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ABSTRACT: The Ewald, Particle Mesh Ewald (PME), and
Fast Fourier−Poisson (FFP) methods are developed for
systems composed of spherical multipole moment expansions.
A unified set of equations is derived that takes advantage of a
spherical tensor gradient operator formalism in both real space
and reciprocal space to allow extension to arbitrary multipole
order. The implementation of these methods into a novel
linear-scaling modified “divide-and-conquer” (mDC) quantum
mechanical force field is discussed. The evaluation times and
relative force errors are compared between the three methods,
as a function of multipole expansion order. Timings and errors are also compared within the context of the quantum mechanical
force field, which encounters primary errors related to the quality of reproducing electrostatic forces for a given density matrix
and secondary errors resulting from the propagation of the approximate electrostatics into the self-consistent field procedure,
which yields a converged, variational, but nonetheless approximate density matrix. Condensed-phase simulations of an mDC
water model are performed with the multipolar PME method and compared to an electrostatic cutoff method, which is shown to
artificially increase the density of water and heat of vaporization relative to full electrostatic treatment.

1. INTRODUCTION

It is well-known that the molecular modeling of many biological
processes requires a rigorous treatment of the long-ranged
electrostatic interactions.1−5 Furthermore, recent years have
seen the development of many promising next-generation force
fields and fast ab initio methods that endeavor to generalize the
electrostatic interactions to higher-order atomic multipoles.6

Specific examples include the following: polarizable force fields,
such as AMOEBA;7−12 density-based force fields, such as
GEM13−16 and S/G-1;17 force fields that model the
perturbative or many-body expansion of the energy;18−21

hybrid quantum mechanical/molecular mechanical (QM/MM)
methods;22 and molecular orbital-based quantum mechanical
force fields (QMFFs), such as the embedded fragment model,23

X-Pol,24−29 and the closely related modified “divide-and-
conquer” (mDC) methods.30−32 The use of higher-order
atomic multipoles in these examples, and many other models,
offer the promise of improved accuracy, but at a larger
computational cost.33−35 In order to elucidate the strengths and
weaknesses of proposed models, it is necessary to make
comparison to experiment, which often requires their
application within molecular simulations under periodic
boundary conditions. At the same time, these applications
provide empirical measures of the preliminary model’s true
computational cost. Therefore, fast electrostatic algorithms
must be developed that are equipped to handle generalized
charge densities, so that new models can be applied and tested.
The Ewald,36 Particle Mesh Ewald37−40 (PME), and Fast

Fourier−Poisson41 (FFP) methods are three algorithms used to
evaluate the long-ranged electrostatic interactions of periodic
systems. These methods were originally designed to accom-

modate systems consisting of point charges; therefore,
modifications to their original formulations are required to
apply them to models employing multipolar charge densities. In
the present work, we derive a unified set of equations for the
Ewald, PME, and FFP methods using a spherical tensor
gradient operator formalism that extend these methods to
arbitrary multipole order. Expressions for the energies, forces,
and the generalized multipolar potentials required to
incorporate the electrostatics into the QMFF self-consistent
field (SCF) procedure are provided. Previous works have
extended these methods within the framework of Cartesian
point multipoles and Cartesian Gaussians,42−47 as opposed to
the solid harmonic multipoles considered here. Other related
works were not formulated to arbitrary multipole order48,49 or
led to a formulism that did not prove to be computationally
efficient.50 The efficiency of our formulation is demonstrated
through QMFF molecular dynamics applications described
below and extended in Part 2 of this series.51 During
preparation of this manuscript, Simmonett52 has independently
reported an extension of PME for use with solid harmonic
multipoles that shares many characteristics with the PME
method presented here; however, our analysis extends
significantly beyond ref 52 by comparing the accuracy and
performance of Ewald, PME, and FFP methods as stand-alone
electrostatic methods and upon implementation within a linear-
scaling QMFF.
The paper is organized as follows. Section 2 describes the

generalized charge density; derives equations for the general-
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ized Ewald, PME, and FFP methods; and discusses net charge
corrections, error analysis, and the integration of the methods
into the mDC QMFF. Section 3 compares the accuracy and
computational cost of the methods, as a function of multipolar
order and within the context of condensed-phase molecular
simulations of water.

2. METHODS

2.1. The Charge Density. Our goal is to compute the
electrostatic interaction of a neutral charge density ρ(r) with
itself and its periodic images:53

∫ ∫∑ρ ρ= ′ +
| − ′|

′E r rr
r n

r r
1
2

( )
( )

d d
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3 3
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where the unit cell defining the periodicity is described by the
lattice vectors a1, a2, a3 and reciprocal-space vectors a1*, a2*, a3*;
and the periodic images are replicated by integer lattice
translations n = n1a1 + n2a2 + n3a3. The energy (given by eq 1)
is finite only when the charge density is neutral; however, a
widely used approximation for the treatment of charged
systems will be discussed in Section 2.6. Furthermore, we
adopt the standard convention of removing the infinite self-
energy of point charges (and point multipoles) whenever those
energies may appear. Upon replicating all integer translations of
the aperiodic density, ρ(r), the edges of a lattice with the same
shape, orientation, and dimensions can be redrawn about any
origin; and the periodic density filling each cell will contain
exactly one instance of ρ(r) that appears to have been
“wrapped” into the cell’s interior. The apparent wrapping of
ρ(r) to the cell boundary is an illusion formed by the effluence
of density emanating from the other translations, upon making
ρ(r) periodic. The aperiodic density is not required to be
confined within a primary unit cell to achieve this effect. Nor is
it a requirement for the evaluation of eq 1, because the
electrostatic potential of ∑nρ(r + n) is periodic.
The methods presented in this work are solutions to eq 1 for

a density composed of atom-centered point multipole
expansions. There are various ways of defining what is meant
by a multipole expansion. The two most common ways being
Cartesian multipoles44 or those based on spherical harmon-
ics.52,54,55 Our definition of a multipole moment is the inner
product of a density with a real-valued regular solid harmonic:56

∫ ρ=μ μq C rr r( ) ( ) dl l
3

(2)

