of cropping systems (single cropping of rice, rice-wheat
rotation, double cropping of rice, and triple cropping of rice) and five soil types (neutral black soil
derived from loamy loess, alkaline fluvo-aquic soil derived from Yellow River alluvial sediments, hydro-
morphic paddy soil derived from lake sediments, acidic red soil derived from Quaternary red clay, and
submergenic paddy soil derived from neritic sediments). Three paddy fields with similar inorganic fertil-
izations and irrigation practices were selected in each region. Surface (0 to 20 cm) soil samples were col-
lected from paddy fields after the rice harvest for single-season rice and rice-wheat rotations and after
the late-season rice harvest for two-season rice and three-season rice crops. At each sampling field, 11
soil samples were collected within 100- by 100-m plots based on a spatially explicit L-shaped sampling
design, with distances between the adjacent subplots of 0, 1, 5, 10, 20, and 40 m, respectively. Five cores
with a diameter of 5 cm were randomly selected from the topsoil layer (0 to 20 cm), and each subsample
point was 0.5 m in diameter and mixed together (500 g in total). The soil samples were collected and
sealed in sterile sampling bags and transported to the laboratory on ice. In the laboratory, soil samples
were sieved to 2 mm to remove visible roots and residues, homogenized, and subdivided into two sub-
samples. One subsample was stored at 4°C to measure geochemical properties, and the other was
stored at 280°C for molecular analyses. The experiments for measuring soil geochemical properties and
microbial molecular analyses, including soil microbial DNA extraction, 16S rRNA gene amplicon sequenc-
ing, and GeoChip 5.0 hybridization, were carried out within half a year after soil sampling.

Soil geochemical properties were measured according to the recommended testing procedures (62).
Soil exchangeable Al31 was measured by extraction with 1 mol/liter potassium chloride (KCl) solution
(1:50, wt/vol). Soil suspensions were shaken at 180 rpm for 30 min, centrifuged at 3,000 rpm for 10 min,
and then filtered. Al concentration in soil solution was determined by inductively coupled plasma atomic
emission spectrophotometry (ICP-OES; Optima 8000; PerkinElmer, USA) after appropriated dilution. Soil pH was
determined with a glass electrode at a water-to-soil ratio of 2.5:1. Soil OM and DOC contents were measured
using the Walkley-Black wet oxidation method (63). Soil CEC was measured based on the ammonium acetate
saturation (AMAS) method (64). TN, NO3-N, and NH4

1-N contents were determined by the Kjeldahl method
(65). Dissolved total nitrogen (DTN) was determined by alkaline persulfate oxidation, and dissolved organic
nitrogen (DON) was calculated as DON = DTN – (NH4

1-N) – (NO3-N). TP and AP contents were digested with

Zhang et al.

January/February 2022 Volume 7 Issue 1 e01022-21 msystems.asm.org 10

https://msystems.asm.org


sulfuric acid and perchloric acid (H2SO4-HClO4), extracted by sodium carbonate and sodium bicarbonate,
respectively, and then measured using the molybdenum-blue method (66). Total potassium (TK) and AK
contents were measured by flame photometry (FP6400A; CANY Precision Instrument Co., Ltd., Shanghai,
China) after extraction with sodium hydroxide and ammonium acetate, respectively (67). Climatic data, includ-
ing MAT and MAP, were obtained from the WorldClim database (www.worldclim.org). All soil geochemical
data are available in the figshare repository (https://doi.org/10.6084/m9.figshare.11493081.v2).

