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A B S T R A C T

Background: The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-
CoV-2 infection, as it is required to activate the virus’ spike protein, facilitating entry into target cells. We
hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function
of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection.
Methods: We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging
(rs12329760 C>T, p.V160M), which has a minor allele frequency ranging from 0.14 in Ashkenazi Jewish to
0.38 in East Asians. We analysed the association between the rs12329760 and COVID-19 severity in 2,244
critically ill patients with COVID-19 from 208 UK intensive care units recruited as part of the GenOMICC
(Genetics Of Mortality In Critical Care) study. Logistic regression analyses were adjusted for sex, age and dep-
rivation index. For in vitro studies, HEK293 cells were co-transfected with ACE2 and either TMPRSS2 wild
type or mutant (TMPRSS2V160M). A SARS-CoV-2 pseudovirus entry assay was used to investigate the ability of
TMPRSS2V160M to promote viral entry.
Results:We show that the T allele of rs12329760 is associated with a reduced likelihood of developing severe
COVID-19 (OR 0.87, 95%CI:0.79−0.97, p = 0.01). This association was stronger in homozygous individuals
when compared to the general population (OR 0.65, 95%CI:0.50−0.84, p = 1.3 £ 10�3). We demonstrate in
vitro that this variant, which causes the amino acid substitution valine to methionine, affects the catalytic
activity of TMPRSS2 and is less able to support SARS-CoV-2 spike-mediated entry into cells.
Conclusion: TMPRSS2 rs12329760 is a common variant associated with a significantly decreased risk of
severe COVID-19. Further studies are needed to assess the expression of TMPRSS2 across different age
groups. Moreover, our results identify TMPRSS2 as a promising drug target, with a potential role for camostat
mesilate, a drug approved for the treatment of chronic pancreatitis and postoperative reflux esophagitis, in
the treatment of COVID-19. Clinical trials are needed to confirm this.
© 2022 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)
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Introduction

The severe acute respiratory syndrome like coronavirus (SARS-CoV-
2) has infected over 190 million individuals globally and has caused
more than 4.2 million deaths as of August 2021 [1]. SARS-CoV-2 infec-
tion has a broad clinical spectrum, ranging from asymptomatic or
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mildly symptomatic, to a life-threatening presentation requiring admis-
sion to intensive care. Age, and to a much lesser extent male gender
and various underlying clinical conditions, such as cardiovascular dis-
ease, obesity and diabetes, are known risk factors associated with an
increased COVID-19 morbidity and mortality [2,3]. The role of an indi-
vidual’s genetic background has recently emerged as an additional, yet
not clearly understood, risk factor for COVID-19 [4−6]. Rare genetic
variants in genes involved in the regulation of type I interferon (IFN)
immunity, including autosomal recessive IRF7 and IFNAR1 deficiencies,
have been identified in patients with life-threatening COVID-19 [6].
Autoantibodies to type I IFNs also account for at least 10% of cases of
critical COVID-19 pneumonia[7]. Genome-wide association studies
(GWAS) have discovered genetic haplotypes spanning several genes
that are associated with COVID-19 severity [3,4,8].

The transmembrane protease serine type 2 (TMPRSS2) protein
plays a key role in coronavirus infections [9−11], including SARS-
CoV-2, as it is required for priming the virus’ spike (S) glycoprotein
through its cleavage, thus facilitating endosome-independent entry
into target cells [12,13]. TMPRSS2, which is part of the type 2 trans-
membrane serine protease (TTSP) family, is characterized by andro-
gen receptor elements located upstream to its transcription site [14].
As well as cleaving and activating viral glycoproteins of coronaviruses
and influenza A and B viruses [15], TMPRSS2 is subject to autocleav-
age, which results in the liberation of its soluble catalytic domain
[16]. The conditions under which autocleavage of TMPRSS2 and other
members of the TTSPs family occurs are yet to be elucidated.

TMPRSS2 is expressed in lung and bronchial cells [17], but also in
the colon, stomach, pancreas, salivary glands and numerous other tis-
sues [18]. Moreover, it is co-expressed in bronchial and lung cells
with the angiotensin-converting enzyme 2 (ACE2) [17], which is the
best described SARS-CoV-2 cellular receptor [19]. In the olfactory epi-
thelium of mice, the expression of TMPRSS2, but not ACE2, appears to
be age-related and greater in older compared to younger animals
[20]. Similarly, a recent study showed that expression of TMPRSS2 in
mouse and human lung tissue is also age-related [21]. Studies in
TMPRSS2 knock out (KO) mice reported reduced SARS-CoV and
MERS-CoV replication in the lungs compared to wild-type mice, and a
reduced proinflammatory viral response, especially cytokine and che-
mokine release via the Toll-like receptor 3 pathway [22,23]. We have
recently shown that TMPRSS2 expression permits cell surface entry of
SARS-CoV-2, allowing the virus to bypass potent endosomal restric-
tion factors [24]. In vitro studies have shown that TMPRSS2 inhibitors
prevent primary airway cell and organoid infection by SARS-CoV and
SARS-CoV-2 [25,24,26]. In animal studies, mice infected with SARS-
CoV and treated with the serine protease inhibitor camostat mesilate
had a high survival rate [27]. Recently, camostat mesilate (which, in
Japan, is already approved for patients with chronic pancreatitis and
postoperative reflux esophagitis) was shown to block SARS-CoV-2
lung cell infection in vitro [12,24]. Furthermore, camostat mesylate
and its metabolite GBPA have been shown to block SARS-CoV-2
spread in human lung tissue ex vivo [28]. Several clinical trials using
camostate in COVID-19 patients are currently underway [29].