An auxiliary basis of charge density χlμ(r), satisfying

∫ χ δ δ− − =μ κ μκC rr R r R( ) ( ) dl a j a lj
3

(3)

is thus well-suited to describe an atomic multipole expansion.
The definition of Clμ(r) is closely related to the scaled regular
solid harmonics frequently encountered in fast multipole
methods.54,57−59 In brief, the real-valued scaled regular solid
harmonics Rlm

c/s(r) are the real Rlm
c (r) = ReRlm(r) and imaginary

Rlm
s (r) = ImRlm(r) components of the complex-valued scaled

regular solid harmonics:58
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is an associated Legendre polynomial. Because the complex-
valued harmonics are symmetry related Rlm*(r) = (−1)mRl,−m(r),
the real-valued harmonics are fully described by the set of non-
negative m values. The notation is simplified, when appropriate,
through the introduction of a Greek subscript whose sign
merely acts to symbolize the cosine/sine designation57
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The real-valued regular solid harmonics

=μ μ μC A Rr r( ) ( )l l l (7)

differ only by factors

δ μ μ= − − + ! − !μ
μ

μA l l( 1) (2 )( ) ( )l ,0 (8)

that are chosen to reproduce Racah’s normalization
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In the interest of writing the expression for a point multipole,
we begin by deducing the form of a Gaussian multipole
function from eqs 3 and 9:
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is a Gaussian monopole, ∇a = {d/dXa,d/dYa,d/dZa} are
gradients with respect to the Gaussian center, and Clμ(∇) is a
spherical tensor gradient operator60 (STGO). A STGO is
constructed by replacing the Cartesian coordinate arguments of
the solid harmonic with their corresponding Cartesian
derivative operators. The STGO obeys several mathematical
properties.61,62 The present work specifically makes use of the
STGO chain-rule identity,
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which follows from the homogeneity of solid harmonics Clμ(ar)
= alClμ(r). The application of eq 12 to the last line of eq 10
establishes the relationship between χlμ(r − Ra) and a Gaussian
monopole. A Dirac delta function is a Gaussian monopole in
the limit of infinite exponent:

δ χ− ≡ −
ζ→∞

r R r R( ) lim ( )a a (13)

and a point multipole is this limit applied to eq 10:
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Thus, a sum of atom-centered point multipole expansions is
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2.2. Plane Waves. Methods for solving eq 1 avoid the
infinite sum of explicit lattice translations by approximating a
periodic density with a finite number of plane wave basis

functions ⟨r|k⟩ ≡ eik
T·r. The description of these methods is

greatly simplified using Dirac notation, which we briefly
summarize here. In this notation, the spatial representation of
a function is equivalently written ⟨r|f⟩ = f(r); a complex
conjugate is ⟨f |r⟩ = f*(r); the inner product of two functions ⟨f |
g⟩ = ∫ f*(r)g(r) d3r integrates all space or, if both functions are
periodic, the volume of the unit cell; and we reserve |k⟩ to index
the plane wave basis functions. This index is meant to be the
function’s “angular wave number”, which is defined as k =
2π(k1a1* + k2a2* + k3a3*). From these definitions, one can show
that the basis is orthogonal ⟨k|k′⟩ = δk,k′V, where V = a1 · a2 ×
a3 is the unit-cell volume; they obey a trivial addition theorem
⟨r + r′|k⟩ = ⟨r|k⟩⟨r′|k⟩; they are eigenfunctions of the gradient
operator ∇⟨r|k⟩ = ik⟨r|k⟩; and the electrostatic potential of a
plane wave basis function

∫ π⟨ ′| ⟩
| − ′|

′ = ⟨ | ⟩r
k

r k
r r

r kd
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becomes particularly amenable to computation. Finally, it is
easy to show that the plane waves are eigenfunctions of the
STGO,

∇ ⟨ | ⟩ = ⟨ | ⟩μ μC i Cr k k r k( ) ( )l
l

l (17)

via direct application of eq 12 with u = ikT·r.
Plane waves can be used as a basis to represent real, periodic

functions:
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where ck = ak + ibk. Complex numbers have been introduced to
compactly express two independent linear least-square fit
problems: the representation of the even (cosine) and odd
(sine) character of the density. One can show that the two
least-square fit solutions for ak and bk are equivalent to having
chosen

∫

∫

∑ ∑

∑

ρ

ρ

ρ

* = ⟨ | ′⟩ ⟨ ′| ⟩⟨ + | ⟩

= ⟨ | ′⟩ ⟨ ′| ⟩⟨ | ⟩

= ⟨ | ⟩

′

−

′

−

−

c r

r

V

k k k r r n

k k k r r

k

d

d

V
k

k n

k

1 3

1 3

1
(19)

to minimize the sum of squared errors ⟨Δ|Δ⟩, defined by

∑ ∑ρΔ = + − ⟨ | ⟩ *cr r n r k( ) ( ) Re
n k

k
(20)

In other words, eq 19 is identical to having determined ak and
bk by solving the two (uncoupled) equations

∂⟨Δ Δ⟩
∂

=
a

0
k

and

∂⟨Δ Δ⟩
∂

=
b

0
k

respectively. By integrating over the volume of a unit cell, the
first line of eq 19 effectively integrates one instance of ρ(r) that
has been wrapped into the cell’s interior. The second line of eq
19 exploits the periodicity of the plane waves by “unwrapping”
the density and modifying the integration limits accordingly.
One can deduce that cos(−x) = cos(x) and sin(−x) =

−sin(x) imply the symmetries a−k = ak, b−k = −bk, and c−k = ck*.
As a consequence of these symmetries,

⟨ | − ⟩ * = ⟨ | ⟩ * *−c cr k r k( )k k

and, therefore, the sum over all k in eq 18 naturally acts to
cancel the imaginary components from each term. That is,
although each term is complex, the other half of the sum adds
its conjugate. The appearance of “Re” in our description of
Ewald, PME, and FFP is to remind the reader that the
imaginary numbers vanish and only the real component of each
term thus needs to be computed. Equation 18 is often referred
to as a “complex-to-real” reverse (or inverse) Fourier transform
and is typically implemented within computer software to
utilize only a subset of symmetry-unique ck* values that are
provided as input.
Weighted least-squares fits can be performed to generalize

the plane wave expansion described above. These fits produce
coefficients

∑ ρ* = ⟨ | ̂| ′⟩ ⟨ ′| ̂| ⟩
′

−c O Ok k kk
k

1

(21)

that minimize the sum of squared errors ⟨Δ|Ô|Δ⟩ weighted by a
linear Hermitian operator Ô. In the general case, the
components of ck store the result of a fit that may have
required a coupled (as opposed to independent) solution to ak
and bk. For the specific case ⟨r|Ô|r′⟩ = |r − r′|−1, eq 21 is called
an “electrostatic fit”. The coefficients of an electrostatic fit
reduce to eq 19, because the plane waves are eigenfunctions of
the Coulomb operator (eq 16). In other words, eq 19 are the
plane wave expansion coefficients that best reproduce the
electrostatic potential of the periodic density.