Soil microbial DNA extraction and 16S rRNA gene amplicons sequencing. For each sample, mi-
crobial genomic DNA was extracted from 2 g of well-mixed soil by combining the cryogenic grinding
method and SDS for cell lysis, as described previously (68). Crude DNA was further purified by agarose
gel electrophoresis, followed by successive extractions with phenol, chloroform, and butanol (68, 69).
The concentration and quality of the purified DNA was determined by an ND-1000 spectrophotometer
(NanoDrop, Inc., Wilmington, DE, USA) and a Quant-It PicoGreen kit (Invitrogen, Carlsbad, CA, USA). The
bacterial V4 region of the 16S rRNA genes was amplified with the common primer set 515F (59-
GTGCCAGCMGCCGCGGTAA-39) and 806R (59-GGACTACHVGGGTWTCTAAT-39) (70). The forward and
reverse primers were tagged with adapters, pads, and linker sequences. Each barcode sequence (12
mer) was added to the reverse primer for pooling of multiple samples in one run of MiSeq sequencing.
PCR amplification was performed in triplicate with a GeneAmp PCR system 9700 (Applied Biosystems,
Foster City, CA, USA) in a 25-ml reaction system that consisted of 2.5 ml of 10� PCR buffer II and 0.5 U of
Herculase II DNA polymerase high fidelity (Agilent, USA), 1 ml (10 mM) of each primer, and 15 ml of tem-
plate DNA. PCR was performed to target the 16S rRNA gene through cycling conditions of initial denatu-
ration at 94°C for 1 min, followed by 30 cycles at 94°C for 20 s, 53°C for 25 s, and 68°C for 45 s, with a
final extension at 68°C for 10 min. The PCR products from the three replicates were combined and puri-
fied with an Agencourt AMPure XP kit (Beckman Coulter, Brea, CA, USA). The PCR products were exam-
ined by electrophoresis with 1% agarose gel and quantified by PicoGreen with FLUOstar Optima (BMG
Labtech, Jena, Germany). The PCR products were pooled from different samples in equal amounts and
then purified using the Qiagen gel extraction kit (Qiagen Sciences, Germantown, MD, USA) in accord-
ance with the manufacturer’s instructions and requantified by PicoGreen.

The sequencing samples were prepared using a TruSeq DNA kit in accordance with the manufac-
turer’s instructions. The purified library was diluted, denatured, rediluted, and mixed with PhiX (equal to
30% of the final DNA amount) as described in the Illumina library preparation protocols. Afterward, the
purified library was applied to an Illumina MiSeq system at the Institute for Environmental Genomics at
the University of Oklahoma for sequencing with the reagent kit v2, 2 � 250 bp, as described in the man-
ufacturer’s manual (Illumina, San Diego, CA, USA).

After assigning each sequence to its sample according to its barcode, 6,139,308 reads for bacteria
were obtained for all 429 samples. The sequence data were processed using the QIIME Pipeline version
2 (http://qiime.org/). All sequence reads were trimmed and assigned to each sample on the basis of their
barcodes. The sequences with high quality (length of .200 bp, without ambiguous base N, and average
base quality score of .30) were used for downstream analysis. Operational taxonomic units (OTUs) were
clustered using the recently introduced program UPARSE at 97% similarity level (71). Final OTUs were gener-
ated using the clustering results, and taxonomic annotations were assigned to each OTU’s representative
sequence by Ribosomal Database Project (RDP) 16S classifier (72). Singletons were removed for downstream
analyses. To minimize the impact of read count variation from different samples, we rarefied all samples based
on the smallest sequence numbers (20,000 sequences). The above-mentioned steps were performed through
the Galaxy pipeline at the Institute for Environmental Genomics, University of Oklahoma (http://zhoulab5.rccc
.ou.edu:8080/root/login?redirect=%2F). Al-tolerant bacterial communities were identified according to the micro-
organisms carrying Al-resistant functional genes detected by GeoChip 5.0. The source organisms of Al-resistant
functional genes detected by GeoChip 5.0 were considered potential Al-tolerant microorganisms. We then identi-
fied these potential Al-tolerant microorganisms from the 16S detected taxa as Al-tolerant taxa.