In view of the data from animal models and cell-based studies
supporting a protective role of a knock out TMPRSS2 on coronavirus
infection (including SARS and MERS), we hypothesized that natu-
rally-occurring TMPRSS2 genetic variants affecting the structure and
function of the TMPRSS2 protein may modulate the severity of SARS-
CoV-2 infection.

Methods

TMPRSS2 three-dimensional structure and variant analysis

The recently released 3D structure of TMPRSS2 (PDB: 7meq) was
used to assess the impact missense variants. The Phyre homology
modelling algorithm [30] was used to resolve missing amino acid
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regions in the SRSC domain that were not experimentally solved
(described in Supplementary material). The FASTA sequence of
TMPRSS2 was obtained from the UniProt protein knowledge database
[31] (UniProt Id O15393, corresponding to 492 amino acid transcript
Ensembl ID ENST00000332149.10). The recently released AlphaFold
model [32] was compared to the Phyre model. The impact of each
missense variant on the TMPRSS2 protein structure was assessed by
analysing the following 16 features, using our in-house algorithm
Missense3D [33]: breakage of a disulfide bond, hydrogen bond or salt
bridge, introduction of a buried proline, clash, introduction of hydro-
philic residue, introduction of a buried charged residue, charge
switch in a buried residue, alteration in secondary structure, replace-
ment of a charged with uncharged buried residue, introduction of a
disallowed phi/psi region, replacement of a buried glycine with any
other residue, alteration in a cavity, replacement of cis proline, buried
to exposed residue switch, replacement of a glycine located in a
bend. In addition, we used the SIFT [34] and Polyphen2 [35] variant
predictors, which mainly use evolutionary conservation to assess the
effect of each variant. The effect of variant rs12329760 was further
assess using: i. CONDEL [36], which reports a weighted average of the
scores from fatHMM and MutationAssessor, and ii. FoldX5 force field
[37], which calculates the stability of a protein based on the estima-
tion of its free energy. A DDG> 0.5 kcal/mol (calculated as: DDG=
DGwt - DGmut) was predicted to have a destabilizing effect.

Participants

Genetics Of Mortality In Critical Care (GenOMICC) and the Interna-
tional Severe Acute Respiratory Infection Consortium (ISARIC) Coronavi-
rus Clinical Characterisation Consortium (4C) (ISARIC 4C)

Cases: this cohort was established between March 2020 and July
2020 (first COVID-19 wave) and comprises of 2244 critically ill, hospi-
talized COVID-19 positive patients from 208 UK intensive care units
(ICUs): 2109, patients were recruited as part of the GenOMICC proj-
ect, and an additional 135 cases as part of the International Severe
Acute Respiratory Infection Consortium (ISARIC) Coronavirus Clinical
Characterisation Consortium (4C) study. The clinical characteristics
and comorbidities of these patients have been extensively reported
in Pairo-Castineira et al. [8]. Only unrelated individuals (up to 3rd
degree, based on kinship analysis (King 2.1)) were included. Samples
were excluded if the genotype-based sex inference did not match the
reported sex, or if a XXY karyotype was present. Moreover, patients
of mixed genetic ancestry, and from ancestry groups with small num-
bers of cases (such as North American Indian, n = 13) defined using
admixture supervised mode with 1000 genomes as reference, were
excluded.

Controls: ancestry-matched controls (ratio 1 case to 5 controls)
without a positive COVID-19 test were obtained from the UK BioBank
population study. COVID-19 test results in BioBank are obtained from
Public Health England, Public Health Scotland and SAIL for English,
Scottish and Welsh data, respectively. The vast majority of results are
from nose/throat swabs analysed by PCR. For patients admitted to
hospital, results can also be from samples obtained from the lower
respiratory tract. Only unrelated individuals (up to 3rd degree) were
included. Individuals with sex mismatch were excluded. For valida-
tion, 45,875 unrelated individuals of European ancestry from the
100,000 Genomes Project were used as an alternative control group.

DNA extraction, genotyping and quality control have been
described in detail previously[8]. Genetic ancestry was inferred using
ADMIXTURE and reference individuals from the 1000 Genomes proj-
ect. Imputation was performed using the TOPMed reference panel.

Cells, pseudovirus and plasmid

Human embryonic kidney 293T cells (293Ts; ATCC) were main-
tained in Dulbecco’s modified Eagle’s medium (DMEM), 10% foetal

pdb:7meq
uniprotkb:O15393


A. David, N. Parkinson, T.P. Peacock et al. Current Research in Translational Medicine 70 (2022) 103333
calf serum (FCS), 1% non-essential amino acids (NEAA), 1% penicillin-
streptomycin (P/S). Human Caco-2 (ATCC HTB-37) and Calu-3 (ATCC
HTB-55) were maintained in DMEM, 20% FCS, 1% NEAA, 1% P/S. All
cell lines were maintained at 37 °C, 5% CO2.