2.3. Multipolar Ewald. One could, in principle, directly
project ρ(r) into the periodic basis and compute the interaction
from the plane wave representation; in practice, however, this is
intractable because an infinite number of plane waves would be
required to model δ(r). Therefore, the Ewald method abandons
the direct solution of eq 1, preferring instead to decompose the
periodic density into smooth and discontinuous components:
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whereby the smooth model density composed of Gaussians
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is well-approximated from a linear least-squares fit to
reasonably few plane waves:
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Furthermore, the model density was chosen to reproduce the
long-range electrostatic potential of the point multipoles to
ensure that only short-ranged corrections are required. In our

notation, ⟨k|ρ̃⟩ and ⟨k|χ⟩ = e−(k
2/4ζ) are Fourier coefficients of

the Gaussian density and Gaussian monopole, respectively. The
summation over k in eq 24 is a reverse Fourier transform, and
Sk is a “structure factor”.
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The Ewald energy is the interaction of ρ(r) with the
electrostatic potential of the plane wave projected periodic
Gaussian density ϕ̃(r) (see eq 32) upon correcting the short-
ranged differences between the point and Gaussian potentials
Δϕ(r) (see eq 27):
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where pã,lμ = ∂⟨ρ|ϕ̃⟩/∂qa,lμ and Δpa,lμ = ∂⟨ρ|Δϕ⟩/∂qa,lμ are the
corresponding “multipolar potentials”. The real-space correc-
tions to the potential, energy, and multipolar potential are given
as follows:
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Multipolar Potential Correction:
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These corrections are assumed to be sufficiently short-ranged,
such that only nearby minimum image separations Rab and |r −
Rb| need to be considered. An efficient algorithm for computing
eq 30 and its gradients, particularly for low-order harmonics, is
described in ref 56. The application of that algorithm requires
the following definition of the “auxiliary vector”:
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where Fn(x) is the Boys function.63

The reciprocal-space Ewald potential, energy, multipolar
potential, and contribution to the gradient are readily obtained
upon noting ⟨δ|k⟩ = 1.

Reciprocal-Space Ewald Potential:
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Energy:
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Multipolar Potential:
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Contribution to the Gradient:
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The extension of Ewald to atom-centered point multipole
expansions presented here differs from the standard point-
charge Ewald method only by the inclusion of STGOs in the
structure factor and real-space correction.

2.4. Multipolar Particle Mesh Ewald. A linear-scaling
implementation of the real-space Ewald corrections requires
only short-range cutoffs and a sufficiently large Gaussian
exponent; however, by fixing the cutoffand, hence, the
exponentthe computational complexity of the reciprocal-
space Ewald potential then scales with O(N2), because

(1) the number of plane waves must increase with the size of
the system, to maintain consistent resolution of the
periodic density, and
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(2) the calculation of each Sk requires a summation over the
number of particles.

In the unlikely event that the particles happened to be
positioned such that they formed a uniformly spaced grid,
however, then the expression for Sk would become a sum over
grid points (see eq 48) and the contribution of all grid points to
all Sk could be computed O(N log N) using a Fast Fourier
Transform (FFT). The novelty of PME is its coercion of the
particle positions to exploit this otherwise unlikely scenario to
speed the calculation of the reciprocal-space potential and
energy.
PME approximates the particle positions with a linear

combination of predefined uniformly spaced FFT grid points
Rt,

∑ θ⟨ | ≈ ⟨ − | ⟩⟨ | ≡ ⟨ ̃ |R R R R Ra a a
t

t t
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that can be used to compute Fourier coefficients from
numerical quadrature. The Gaussian quadrature of plane
waves is equivalent to Simpson’s integration rule performed
on a regular grid:
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N1, N2, and N3 are the number of FFT grid points in each
lattice direction; N = N1N2N3.
θ is a Cardinal B-spline weight evaluated about a particle

position:

∏θ − = − · * +
=

⎜ ⎟
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⎝

⎞
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n
r R r R a( ) ( )

2a
d

n d a d
1

3
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(39)

In our notation, the argument of Mn(u) is meant to be
periodically wrapped into the range (−Nd/2,Nd/2].
Mn is a Cardinal B-spline function that holds recursion

properties for efficient evaluation of their values and
gradients.38

∑=
− !

− −
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0

1

(40)

The B-spline weights are real ⟨r|θ⟩ = ⟨θ|r⟩, have even symmetry
⟨−r|θ⟩ = ⟨r|θ⟩, sum to one (∑t⟨Rt − r|θ⟩ = 1 ∀r), and are
nonzero only for those grid points near the particle. The
number of grid points contributing to the approximate position
of a particle is determined from the chosen B-spline order
without regard to the FFT grid spacing.
Following the work of Schoenberg,64−66 previous descrip-

tions38 of PME have used Cardinal B-splines as a linear basis to
construct “exponential Euler splines.” In that point of view, the
structure factors are computed from approximate plane waves
that are spline-evaluated at the actual particle positions. We

below choose an alternate perspective by applying eq 36 to
obtain the same outcome, which we then relate to ref 38.
The charge density is composed of atom-centered functions;

therefore, it is convenient to re-express eq 36 as

∑ θ⟨ − | ≈ ⟨ − | ⟩⟨ − | ≡ ⟨ − |͠r R R R r R r Ra a a
t

t t
(41)

which is deduced from the invariance of the relative particle and
grid positions upon their simultaneous reflection about the
origin and subsequent translation by +r; that is, Ra → r − Ra

and Rt → r − Rt. An atom-centered Gaussian is thus
approximated by a linear combination of Gaussians centered
about the FFT grid points:

∑χ θ χ⟨ − | ⟩ = ⟨ − | ⟩⟨ − | ⟩͠r R R R r Ra a
t

t t
(42)

However, this has the unintended consequence of making the
approximate Gaussian appear artificially diffuse as the B-spline
order is increased. Fortunately, if the B-spline is of sufficient
order to be accurately integrated by the discrete Fourier
transform, then the Fourier coefficients of the approximate
Gaussian

∫ ∑

∑

χ θ χ

θ

χ

θ χ

⟨ | ⟩⟨ − | ⟩ = ⟨ − | ⟩⟨ | ⟩⟨ | ⟩
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(43)

are those of the true Gaussian,

∫ χ χ⟨ | ⟩⟨ − | ⟩ = ⟨ | ⟩⟨ | ⟩rk r r R k R kda a
3

(44)

scaled by the B-spline DFT coefficients θk. Note that θk = θk*,
because the B-splines are even functions. Repeating this
procedure for δ⟨ − | ⟩͠r Ra , or any function |f⟩, yields analogous
results. In other words, the Fourier coefficients of an
approximately positioned function should be scaled by θk

−1.
Let us continue on a brief aside that relates eq 36 to the

exponential Euler splines used in ref 38 by considering its
application to ⟨k|k′⟩ = δk,k′V in the manner above using either
of the relations

∑

∑

θ

θ
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t
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0a

a (45)

The result ∫ V⟨k|r⟩⟨r|̃k′⟩ d3r = θk⟨k|k′⟩ implies the need to
effectively renormalize an “approximate plane wave” upon grid
interpolation; that is, ⟨r|k⟩ ≈ ⟨r|̃k⟩θk

−1, which are the
exponential splines. The relationship between eq 36 and the
exponential Euler splines is the interpretation of whether it is
the approximate plane wave or the Fourier coefficient of the
approximately positioned function that is renormalized:
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(46)

The subtle distinction between these interpretations has no

practical consequence on the PME method other than, perhaps,

how the mathematical terms are grouped together; eq 47 scales

the structure factor by θk
−1, whereas ref 38 absorbs it into the

definition of Sk.
The periodic representation of the model Gaussian density

(eq 23) composed of the approximate Gaussians (eq 42) is,

upon scaling the Fourier coefficients,

∑ ∑ρ
χ

θ
̃ + ≈ ⟨ | ⟩ ⟨ | ⟩
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( ) Re

1

n k k
k
pme

(47)

where the PME structure factor,
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is the forward DFT of
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whose evaluation avoids O(N2) operations by the locality of

θ(r).
The PME reciprocal-space potential is the electrostatic

potential of eq 47,
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(50)

and yields the following PME reciprocal-space energy,

multipolar potential, and contribution to the gradient:

PME Reciprocal-Space Energy:
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Multipolar Potential:
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Contribution to the Gradient:
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(53)

The extension of PME to atom-centered point multipole
expansions presented here differs from the standard point
charge PME method only by the inclusion of STGOs acting
upon the B-spline in eqs 49−51 and, like Ewald, the real-space
correction (eqs 27 and 28).
Although the STGO has many remarkable properties61 when

acting upon a spherical function, a regular or irregular solid
harmonic, or a product of the these functions, the B-spline
weights cannot take advantage of these properties. Instead, one
must treat the STGO as a linear combination of gradient
operators,
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whose coefficients are exactly those that relate Clm
c/s(r) to

Cartesian monomials:67
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where
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(56)

and oc = 0 and os = 1. In the above notation, m = |μ|, Clμ≥0(∇) =
Clm
c (∇), and Clμ<0(∇) = Clm

s (∇).
2.5. Multipolar Fast Fourier−Poisson Method. Fast

Fourier−Poisson (FFP), like Ewald, abandons the direct
solution to eq 1 by introducing a Gaussian density whose
potential can be determined from a plane wave expansion.41

Unlike the Ewald method, FFP evaluates the plane wave
expansion coefficients from numerical quadrature to take
advantage of FFTs. The electrostatic potential of the plane-
wave-resolved Gaussian density is computed in Fourier space,
evaluated on a regular grid by means of a reverse FFT, and then
used to numerically integrate the Coulomb self-energy of the
Gaussian density. Therefore, the FFP real-space corrections
account for the short-ranged differences between the Gaussian
and point interaction energies:
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(57)

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5007983
J. Chem. Theory Comput. 2015, 11, 436−450

441

http://dx.doi.org/10.1021/ct5007983


The plane wave representation of the periodic model density
composed of the Gaussian multipoles is

∑ ∑ρ ρ̃ + = ⟨ | ⟩⟨ | ̃⟩
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r n r k k( ) Re
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n k (58)

where
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The evaluation of ⟨Rt|ρ̃⟩ avoids O(N
2) operations by evaluating

χlμ(Rt − Ra) only for minimum image distances within a
suitable cutoff. The real-space energy corrections, ΔTlμ,jκ, vanish
when the Gaussians do not overlap
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(60)

where sn,0
a,b = 1 − δn10δn20δn30δab). Therefore, eq 60 is well-

approximated by computing the integrals for the short-ranged,
minimum-image Rab separations only. Explicit expressions for
the real-space energy correction, multipolar potentials, and
gradient contribution are analogous to those shown in eqs
28−31 upon substituting ζ with ζ/2, which arises from the
Gaussian product theorem.
The FFP reciprocal-space energy, multipolar potential, and

contribution to the gradient are as follows:
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Multipolar Potential:
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Contribution to the Gradient:
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The gradient of the Gaussian basis,
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is efficiently computed using the following derivative
properties:58
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When negative m values are encountered, the reader is
implicitly instructed to apply the symmetry property Rl,−m

c/s (r)
= ±(−1)mRlm

c/s(r), which follows directly from Rlm* (r) =
(−1)mRl,−m

c/s (r), where the plus/minus sign (±) corresponds to
the cosine/sine designation.