GeoChip 5.0 hybridization. GeoChip 5.0 is a functional gene array that contains 346 and 1,668 spe-
cific probes covering genes for Al resistance and antioxidant enzyme, respectively (36). We used
GeoChip 5.0 to examine microbial functional potentials, including Al resistance and antioxidant enzyme.
An aliquot of 1 mg of DNA from each sample was labeled directly, purified, and resuspended in 50 ml of
hybridization solution that contained 10% formamide, 5� SSC (1� SSC is 0.15 M NaCl plus 0.015 M so-
dium citrate), 0.1% SDS, 0.1 mg/ml of salmon sperm DNA, and 2ml of common oligonucleotide reference
standard (0.1 pmol/ml) (73, 74). The fluorescently labeled DNA was hybridized with GeoChip 5.0 on a MAUI
hybridization system (BioMicro Systems, UT, USA) at 65°C for 12 h. The microarrays were scanned using a
ScanArray 5000 microarray analysis system (PerkinElmer, Wellesley, MA, USA) at 95% laser power and 68% pho-
tomultiplier tube gain. Scanned images were saved in 16-bit TIFF format, quantified using ImaGene version 6.0
(BioDiscovery, Inc., Los Angeles, CA, USA), and processed in the Microarray Data Manager system at the
Institute for Environmental Genomics website (http://ieg.ou.edu/microarray). Spots with signal-to-noise ratios
lower than 2.0 were removed before statistical analysis, as previously described (75).

Statistical analyses. The alpha diversity (richness and Shannon index) of each sample was calculated,
and the beta diversity was estimated based on the Bray-Curtis distance between samples. The geographical
distances among the sampling sites were calculated based on the sampling coordinates. Redundancy analysis
(RDA) was performed using the rda function in the vegan R package to examine the relationships between the
Al-tolerant bacterial community and major climatic and edaphic variables. Climatic and edaphic variables were
fitted with the ordination plots using vegan R package with 9,999 permutations, and the biplot was displayed
with scaling of 2. A forward selection procedure was applied to select significant variables (P , 0.05, with 999
permutations) with the ordiR2step function of the vegan R package (76, 77). Partial Mantel analysis was carried
out to determine the contributions of various environmental factors to explain the variation of Al-tolerant

Effects of pH on Aluminum-Tolerant Microorganisms

January/February 2022 Volume 7 Issue 1 e01022-21 msystems.asm.org 11

http://www.worldclim.org
https://doi.org/10.6084/m9.figshare.11493081.v2
http://qiime.org/
http://zhoulab5.rccc.ou.edu:8080/root/login?redirect=&hx0025;2F
http://zhoulab5.rccc.ou.edu:8080/root/login?redirect=&hx0025;2F
http://ieg.ou.edu/microarray
https://msystems.asm.org


bacterial OTUs. The distances of environmental variables and Al-tolerant bacterial community among samples
were calculated based on Euclidean dissimilarity and Bray-Curtis dissimilarity, respectively. Partial mantel tests
were performed with Pearson correlations and 1,000 permutations using the mantel function in ecodist R pack-
age (78). Spearman correlations between the abundance of Al-resistant genes and antioxidant genes were ana-
lyzed using the cor.test function in R.