Lentiviral pseudotype production was performed as previously
described[24],[38]. Briefly, pseudovirus was generated by co-trans-
fecting 293Ts with lentiviral packaging constructs pCSFLW (minimal
HIV genome with firefly luciferase reporter), pCAGGs-GAGPOL (HIV
packing proteins) and the relevant viral glycoprotein in pcDNA3.1 −
either the G glycoprotein from Indiana vesiculovirus (VSV-G) or
SARS-CoV-2 spike protein. Co-transfections were performed at a
plasmid ratio of 1.5:1:1 for pCSFLW:GAGPOL:glycoprotein. Pseudovi-
rus was harvested at 48 and 72 h post-transfection, pooled, filtered,
then frozen down. ACE2 FLAG was used as previously described [24].
TMPRSS2 expression plasmid was a kind gift from Roger Reeves
(Addgene plasmid #53,887; http://n2t.net/addgene:53887; RRID:
Addgene_53,887) [39]. Non-cleavable ACE2-FLAG and TMPRSS2
mutants were generated by overlap extension PCR or site-directed
mutagenesis.

Phenotypic assays

293Ts were co-transfected with FLAG-tagged, non-cleavable ACE2
and TMPRSS2, as previously described [24]. Briefly, confluent 10cm2

dishes of 293T cells were co-transfected with 1 mg each of TMPRSS2
and ACE2-FLAG. 24 h later, cells were resuspended in fresh media
and either spun down for lysis and western blot or added to 96 well
plates along with pseudovirus. 24 h later, media was refreshed and a
further 24 h later, cells were lysed with reporter lysis buffer (Prom-
ega), and luminescence (measured as relative luminescence units,
RLU) was read on a FLUOstar Omega plate reader (BMF Labtech) using
the Luciferase Assay System (Promega).

Cell pellets for western blot were lysed in RIPA buffer (150 mM
NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM TRIS, pH
7.4) supplemented with an EDTA-free protease inhibitor cocktail tab-
let (Roche). Cell lysates were combined with 4x Laemmli buffer (Bio-
Rad) with 10% b-mercaptoethanol and boiled for 5 min. Membranes
were probed with mouse anti-tubulin (abcam; ab7291), rabbit anti-
TMPRSS2 (abcam; ab92323) and/or mouse anti-FLAG (F1804, Sigma).
Near infra-red (NIR) secondary antibodies, IRDye� 680RD Goat anti-
mouse (abcam; ab216776) and IRDye� 800CW Goat anti-rabbit
(abcam; ab216773) were subsequently used. Blots were imaged
using the Odyssey Imaging System (LI-COR Biosciences). Densitome-
try was performed using ImageJ.

Reagent, cell lines and antibody validation

All reagents, cell lines and antibodies used in this study are com-
mercially available and validation data are available on the manufac-
turers’websites.

Statistical analysis

Sample size: Critically ill Covid-19 patients, n = 2,244; random
controls matched by ancestry from UK Biobank, n = 11,220. The sam-
ple size was determined pragmatically by the number of cases
recruited during the first wave of the outbreak in the UK (as
described in [8]). No randomization was performed. Blinding was not
used in this study because the exposure (genotype) and outcome
(ICU admission) are objective. Confounding was controlled by the use
of covariates: age, sex, deprivation score and genetic ancestry [8].
The association between the TMPRSS2 rs12329760 variant and
COVID-19 severity was assessed using logistic regression. Genetic
associations in the GenOMICC/ISARIC 4C cohort were analysed as pre-
viously described[8]. Briefly, logistic regression with additive and
recessive models was performed in PLINKv1.9, adjusting for sex, age,
3

mean-centred age-squared, top 10 principal components (principal
component analysis [PCA] performed to adjust for population stratifi-
cation) and deprivation index decile based on UK postcode. Each
major ancestry group alternative in the 100,000 Genomes control
group was performed with mixed model association tests in SAIGE
(v0.39) [40], including age, sex, age-squared, age-sex interaction and
the first 20 principal components as covariates. Trans-ethnic meta-
analysis of GenOMICC data for different ancestries was performed by
METAL using an inverse-variance weighted method and the P-value
for heterogeneity was calculated with Cochran’s Q-test for heteroge-
neity implemented in the same software [41].

Additional publicly available genetic data were obtained from the
COVID-19 Host Genetics Initiative meta-analyses, release 6 (June 15,
2021) [42]. The COVID-19 Host genetics initiative classifies COVID-19
severity according to the use of invasive and non-invasive ventilation
during hospital admission. Here we report the four different pheno-
type comparisons:

� A2: 8,779 critically ill confirmed cases (inclusion criteria: hospital-
ized for COVID-19 and either death or on respiratory support
including intubation, CPAP, BiPAP, continue external negative
pressure, Optiflow/very high flow Positive End Expiratory Pres-
sure Oxygen) versus 1,001,875 population controls,

� B1: 14,480 hospitalised cases versus 73,191 non-hospitalised
cases,

� B2 24,274 hospitalised cases versus 2,061,529 population con-
trols, and

� C2: 112,443 COVID-19 cases of unspecified severity versus
2,473,889 population controls.

Analyses used all data with the exclusion of the 23&Me study, for
which full data were not publicly available. Meta-analysis in all cases
was performed using a fixed effect, inverse variance-weighted model,
either as a trans-ethnic meta-analysis or subsetted by ancestry group.

Data are presented as mean § standard deviation. Log-normality
was assessed using the Shapiro-Wilk test and QQ plot. A two-tailed
Student’s t-test was used to compare the means of two groups. One-
way ANOVA was used to compare the means of more than two
groups.