2.6. Correction for Charged Systems. Let ⟨r|j|̂r′⟩ = ∑n|r
− r′ + n|−1; then, we can rewrite eq 1.

ρ ρ
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2
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2 (68)

If the net charge is nonzero (∫ ρ(r) d3r = Q), then the system is
nonphysical and this definition of the energy is infinite.
Although it is possible to neutralize the density in arbitrarily
different ways to produce different energies, a particularly
convenient choice is made by introducing a uniform back-
ground density,68

ρ ̅ =
⎧⎨⎩

Q V
r

r
( )

/ if in unit cell

0 otherwise (69)

and ∑nρ̅(r + n) = Q/V, everywhere. With this choice of
neutralization, the energy is
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(70)

However, 1/2 ρ ρ ρ̂ ̃ − ̅j = 1/2⟨ρ|ϕ̃⟩, as written in the previous
sections, by virtue of excluding the k = 0 term in the Ewald
summation, because it is charge-neutral. Similarly,
1/2 ρ ρ ρ̅ ̂ ̃ − ̅j vanishes, because the exclusion of the k = 0
term produces a potential composed of functions that are each
orthogonal to a constant over the range of the unit cell. The last
term in eq 70 vanishes, by symmetry, for all nonzero multipoles
and is well-approximated by an integral over all space if ζ is
sufficiently large to extinguish the correction potential within
the bounds of the unit cell (in a minimum image context). As a
result of these properties, the energy of a charged system is

π
ζ

= −E E
Q

V2Q

2

(71)

An analogous result is written for FFP by replacing ζ with ζ/2.
For completeness, we note that it has been pointed out69,70

that eq 1 is absolutely convergent only if the total dipole
moment of the system μ is zero; however, it is otherwise only
conditionally convergent. In other words, the asymptotic value
of eq 1 is dependent on the shape of the supercells used to
replicate the system. A “dipole surface” term 2π|μ|2/[(2εS + 1)
V] can be applied to mimic an infinite spherical sample of a
cubic cell; however, this energy is usually ignored in Ewald
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implementations,38 because its application to charged systems
has a dependence on an arbitrary origin and it produces
discontinuous energy changes when charged residues are
wrapped into the primary unit cell.71 By ignoring this term,
we are said to employ “tinfoil boundary conditions”, because it
is equivalent to embedding the crystal inside a perfect
conductor (εS → ∞).
2.7. Error Analysis. Figure 1 compares the Ewald energy

(eq 26) to a brute force evaluation of eq 1, as a function of

replicated unit cell length. The fundamental unit cell is a 10 Å
cube containing three-point multipoles:

∑ρ δ δ δ
δ δ

δ δ= − − + +
μ

μ μ
μ

μ μr r r R r R( ) ( )
2

( ( ) ( ))
l

l L l
l L

l l, ,0
, ,0

(72)

where R = (1 Å)z.̂ The unit cell is replicated by extending the
sides of the cell to form increasingly larger cubes. The various
lines in Figure 1 indicate the nonzero angular moment in eq 72.
The “relative energy error” is defined as

=
−E E
E

relative energy error n

n

2

2

where E is the Ewald energy evaluated with |kmax| = 256 and En
is eq 1 after replication to the specified size. The relative error is
bounded by ≥10−15, because of our use of double-precision
arithmetic. The loss of one or two additional digits of precision
should be expected, because of the accumulation of round-off
errors.
Figure 2−4 make use of an ad hoc three-site water model to

analyze the relative force errors and the real-space and
reciprocal-space timings of Ewald, PME, and FFP, as a function
of atomic multipole order. These three figures are the analysis
of a box of 1024 waters whose bulk density has been
equilibrated with TIP4P-Ew at 298 K. The 3-site multipolar
water models used to perform the analysis are systematically
constructed from a 5-site charge-only water model. The 3- and
5-site water models use the DFTB372 gas-phase structure of
water (these coordinates are superimposed onto the TIP4P-Ew

waters): ROH = 0.957143 Å, RHH = 1.572691 Å, ∠HOH =
110.4812° (the 5-site model includes two additional charges
located at the O−H bond midpoints). The atom charges (a.u.)
(qO

5‑site = −0.12404869708, qH5‑site = 0.66106645662) and the
bond charges (qB

5‑site = −0.59904210808) were computed from
the isolated water DFTB3 density matrix; that is, qO

5‑site is the
one-center atomic orbital (AO) product contribution to the
Mulliken charge of O, and qB

5‑site is the Mulliken bond charge
between O and H. The multipole moments of the 3-site model
are constructed from a Mulliken-like partitioning and
subsequent solid harmonic translation of the 5-site model
bond charges:
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(73)

Figure 1. Comparison between the Ewald energy to the energy
computed from explicit replication of a unit cell, as a function of
replicated cell length for systems composed of the indicated multipole
orders.

Figure 2. Decomposition of the intermolecular electrostatic forces
using a box of 1024 waters. Lmax indexes the ad hoc 3-site water model
being considered, as distinguished by the multipole expansion order on
the oxygen.

Figure 3. Wall clock time required to evaluate the real-space
corrections (eq 29) for a box of 1024 waters using different real-
space cutoffs. Lmax indexes the ad hoc 3-site water model being used.
The inset values are timing ratios T(Lmax)/T(0), that is, the slow-down
relative to the charge-only model.
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(74)

The intrawater interactions are excluded when analyzing the
relative force errors with these models.
In order to interpret the results in Figure 4, it is useful to

understand how the multipole order influences the magnitude
of the forces. For this purpose, Figure 2 decomposes the
intermolecular electrostatic forces within the 1024 water box by
the percent contributed from the charge−charge interactions,
the non-“charge−charge” interactions, and those interactions
that involve a particular angular momentum L. Let FL be the 3
N vector of atomic forces for a system of waters composed of
the ad hoc 3-site water model using an order L multipole
expansion. The “percent contribution” of the charges, the
multipoles, and a particular multipole L to the forces are
respectively chosen to be

= −= >F F% 100 %L L0 0 (75)
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(77)