A directed network is established to elucidate asymmetric underlying relationships among commu-
nity members, which can be used to infer the directionality of information flows in ecological networks
(33–35). A classification scheme for assessing the relative importance of different ecological processes
based on time series was proposed by Faust et al. (79). The scheme is based on a test of the temporal
structure in a given time series via analyses of noise type profile and neutrality. We used this approach
to determine the ecological drivers of microbial dynamics to guide the selection of appropriate commu-
nity models for prediction and follow-up analysis. First, 144 soil samples with pH ,5.1 were selected to
form a set of continuous data with equal steps (DpH = 0.01). It was then determined whether depend-
ence between successive pH steps occurred in the pH series. The dependency was measured by noise
types of species, which can be distinguished as black, brown, pink, and white noise. A shift in the noise
color from black to pink indicates a reduced dependency on community within the pH series, while
white noise indicates the absence of any dependency. In brief, the dependency on community between
pH steps is strongest for black noise and weakest for pink noise, while it is absent for white noise. Four
types of noise results revealed that the presence of non-white noise types was a robust indicator of this
successive structure. Second, we tested the structured models at a P value of .0.5 for neutrality and
determined the goodness of fit against a deterministic model. The structure has a good fit with the
Ricker model. Finally, interactions were inferred from the pH ,5.1 data sets, and the inferred association
matrices were represented as directed networks. Links between bacteria were counted as the number of
entries in the interaction matrix. The significance of link number was assessed by repeatedly (100 times)
randomizing the interaction matrix while preserving the total number of entries and computing parame-
ter-free P values. According to the magnitude of the in-degree (the number of associations pointing to
the node, indicating the degree of the species affected by others) or out-degree (the number of associa-
tions pointing out of the node, indicating the degree of the species affecting others) between species in
the directed network, we divided the species into influential taxa that only affect others (out-degree
only), sensitive taxa that are only affected by others (in-degree only), and bidirectional taxa that affect
and are affected by others (both out-degree and in-degree). These analyses were performed with the
seqtime R package (https://github.com/hallucigenia-sparsa/seqtime) (79). The networks were visualized
on the interactive Gephi platform (80). Nodes represent the individual species, and directed edges repre-
sent the significant associations (P , 0.05) between the nodes in the network, indicating their potential
interactive relationships. The layout was displayed using the Fruchterman-Reingold algorithm.

We generated a nonmetric multidimensional scaling (NMDS) ordination of a community of the
three taxa based on the Bray-Curtis dissimilarity matrix. We employed the ordisurf function within the
vegan R package to fit trait data to the Al-tolerant bacterial community ordination using generalized
additive models (GAMs). These models fitted the environmental data as a smooth response surface
over the three taxa of community ordinations accounting for both NMDS axes. To determine the rela-
tive importance of environmental factors in structuring the three taxa of bacterial communities, we
conducted multiple regression analysis using the MRM approach. Because there was strong collinear-
ity among particular environmental factors, we employed variable clustering before applying MRM to
assess the redundancy of the environmental variables by the varclus procedure of the Hmisc R pack-
age (81). Any variables with high correlation (Spearman’s r 2 . 0.7) were removed from the MRM anal-
ysis (for example, NO3-N and DTN); all other variables were retained in the models. We then imple-
mented a matrix randomization procedure with standardized predictor variables using ecodist R
package (78). To account for zero-similarity values, bacterial community dissimilarity (the Bray-Curtis
distance) was ln transformed (82).

To help explain the variation in the composition of the three taxa, we estimated Levins’ niche
breadth (B) index (83) for the microbial taxa members according to the following equation:

Bj ¼ 1
�
XN

i¼1
P2ij

where Bj denotes the habitat niche breadth of OTUj in a community, N is the total number of communities in
each metacommunity, and Pij is the proportion of OTU j in community i. A high B value for a given OTU indi-
cates a wide habitat niche breadth. The community-level B value (Bcom) was calculated as the average B value
for all members in a community. We expect a microbial taxon with a wider niche breadth to be more metabol-
ically flexible at the community level. The analysis was conducted with the niche.width function of the spaa R
package (84).

To test for correlations between antioxidant functional genes and the three microbial taxa, we performed
simple Mantel tests with 9,999 permutations using the mantel function within the vegan R package. All of the
analyses were conducted in R version 3.7.1 (https://www.r-project.org/).

Data availability. Raw sequence data for 16S rRNA gene amplicons were deposited in the National
Center for Biotechnology Information (NCBI) BioProject under accession no. PRJNA562601. The GeoChip
data are available in the figshare repository, https://doi.org/10.6084/m9.figshare.9746303. The sampling
information and soil geochemical data are also available in the figshare repository, https://doi.org/10
.6084/m9.figshare.11493081.v2.
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