Colocalisation analysis

Colocalisation analysis for genetic associations was performed by
an Approximate Bayes Factor approach using the package coloc ver-
sion 5, in R 4.1.0 [43]. Summary statistics (beta and variance) were
from GWAS data [8] and from lung eQTL data from GTex v8 [44], in
individuals of European ancestry. To reduce the likelihood of viola-
tion of the single causal variant assumption arising from multiple
independent association signals, the analysis was restricted to a
region extending to 5 kb upstream and downstream of the TMPRSS2
gene. With the assumption that exactly one measured SNP in the
region was causative for each trait, SNP-level priors (p1 and p2) of 1/
(n SNPs) were used for the probability of association with each indi-
vidual trait, with an arbitrary prior of 0.1 x p1 for p12, the SNP-level
prior probability of association with both traits. Sensitivity analysis
was performed to assess the impact of prior selection, comparing the
selected priors to the more stringent default priors (10�4 for p1 and
p2, 10�5 for p12), and varying the p12 range from p1 to p1 x p2.

Ethics

Research ethics committees (Scotland 15/SS/0110, England, Wales
and Northern Ireland: 19/WM/0247). Current and previous versions
of the study protocol are available at genomicc.org/protocol. All par-
ticipants gave informed consent.
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for Alzheimer’s Research Foundation, Meyer Foundation, Square
Foundation, Grandir Fonds de solidarit�e pour l’enfance, SCOR Corpo-
rate Foundation for Science, Institut National de la Sant�e et de la
Recherche M�edicale (INSERM), University of Paris, National Institutes
of Health, French Foundation for Medical Research, FRM and French
National Research Agency (ANR) GENCOVID, Agence Nationale de la
Recherche, Health Data Research UK and BBSRC provided funding to
support the salaries of the authors but had no role in the design, data
collection, analysis, interpretation of the results or writing of the
report. The content of this publication is solely the responsibility of
the authors.
Results

We extracted 377 TMPRSS2 genetic variants reported as loss of
function (LoF), missense or inframe and indel in the database of pop-
ulation genetic variations GnomAD (v2.1.1). All variants passed qual-
ity filters in GnomAD. Nine variants flagged by GnomAD as carrying
dubious annotation or quality were excluded. Forty variants were
loss of function or indel and the remaining 328 were missense. All
variants except for one (rs12329760 C>T) were very rare (MAF
<0.001). We focused on missense variants and studied the evolution-
ary conservation of TMPRSS2 amino acids and the impact of amino
acid substitution on TMPRSS2 protein structure (described in Meth-
ods). The first experimental structure of TMPRSS2 was released in the
public domain in June 2021. Although the trypsin domain was well
resolved, several unstructured loops were present in the SRCR
domain. We, therefore, used homology modelling and the Phyre2
server to model the missing regions of SRCR (Fig. 1). For complete-
ness, a comparison between the Phyre2 model and the recently
released (August 2021) AlphaFold [32] model is presented in Figure
S1 (Phyre2 versus AlphaFold model: root mean square deviation
[RMSD] 0.5 A

�
). We identified the chemical and physical bonds that

stabilize the TMPRSS2 structure (i.e. hydrogen bonds, cysteine and
salt bridges, as detailed in the Methods) and are affected by amino
acid substitutions naturally occurring in the human population. A
total of 137 variants were predicted damaging to the structure and/
or function of TMPRSS2. Of these, 136 variants are extremely rare in
the human population, with an average minor allele frequency (MAF)
of 9.67 £ 10�6 (cumulative MAF of 7.3 £ 10�4) and are, therefore,
unlikely to be of use as a marker of COVID-19 infection severity in the
general population. The remaining variant, rs12329760,
(NC_000021.9:g.41480570 C>T [GRCh38.p13], p.Val160Met on
Ensembl transcript ENST00000332149.5 and Val197Met on the
Ensembl transcript ENST00000398585.3) is predicted damaging and
causes the substitution of an evolutionary conserved valine to methi-
onine (Figure S2). Overall, the minor allele frequency (MAF) of this
variant is 0.25 in the human population, with 6.7% homozygous indi-
viduals (9,587 T/T homozygotes out of 141,456 individuals sequenced
as part of the GnomAd project). Under Hardy-Weinberg equilibrium
and a MAF of 0.25, it is expected that 37% of individuals will be het-
erozygous for this variant. The MAF of rs12329760 T varies according
to ethnicities and ranges from 0.14 in Ashkenazi Jewish to 0.38 in
East Asian populations (0.15 in Latino, 0.23 in non-Finnish Europeans,
0.25 in South Asians, 0.29 in African/African Americans and 0.37 in
Finnish Europeans). This highly conserved valine occurs in the scav-
enger receptor cysteine-rich (SRCR) domain, whose function within
TMPRSS2 is still not fully understood, although a role in ligand and/or
protein interaction has been proposed [45]. Indeed, this domain is
present in several proteins involved in host defence, such as CD5,
CD6 and Complement factor I [46,47].
4