The relative force errors (RFEs) in Figure 4 are calculated
using the expression

=
| − |

| |
F F

F
RFE L L

L

model, ref,
2

ref,
2

(78)

where Fref,L is the vector of Ewald forces evaluated with |kmax| =
128 and whose real-space corrections include all N2 minimum
image interactions. The Gaussian exponent has been non-

Figure 4. Reciprocal-space evaluation timings (left column), relative force errors (RFEs) (middle column), and the Gaussian exponents (right
column) chosen to minimize the RFEs of Ewald (top row), PME (middle row), and FFP (bottom row), using the box of 1024 waters. Lmax indexes
the ad hoc 3-site water model being used.
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linearly optimized to minimize each RFE, and their values are
shown in Figure 4 using the convention β = ζ1/2.
The timings reported in Figures 3, 4, and 6 were performed

on an Intel Xeon E5520 2.27 GHz workstation consisting of a
total of 8 cores, and the software was rudimentarily parallelized
with OpenMP to make use of all cores.
2.8. Implementation within the mDC Quantum Force

Field. The analyses in Figures 5, 6, and 7, and the data shown

in Table 1, were produced from condensed-phase calculations
using the mDC linear scaling quantum force field.31 In brief, the
quantum mechanical treatment of the entire system is replaced
by a series of quantum calculations for each molecule. Although
the molecular orbitals of each fragment are not directly
coupled, the subsystems remain coupled through the
interactions of their electron densities and empirical potentials.
Specifically, the mDC method performs DFTB3/3OB semi-
empirical calculations72 of each molecule while subjecting them
to an effective chemical potential arising from the intermo-
lecular interactions. This idea is conceptually similar to “density
functional embedding theory”;73 however, mDC replaces the
rigorous evaluation of the embedding potential with computa-
tional tractable empirical approximations that are tuned for high
accuracy. The standard DFTB3 semiempirical model evaluates
the electrostatic interactions from Mulliken charges that are
updated until self-consistency is reached. In the mDC
formalism described below, the standard DFTB3 treatment
continues to be used for those atoms within a common
fragment; however, we concoct an auxiliary set of atomic
multipoles from the density matrix to improve the
intermolecular interactions. The multipolar potentials arising
from those interactions enter the fragment Fock matrices as an
effective external chemical potential, and the multipoles are
updated at each step of the SCF procedure. Let EA be the
DFTB3 energy for molecule A consisting of atoms located at
RA; then, the mDC energy is

∑= +E E N ER p R q( , , ) ( , )
A

N

A A A AmDC inter

mol

(79)

Figure 5. Conservation of the mDC total energy for 1 million steps in
a NVE simulation of N,N-dimethylglycine, using the multipolar PME
method with 6th order B-splines.

Figure 6. SCF and SCF + gradient timings using the mDC quantum force field for a series of water boxes. “L = 0” indicates that only atomic charges
were used to compute electrostatics, whereas “L = 2” indicates that up to quadrupoles were used on the heavy atoms.
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where NA is the number of electrons in fragment A, qa,lμ is an
atomic multipole moment determined from the DFTB3 density
matrix, and pa,lμ = ∂Einter/∂qa,lμ is the multipolar potential
describing the effective external potential experienced by atom
a. With this convention, the σ-spin Fock matrix used to
construct the orbitals of molecule A is given as
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+
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μ
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,
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,
,

,

,
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As explained in ref 31, the atomic charges are computed from a
biased Mulliken partition of the density matrix, and the higher-
order multipole moments (up to quadrupoles for heavy
elements) are computed from the single-center AO−product
components of the density matrix. The intermolecular
interaction energy Einter consists of Lennard-Jones potentials
and the electrostatic interaction of the atomic multipoles. The
electrostatic energy and multipolar potentials are evaluated
using either the Ewald, PME, or FFP methods described in the
previous sections. Because the multipole moments are
dependent on the density matrix and the Fock matrix is
dependent on the interactions with the other molecules, the
mDC energy must be optimized until a mutual convergence is
met for all molecules.
Figure 5 illustrates the quality of the mDC forces by

demonstrating conservation of the total energy in a NVE
simulation of an N,N-dimethylglycine (DMG) crystal at 225 K.
The crystal consists of 288 DMG residues (4608 atoms)
constructed from supercell replication of the experimentally
determined X-ray structure74 and was simulated at the
experimental density with a locally modified development

Figure 7. RFEs observed with the mDC linear-scaling quantum force field using various methods of computing the electrostatic interactions. The top
portion of the figure shows a box of 1024 waters, whereas the bottom of the figure shows a supercell of N,N-dimethylglycine containing 4608 atoms.
Errors are reported relative to FFP evaluated with 3 points/Å and a minimum image (“min img.”) short-range correction. The label “9 Å” indicates
the range used for the short-range real-space corrections and, for FFP, the evaluation of the model Gaussian density at the FFT grid points. Dotted
lines indicate the ability of the electrostatics protocol to reproduce the electrostatic component of the force, using the atomic multipoles obtained
from the reference FFP calculation. The dashed lines are mDC RFEs, using cutoff-based electrostatics without any Ewald treatment.

Table 1. Effect of Electrostatic Cutoff on the Condensed-
Phase Properties of Water at 298 K

density, ρ (g/cm3) heat of vaporization, ΔHvap (kcal/mol)

expta 0.9970 10.51
PMEb 0.9969 10.62
9 Å cutoff 1.0110 10.87

aData taken from refs 86 and 87. bSixth-order B-spline interpolation,
grid spacing of 1 point/Å, and short-range cutoff of 9 Å.
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version of PMEMD75 that incorporates the mDC method. The
simulation was performed using a 0.5 fs time step for 1 million
steps, and the electrostatics were computed with sixth-order B-
spline PME, a 9 Å real-space cutoff, and a 1 pt/Å FFT grid
density.
Figure 6 demonstrates linear scaling of the mDC method for

a series of water boxes. In addition, timings were recorded for
an ad hoc mDC model that limits the intermolecular
interactions to monopoles for the sole purpose of determining
the relative cost of incorporating atomic quadrupoles. The
PME calculations were performed with sixth-order B-splines, a
real-space cutoff of 9 Å, and an FFT grid density of 1 point/Å.
The FFP calculations were performed with an FFT grid density
of 1 point/Å and a cutoff of 9 Å in both the real- and reciprocal-
space calculations, that is, the evaluation of the model Gaussian
density at the FFT grid points.
Unlike the ad hoc water models used in Figure 4, mDC self-