We first analysed the relation between TMPRSS2 rs12329760 and
life-threatening SARS-CoV-2 infection in 2,244 critically ill, hospital-
ized, COVID-19 positive patients from 208 UK intensive care units
(ICUs) (Table 1) recruited as part of the GenOMICC (genomicc.org)
and ISARIC 4C (isaric4c.net) projects. These patients were representa-
tive of critically ill patients with COVID-19 in the UK population dur-
ing the first Sars-Co-V2 outbreak of 2020[8]. Patients were treated in
intensive care units (ICU/ITU) because of their propensity to critical
respiratory failure due to COVID-19. Within the GenOMICC cohort
(n = 2,109), mean age was 57.3 § 12.1, 624 (30%) patients were
females, and 396(19%) had comorbidities; 1,557 (74%) required inva-
sive ventilation and 459 (22%) died within 60 days. Within the ISARIC
4C cohort (n = 135), mean age was 57.3 § 2.9, 46 (34%) were females,
and 40 (30%) had comorbidities; 25 (19%) required invasive ventila-
tion and 22 (16%) died within 60 days, as described in[8]. 11,220
ancestry-matched individuals without a COVID-19-positive PCR test
from the UK BioBank, acted as controls. Under an additive model, we
found that the minor T allele of rs12329760 was significantly associ-
ated with a protective effect against severe COVID-19 in individuals
of European ancestry (1,676 cases, 8,379 controls) with an OR of 0.87
(95%CI:0.79−0.97, p = 0.01). A protective effect was also observed in
individuals of East Asian ancestry (149 cases, 745 controls; OR 0.64,
95%CI:0.43−0.95, p = 0.03). Similar effect sizes were observed in
South Asians and Africans, but did not reach statistical significance,
most likely as a result of the small sample size (Fig. 2). We further
confirmed this protective effect on a trans-ethnic meta-analysis,
using the entire cohort of 2,244 patients (OR 0.84, 95%CI:0.77−0.93,
p = 5.8 £ 10�4, Fig. 2, panel A). A heterogeneity analysis suggested
that the T allele has a similar effect across different ethnicities
(p = 0.47). To ascertain that this association was not an artefact due to
population bias in the UK BioBank controls, the results from the Euro-
pean cohort were confirmed on an independent control population
(45,875 unrelated individuals of European ancestry from 100 K
Genomes [48]: OR 0.89, 95%CI:0.81−0.99, p = 0.02). Under a recessive
model (i.e. individuals homozygous for the T allele), the trans-ethnic
meta-analysis on 2,244 critically ill COVID-19 patients estimated an
OR of 0.65 for TT homozygotes (95%CI:0.50−0.84, p = 1.3 £ 10�3). In
subset analyses, the OR was estimated at 0.70 (95%CI:0.52−0.95,
p = 0.024) in Europeans, and 0.28 (95%CI:0.09−0.82, p = 0.019) in East
Asians versus their corresponding ancestry-matched controls (Fig. 2,
panel B).

To assess whether the rs12329760 could be a proxy for an associa-
tion with a nearby expression quantitative trait locus (eQTL), colocali-
sation analysis was performed to compare the GWAS signal at the
locus to eQTL associations for TMPRSS2 and neighbouring gene MX1
in GTex version 8 [44] (Figure S3 A-C), using an Approximate Bayes
Factor approach [43]. Under an assumption of a single causal variant
within the locus for each trait, the posterior probability of a common
causal variant was 1.1% for TMPRSS2 expression and 2.0% for MX1
expression, compared to posterior probabilities of 67% and 42%
respectively for independent associations. Sensitivity analysis
showed that the analysis was robust to choice of prior probabilities:
more stringent software-default single-trait priors increased the pos-
terior probabilities of null or single-trait-only association hypotheses,
but had little impact on the colocalisation probability (1.1% for
TMPRSS2 and 0.2% for MX1); varying prior probability for colocalisa-
tion (Figure S3 D-F) had an impact only when approaching the prior
for single-trait associations, and did not result in posterior probabili-
ties for colocalisation exceeding those for separate associations.
Although independent contributions from multiple variants towards
the genetic association cannot be excluded, this indicates that any
genetic association between rs12327960 and severe COVID-19 is
unlikely to be attributable to linkage disequilibrium with an eQTL
and, thus, modification of protein function is more likely.

For additional corroboration of the genetic signal, we investigated
the results of large GWAS meta-analyses performed in the context of

https://gnomad.broadinstitute.org/transcript/ENST00000332149?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/transcript/ENST00000398585?dataset=gnomad_r2_1


Fig. 1. The TMPRSS2 protein and the p.Val160Met variant
The TMPRSS2 protein is composed of a cytoplasmic region (residues 1−84), a transmembrane region (TM, residues 85−105) and an extracellular region (residues 106−492). The

latter is composed of three domains: the LDLR class A (residues 112−149), the scavenger receptor cysteine-rich domain (SRCR) (residues 150−242) and the Peptidase S1 (residues
256−489), which contains the protease active site: residues His296, Asp345 and Ser441. The three-dimensional structure of the extracellular region residues 145−491 correspond-
ing to domains SRCR-2 (in green) and Peptidase S1 (in blue) is presented. Valine 160 (Val 160, depicted as a red sphere on the cartoon), which harbours variant p.Val160Met, occurs
in the SRCR domain and spatially far from the TMPRSS2 catalytic site (mapped onto the surface of TMPRSS2).
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the COVID-19 Host Genetics Initiative (COVID-19hg, available at
https://www.COVID-19hg.org/, release 6, June 2021) [42]. Compared
with the general population, in a trans-ethnic meta-analysis, the
minor T allele of rs12329760 was associated with a significantly pro-
tective effect against severe COVID-19 (patients requiring hospitali-
zation for COVID-19): 24,274 cases versus 2,061,529 controls; OR
0.95, 95%CI:0.92−0.97, p = 4.72 £ 10�6. In ancestry-specific sub-
group analyses, this effect was significant for a European population
(OR 0.94, 95%CI:0.91−0.96, p = 5.66 £ 10�6), but not for individuals of
African, Hispanic-American, or admixed African/Hispanic/American
5

ancestry; however, lower sample sizes for these groups limited study
power, and subgroup analyses were not available for Asian popula-
tions. The protective effect was particularly evident in confirmed,
critically ill cases (8,779 cases versus 1,001,875 population controls;
OR 0.91, 95%CI:0.87−0.95, p = 8.18 £ 10�6). Furthermore, the
rs12329760 T allele was associated with reduced risk of hospitalisa-
tion after confirmed infection (14,480 hospitalised versus 73,191
cases not requiring hospitalization within 21 days after the test): OR
0.96, 95%CI:0.92−0.99, p = 0.012. Finally, there was no significant dif-
ference (p = 0.056) in the prevalence of the T allele between the

https://www.COVID-19hg.org/


Table 1
Characteristics of 2,244 GenOMICC/ISARIC patients and 11,220 BioBank controls
included in the study.

Patient characteristics Cases
(n = 2,244)

Controls
(n = 11,220)

missing data
Females, n. (%) 670[30] 6,075[54]
Age (years), mean § SD 57.3 § 11.6 66.1 § 8.0
Invasive ventilation, n. (%) 1,582 (70.50) 66 (2.94) n.a
Death, n. (%) 481 (21.44) 368 (16.40) n.a
Ancestry
European, n. (MAF) 1,676 (0.20) 8,380 (0.23)
South Asian, n. (MAF) 237 (0.21) 1,185 (0.24)
African, n. (MAF) 182 (0.26) 910 (0.29)
East Asian, n. (MAF) 149 (0.28) 745 (0.38)

MAF, minor allele frequency; n.a, not available.
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general population (n = 2,473,889) and pooled individuals with a lab-
oratory-confirmed SARS-CoV-2 infection (including hospitalized and
life-threatening COVID-19 cases from the metanalyses previously
described) or with a self-reported or physician-confirmed COVID
diagnosis (total n = 112,443 cases, Fig. 2, panel A).

Although these meta-analyses include UK Biobank data and all
except the hospitalised versus non-hospitalised comparison include
data from the GenOMICC/ISARIC 4C cohort, and thus do not provide
completely independent replication, these cohorts only comprise less
than 25% of the total cases, limiting the impact of this single study on
the overall results. These data therefore provide further support for
our hypothesis that the TMPRSS2 rs12329760 variant has a protec-
tive effect against severe and/or life-threatening COVID-19. However,
studies examining the prevalence of this variant in SARS-CoV-2
infected asymptomatic or pauci-symptomatic individuals are needed
to ascertain its protective effect against mild viral infection.

To investigate the phenotypic effect of the TMPRSS2 V160M vari-
ant, we co-transfected 293Ts cells, which we have previously con-
firmed that they do not endogenously express ACE2 or TMPRSS2
[24], with ACE2 and either TMPRSS2 wild type (TMPRSS2WT) or
Fig. 2. Association of TMPRSS2 rs12329760 to COVID-19 severity
Results are presented for the additive (a) and the recessive (b) model using different COV

as part of the COVID-19hg initiative (1) are also shown.
OR, odds ratio; EUR, European; EAS, East Asian; AFR, African; SAS, South Asian.
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V160M (TMPRSS2V160M), as previously described [24]. We and others
previously observed that co-expression of TMPRSS2 and ACE2 results
in rapid cleavage of ACE2. We, therefore, used a mutant ACE2 that is
more poorly degraded by TMPRSS2[49]. Two additional TMPRSS2
variants were included as controls: the catalytically inactive S441A
(TMPRSS2S441A) and the catalytically active R255Q (TMPRSS2R255Q),
that is unable to autocleave[16]. First, we investigated the autocleav-
age pattern of the different TMPRSS2 variants. The N-terminal mem-
brane-bound part of TMPRSS2 can exist as different cleaved
intermediates: a full-length uncleaved form of approximately 55 kDa,
a partially cleaved form, and a fully cleaved form of 20 kDa. The latter
is the product of TMPRSS2 autocleavage at arginine 255, which
results in the liberation of the catalytically active protease domain in
the extracellular space, leaving a small transmembrane N-terminal
domain [16]. Wild type TMPRSS2 is expressed as roughly equal
amounts of full-length and fully cleaved forms, with a small amount
of partially cleaved product. As expected, the catalytically inactive
TMPRSS2S441A and the non-autocleavable TMPRSS2R255Q resulted in
only the full-length TMPRSS2 being expressed. However,
TMPRSS2V160M resulted in a significantly higher proportion of full-
length (55 kDa), and a significantly lower proportion of fully cleaved
protein (20 kDa) (p < 0.05, Student’s t-test). This difference was clear
across a range of TMPRSS2 concentrations, with TMPRSS2 showing a
concentration-dependant autocleavage phenotype: the higher the
concentration of TMPRSS2, the higher the amount of autocleavage.
Overall, these data suggest the V160M substitution exerts a partial
inhibitory effect on the proteolytic autocleavage of TMPRSS2 (see
Fig. 3A-D, Supplementary Figure S4).

Subsequently, we investigated the effect of TMPRSS2V160M on pro-
moting viral entry, using a previously described SARS-CoV-2 pseudo-
virus entry assay [24]. Pseudovirus expressing the glycoprotein from
the vesicular stomatitis virus (VSV-G) was used as a control, as this
virus enters cells in a TMPRSS2-independent manner [24]. Briefly,
cells co-transfected with ACE2 and TMPRSS2 wild type or variants
were incubated with the pseudovirus (as described in [24,38]) and,
after 48 h, luminescence was measured. TMPRSS2WT enhanced viral
ID-19-positive patient cohorts. The results from large GWAS meta-analyses performed



Fig. 3. Phenotypic impact of the TMPRSS2 V160M variant on autocleavage and SARS-CoV-2 spike-mediated entry; (A) Western blot analysis of TMPRSS2 autocleavage after expres-
sion in HEK 293Ts. (B,C, D) densitometry was determined in ImageJ and shows mean§standard deviation from N = 6 (B,C) or N = 3 (D) independent repeats. Statistics determined by
two-tailed Student’s t-test.