consistently models each molecule’s polarization in response to
its environment (the other molecules). Because the polarization
is induced from the environment’s electrostatic potential, the
electrostatic protocol indirectly introduces atomic force errors
by altering the electronic polarization. Within the mDC
method, the change in polarization is produced from the
difference in the multipolar potential contributions to the Fock
matrix. Figure 7 decomposes the mDC force errors to quantify
the extent to which the protocols indirectly effect the forces
through their difference in polarizations. First, a mDC
calculation is performed using a reference electrostatic protocol
to produce a SCF converged energy (EmDC,ref) and charge
density (qref). The dotted lines in Figure 7 are the RFEs
computed from the vectors of intermolecular electrostatic
forces evaluated with qref

= −
∂

∂
E

F
R

q
ref

elec,ref

ref (81)

= −
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∂
E

F
R

q
model
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where Eelec,model and Eelec,ref are the model and reference
intermolecular electrostatic energies, respectively. A second
mDC calculation is then performed using a model electrostatic
protocol throughout the SCF procedure to produce a
converged energy EmDC,model and charge density qmodel. The
solid lines in Figure 7 are the RFEs computed from
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which are evaluated with different electrostatic protocols and
charge densities. The dashed lines in Figure 7 are computed
from eqs 83 and 84, where EmDC,model is evaluated using a
molecule-based cutoff electrostatic protocol; that is, no
treatment for periodicity was applied beyond employing the
minimum image convention within the cutoff radius. The
electrostatic interactions between the waters were smoothly
switched off from 8 Å to 9 Å, based on the O−O separation. All
reference calculations were performed with FFP using a 3

point/Å grid density and a full minimum image treatment of
the short-range corrections and reciprocal-space evaluation.
The PME and electrostatic cutoff methods are compared in

Table 1, which examines how these methods effect the density
and heat of vaporization of liquid water at 298 K. These
properties were computed from 8-ns simulations of 512 waters
in the NPT ensemble using the Monte Carlo barostat,75 and
the Andersen thermostat,76 as implemented in PMEMD. A
time step of 1 fs was used in conjunction with SHAKE77,78 to
constrain the internal structure of the waters to the isolated
DFTB3 geometry. The parameters of the mDC water model
used to generate these properties are described in Part 2 of this
series.51

3. RESULTS AND DISCUSSION
3.1. Comparison to Brute Force Replication. Figure 1

establishes the correctness of the Ewald formulas for various
multipole orders by comparing its energy to brute force
evaluation of eq 1. Analogous plots for FFP and PME with
suitably dense FFT grids and B-spline order are indistinguish-
able from the Ewald results shown in Figure 1. The errors in
the energy flatten to a constant in the range of 10−13−10−14,
because the large number of calculations involved in the brute
force evaluation suffer from a loss of numerical precision. As the
multipole order is increased, the energy converges more
quickly, because the Coulomb interactions decay by r−la−lb−1.
When L ≥ 4, the range of the interactions become so small that
the energy is well-approximated by the minimum-image
interactions.

3.2. Errors and Timings as a Function of Multipole
Order. Before comparing the Ewald, PME, and FFP RFEs, it is
useful to briefly discuss the relative magnitude of the forces
associated with increasing the multipole order. As shown in
Figure 2, the charge−charge interactions represent 40%−50%
of the force when higher-order multipoles are used in the ad
hoc water model. Furthermore, higher-order multipoles
progressively contribute less to the force, since their
interactions become shorter-ranged. All interactions involving
the octupoles within the Lmax = 3 water model, for example,
contribute <5% to the force, whereas all interactions involving
L = 5 contribute <0.5%.
The wall-clock time required to evaluate the real- and

reciprocal-space contributions to the multipolar potentials, as a
function of multipole expansion order, are displayed in Figures
3 and 4, respectively. The real-space corrections evaluated from
eqs 29 and 30 and the algorithm in ref 56 are particularly
efficient for Lmax ≤ 3. For higher-order expansions, techniques
based on rotations into an internal-coordinate system can be
used to further improve performance;52,79 however, considering
the short-range and relative insignificance of these interactions,
it can be verily questioned if practical models for condensed-
phase simulations will consider their additional cost worthwhile.
Including quadrupoles on the oxygen causes the real-space
evaluation timings to slow down by a factor of 1.8, relative to a
charge-only model. Comparison of the reciprocal-space timings
in Figure 4 suggests that, for this system of 1024 waters, FFP
and Ewald are ∼2 and ∼100 times slower than PME,
respectively, for comparable error levels. Furthermore, the
evaluation of the real-space corrections at Lmax = 2 with a cutoff
of 9 Å are approximately twice as slow as the sixth-order B-
spline PME reciprocal-space evaluation times.
The optimized Gaussian exponents shown in Figure 4 are far

more sensitive to the choice of real-space cutoff than they are to
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multipole order. As the real-space cutoff is increased, the
Gaussian exponent decreases to become better resolved in the
plane wave basis, and this consequently decreases the errors of
the reciprocal-space forces. Similarly, increasing the PME B-
spline order affords the opportunity to increase the Gaussian
exponent to reduce the errors in the real-space correction
without sacrificing accuracy in the reciprocal-space potential.
3.3. Comparisons within a Linear-Scaling Quantum

Force Field Framework. Much of this manuscript uses the
word “error” to describe a difference between an accurate
electrostatics protocol and a more approximate treatment.
However, this phrasing should not be misconstrued to
incorrectly suggest that the PME gradients are inconsistent
with the PME energy, for example. To emphasize this, Figure 5
demonstrates conservation of total energy in a NVE simulation
of DMG for 1 million time steps evaluated with the mDC
quantum force field, whose electrostatics are computed with
PME. If there were an inconsistency between the energy and
forces, then we would observe a significant drift in the energy as
time is propagated; however, we do not observe a drift.
The mDC method is linear scaling when using either PME or