Entry of lentiviral pseudotypes expressing (E) SARS-CoV-2 spike glycoprotein or (F) Vesicular stomatitis virus glycoprotein (VSV-G) into HEK 293Ts co-expressing ACE2-FLAG
and either empty vector or TMPRSS2 variants. Data shows mean§standard deviation of 3 independent repeats from different weeks, normalised to WT TMPRSS2. (E,F) Statistics
determined by one-way ANOVA with multiple comparisons against WT on Log-transformed data (after determining log normality by the Shapiro-Wilk test and QQ plot). Values in
mg indicate the amount of TMPRSS2 plasmid added to each condition. RLU, relative luminescence units.

*, 0.05 ≥ P > 0.01; **, 0.01 ≥ P > 0.001, ***, 0.001 ≥ P.
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entry by »5-fold compared to empty vector, while the catalytically
dead TMPRSS2S441A showed no enhancement (Fig. 3E). The non-auto-
cleavable mutant TMPRSS2R255Q showed similar enhancement, sug-
gesting that autocleavage is dispensable for optimal TMPRSS2-
mediated enhancement. TMPRSS2V160M showed no significant differ-
ence in viral entry compared to the TMPRSS2WT. Overall, the expres-
sion of catalytically active TMPRSS2 proteins only slightly inhibited
VSV-G mediated entry (Fig. 3F).

The partial inhibitory effect exerted by the V160M variant on the
proteolytic autocleavage of TMPRSS2 resulted in a far greater propor-
tion of uncleaved, surface-expressed TMPRSS2V160M compared to
TMPRSS2WT. We compared this autocleavage seen in transfected
293T cells, to that seen in several epithelial cell lines that naturally
express endogenous ACE2 and TMPRSS2 [24]: the human lung cell
line, Calu-3, and the human colorectal adenocarcinoma cell line,
Caco-2, both of which are extensively used for SARS-CoV-2 research.
Interestingly, no fully cleaved TMPRSS2 could be detected as opposed
to 293T cells, while both cell lines expressed mostly full length or
partially cleaved TMPRSS2. This again suggests that the high levels of
autocleavage seen in 293T cells may be, in part, an artefact of overex-
pression (Supplementary Figure S5). Therefore, we re-assessed
whether TMPRSS2V160M affects SARS-CoV-2 S-expressing pseudovi-
rus entry by using the double mutant TMPRSS2R255Q/V160M (which
does not autocleave and is, therefore, more similar to endogenous
7

TMPRSS2 in Calu-3 and Caco-2 cells), to control for protein cell-sur-
face expression. Under these conditions, and across a range of plas-
mid titrations of both TMPRSS2 mutants and ACE2, TMPRSS2R255Q/
V160M showed a significantly reduced ability to promote SARS-CoV-2
S-expressing pseudovirus compared to TMPRSS2R255Q alone, despite
equal protein expression (Fig. 4A,C,D,F). Again, TMPRSS2R255Q/V160M
had no effect on VSV-G-mediated entry (Fig. 4B,E).

Discussion

Overall, our results suggest that the rs12329760 C>T variant
results in a moderately less catalytically active TMPRSS2, which is
less able to autocleave and prime the SARS-CoV-2 spike protein. This
may explain the protective effect against life-threatening COVID-19
observed in our cohort of patients admitted to ICU, compared to the
general population. Such an effect was more prominent in homozy-
gotes (recessive model) for the rs12329760 C>T in whom a 30% (OR
0.70) risk reduction was observed. Unfortunately, we did not have
samples from asymptomatic/pauci symptomatic patients, but data
from COVID-19hg meta-analyses appear to suggest that the
rs12329760 variant has no protective effect against SARS-Co-V2
infection per se.

The allele frequency of TMPRSS2 rs12329760 (data from GnomAD
population database) varies across different populations and is higher



Fig. 4. Phenotypic impact of the TMPRSS2 non-autocleavable version of the V160M variant on SARS-CoV-2 spike-mediated entry
Entry of lentiviral pseudotypes expressing (A,D) SARS-CoV-2 spike glycoprotein or (B,E) vesicular stomatitis virus glycoprotein (VSV-G) into HEK 293Ts co-expressing ACE2-

FLAG and either empty vector or TMPRSS2 variants. Data shows mean§standard deviation of 3 independent repeats from different weeks, normalised to empty vector. A-C shows
titrations of mutant TMPRSS2 with constant ACE2 expression, while D-E show titrations of ACE2 with constant levels of TMPRSS2 expressed.

(A,B,D,E) statistics determined by two-tailed Student’s t-test. (C,F) Western blot analysis of TMPRSS2 autocleavage mutant (R255Q) titration with or without the V160M substi-
tution.mg values indicate the amount of TMPRSS2 or ACE2 plasmid added to each condition. RLU, relative luminescence units.

*, 0.05 ≥ P > 0.01; **, 0.01 ≥ P > 0.001, ***, 0.001 ≥ P.
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in East Asian and Finnish individuals (MAF 0.38 and 0.37, respec-
tively) compared to south Asians (MAF 0.25) and non-Finnish Euro-
peans (MAF 0.23). The lowest frequency of the T allele is reported in
Latino and Jewish-Ashkenazi individuals (MAF 0.15). However, in our
study, the small sample size of populations of non-European ancestry
does not allow conclusions on the effect size of TMPRSS2 rs12329760
in different ethnicities. Genotyping of the TMPRSS2 rs12329760 vari-
ant on large COVID19 cohorts of patients of non-European genetic
ancestry is, therefore, needed to assess its role in determining the dif-
ferences in the severity of COVID-19 across various populations (e.g.
between East Asia and Europe [50]). Indeed, a recent study showed a
lower T allele frequency in a small cohort of Chinese patients with
life-threatening COVID-19 compared to the population frequency
[51]. Although the differences in the proportion of SARS-CoV-2
patients who develop severe COVID-19 across different populations
[50] are more likely to be explained by social behaviour, public health
measures to curb outbreaks, exposure to other viruses and immuno-
logical factors, human genetic variation across different populations
may also contribute to the observed differences.

The pharmacological inhibition of TMPRSS2 using serine protease
inhibitors, such as camostat and nafamostat, has been proposed as a
pharmacological treatment of COVID-19 patients. In vitro [12] and
animal studies have demonstrated that camostat can block viral entry
(reviewed in [52]), and initial reports on the repurposing of camostat
in COVID-19 patients have provided promising results [53]. However,
a recently completed clinical trial using camostat in patients
8

hospitalized for severe COVID-19, did not demonstrate a significant
reduction in time-to-clinical improvement compared to placebo [54].
As the authors suggest, these patients were likely to have passed the
most active stage of viral replication at the time of treatment and
were in the hyper-inflammatory stage of the COVID-19, thus possibly
explaining the lack of camostat efficacy. Several additional clinical tri-
als of camostat in COVID-19 are currently underway [29]. Recently,
the placebo-controlled phase III trial conducted in Japan on pauci
symptomatic COVID-19 patients administering camostat mesilate
600 mg 4 times a day did not meet its primary end point of time to
negative Sars-CoV-2 test [55], however data on secondary end points,
such as progression to severe or life-threatening COVID-19, are still
not publicly available.

Very little is known on TMPRSS2 and further extensive in vitro
and in vivo studies on its pathophysiology are necessary. Since the
beginning of the COVID-19 pandemic, the interest in TMPRSS2 has
focused only on its role as a serine protease involved in the activation
of the SARS-CoV-2 spike protein. However, as a soluble protease,
TMPRSS2 may have additional substrates, and in vitro studies have
demonstrated that PAR2 is one of these substrates [56,57]. PAR2 is
expressed in several tissues, including lung, vascular endothelial and
vascular smooth muscle cells [58,59] and its protease-mediated acti-
vation promotes inflammation by inducing prostaglandin synthesis
and cytokine production in the lungs and other organs [60−64]. An
intriguing hypothesis is that, similar to other soluble serine proteases,
such as the human airway trypsin-like protease HAT (also known as
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TMPRSS11D), the soluble wild type TMPRSS2 protease may also have
a role in promoting inflammation in the lungs and other tissues.

Since May 2020, when we reported the TMPRSS2 variant
rs12329760 as possibly damaging to protein structure/function and
raised the possibility that it could partly explain host susceptibility
to COVID-19 severity [65], several other studies have also sup-
ported this hypothesis [66−71] . In this study we have confirmed
our initial hypothesis and provided a mechanistic effect to explain
how this variant may contribute to the host susceptibility to severe
COVID-19.

As previously discussed, one limitation of our study was the lack
of access to a cohort of asymptomatic/pauci symptomatic COVID-19
patients. In the absence of such a cohort, we considered the general
population as a good proxy and used this for comparison with
COVID-19 severe cases. Indeed, a recent systematic review and met-
analysis shows that one third of COVID-19 positive cases do not
develop symptoms [72]. When well-characterized cohorts of asymp-
tomatic/pauci symptomatic COVID-19 patients become available, it
will be possible to further investigate the role of TMPRSS2 variant
rs12329760 on Sars-Co-V2 infection. Another limitation of this study
is that we did not directly validate our results in endogenously
expressing cell lines, such as like Calu-3, as this would require gene
editing the endogenous TMPRSS2. Calu-3 cells are extremely slow
growing and highly resistant to single cell cloning, thus making this
cell line not particularly suitable for gene editing.

In conclusion, the T allele of the common TMPRSS2 variant
rs12329760 confers a reduced risk of severe COVID-19. Similar to
what observed in the TMPRSS2 KO mouse, the Val160Met substitu-
tion, which exerts a partial inhibitory effect on the proteolytic auto-
cleavage of TMPRSS2 and the priming of the SARS-CoV-2 spike
protein, is associated with a milder COVID-19 infection compared to
the wild type. Differences in population frequency of this genetic var-
iant may contribute to the reported variability in COVID-19 severity
across various ethnicities and studies on large COVID-19 cohorts of
patients of non-European genetic ancestry are needed to clarify this.
Further studies are needed to assess the expression of TMPRSS2
across different age groups; indeed a reduced TMPRSS2 expression in
younger compared to older individuals, as observed in mice and in
preliminary human studies, could help explain age-related differen-
ces in COVID-19 morbidity. Moreover, TMPRSS2 could be a viable
drug target in COVID-19 patients, and camostat mesilate, or other
novel TMPRSS2 inhibitors, may have a role in the treatment of
COVID-19. Clinical trials are needed to confirm this.
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