FFP, as illustrated in Figure 6. When evaluated with PME, a box
of 4096 waters can be SCF converged within <0.7 s.
Furthermore, our timings indicate that the use of quadrupoles
slows the mDC calculation by a factor of 1.5, relative to a
charge-only model. This is slightly less than the ratio observed
in Figure 3, because the mDC and charge-only mDC
evaluations share common operations that are independent of
the multipole order used in their intermolecular electrostatics
(for example, their Fock matrix diagonalizations). The number
of SCF cycles required to reach convergence is not particularly
sensitive to the size of the system, which can be inferred from
the linear-scaling shown in Figure 6. The SCF convergence rate
is largely determined by the quality of the initial guess orbitals.
In practice, the difference between MD steps is so small that
convergence can typically be reached within 4−6 cycles.
Ewald, PME, and FFP are approximate, but their accuracy

can be systematically improved by adjusting the number of
plane waves, the Gaussian exponent, and the real-space
correction cutoff. In the analysis of Figure 4, we examine
how these parameters alter the electrostatic energy protocol by
quantifying their effect on atomic forces (for a fixed charge
density), −∂E/∂R|q, while ignoring their effect on electrostatic
potentials ∂E/∂q|R. However, the parameters do effect the
electrostatic potentials. Furthermore, the electrostatic potentials
enter the Fock matrix via eq 80. Therefore, the parameters
indirectly effect the charge density through the propagation of
electrostatic potential “errors” within the SCF, which cause its
convergence to a different density matrix. In other words, not
only will ab initio methods (or any polarizable model) suffer
from the “primary error” associated with the partial derivative
−∂E/∂R|q, they also incur a “secondary error” when the model
and reference forces are evaluated about different charge
densities. The dotted lines in Figure 7 are the primary
electrostatic errors; that is, they are the RFEs associated with
the electrostatic forces evaluated from the atomic multipoles
generated from the reference calculation. The solid lines in
Figure 7 contain both the primary and secondary errors
produced when the reference and approximate electrostatic
protocols are used throughout the SCF procedures to yield two
slightly different densities.
The reader may first notice that the primary FFP errors

decrease and converge, with respect to FFT grid density

quickly; however, the secondary errors trail off at 10−11 to
10−10. This limit is ultimately caused by our SCF numerical
convergence criteria. The errors in Figure 7 were generated
with a 10−12 tolerance on the maximum value appearing in the
“error matrix”, that is, the commutator between the Fock matrix
and the density matrix.
As expected, one observes a decrease in error as the PME B-

spline order is increased, the FFT grid density is increased, and
as the real-space cutoff is increased. The mDC RFEs observed
in water and DMG parallel the primary errors; however, the
DMG secondary errors are significantly larger than those
observed in water. The reason for this is because a DMG
molecule contains 16 atoms, whereas water contains 3. By
having more AOs, the DMG molecules are more likely to
converge to a slightly different density matrix.
Before PME was popularized in MD simulations,37,38

electrostatic cutoffs were often used, and many of the original
water models were thus parametrized using a cutoff protocol. It
was later found that application of those water models with
PME caused significant changes in the thermodynamic
properties of liquid water,80−82 and it has been suggested that
new water models not be parametrized using cutoffs,81 because
their application within simulations of biomolecules often
necessitates the use of an Ewald treatment.83,84 Nonetheless,
some recently developed water models have continued to be
parametrized using cutoffs.85 Therefore, we are obliged to
investigate by how much this may effect condensed-phase
properties. First, in Figure 7, we note that a cutoff of 9 Å
produces an RFE value of 0.1, in comparison to the RFE value
observed with a sixth-order B-spline PME with a grid spacing of
1 point/Å FFT (2 × 10−5). Furthermore, even if all N2

minimum image interactions were computed without PME,
the RFE is still 0.04. Finally, we performed MD simulations
using a parametrized mDC water model to obtain an
equilibrated density and heat of vaporization, as shown in
Table 1, and we reperformed the simulations using switched-
cutoff electrostatics to make comparison. In agreement with
previous works,80,81 we observe that cut-off electrostatics cause
the density of water to increase, and because the interactions in
this range are attractive overall, this also causes the heat of
vaporization to increase.

4. CONCLUSION
This work presented extensions of the Ewald, Particle Mesh
Ewald (PME), and Fast Fourier−Poisson (FFP) methodologies
to systems composed of point multipole expansions to arbitrary
order by making use of the spherical tensor gradient operator.
The timings and errors inherent to these methods were
compared using ad hoc water models and with a parametrized
water based on the modified divide-and-conquer (mDC) linear-
scaling quantum force field. These comparisons lead us to
conclude that (i) the FFP method is approximately twice as
slow as the PME method at comparable error levels; (ii) the
inclusion of quadrupoles in the linear-scaling force field slow
the calculations by 1.5, relative to a charge-only model; and (iii)
with the exception of the Ewald method, the real-space
corrections are more expensive than the reciprocal-space
calculations for typical cutoff values. Furthermore, our results
suggest that the evaluation of multipolar electrostatics involving
orders greater than 3 could likely be computed to an acceptable
error using an electrostatic cutoff, because of their overall short-
range and relative insignificance, in comparison to lower-order
interactions.
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The relative force errors exhibited within mDC were
decomposed into primary and secondary errors, where the
primary errors directly result from the approximations within
the PME or FFP algorithms for a given density, and the
secondary errors are the propagation of the model’s electro-
static potential within the self-consistent field (SCF) procedure,
resulting in a different converged density matrix. It is found that
the force errors closely follow the primary errors, and the
magnitude of the secondary errors is related to the number of
atomic orbitals (AOs). Nevertheless, the presence of these
“errors” does not imply that the mDC forces are inconsistent
with its energy, which was demonstrated with an NVE
simulation that was devoid of an energy drift. Instead, these
differences merely reflect how similar an electrostatic protocol
is to another reference protocol.
Finally, the importance of using an Ewald treatment in

simulations, as opposed to using electrostatic cutoffs, was
emphasized by comparing the density and heat of vaporization
of water. The electrostatic cut-off method was found to
artificially increase the density and heat of vaporization of
water.
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