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ABSTRACT

While DNA methylation (DNAm) is the most-studied
epigenetic mark, few recent studies probe the
breadth of publicly available DNAm array samples.
We collectively analyzed 35 360 Illumina Infinium
HumanMethylation450K DNAm array samples pub-
lished on the Gene Expression Omnibus. We learned
a controlled vocabulary of sample labels by apply-
ing regular expressions to metadata and used ex-
isting models to predict various sample properties
including epigenetic age. We found approximately
two-thirds of samples were from blood, one-quarter
were from brain and one-third were from cancer pa-
tients. About 19% of samples failed at least one of
Illumina’s 17 prescribed quality assessments; sig-
nal distributions across samples suggest modify-
ing manufacturer-recommended thresholds for fail-
ure would make these assessments more informa-
tive. We further analyzed DNAm variances in seven
tissues (adipose, nasal, blood, brain, buccal, sperm
and liver) and characterized specific probes distin-
guishing them. Finally, we compiled DNAm array data
and metadata, including our learned and predicted
sample labels, into database files accessible via the
recountmethylation R/Bioconductor companion
package. Its vignettes walk the user through some
analyses contained in this paper.

INTRODUCTION

DNA methylation (DNAm, Table 1) has been widely stud-
ied for its roles in normal tissue development (1–4), bio-
logical aging (5–7) and disease (8–12). DNAm regulates
gene expression, either in cis if it occurs in a gene’s pro-
moter, or in trans if it overlaps an enhancer or insulator
(4,9,13). Whole-genome DNAm (or ‘methylome’) analysis,
especially in epigenome-wide association studies (EWAS),
is a common strategy to identify epigenetic biomarkers with
potential for clinical applications such as in prognostic or
diagnostic panels (14–16).

Most investigations probe DNAm with array-based plat-
forms. Published DNAm array data and sample metadata
are commonly available through several public resources.
These include cross-study databases like the Gene Expres-
sion Omnibus (GEO) (17,18) and ArrayExpress (19), as well
as landmark consortium studies like the Cancer Genome
Atlas (TCGA) (20) and the Encyclopedia of DNA Elements
(ENCODE) (21,22). Recently published databases and in-
terfaces provide access to samples from these sources (23–
27).

While over 1604 DNAm array studies and over 104 000
samples have been submitted to GEO since 2009 (Supple-
mentary Figure S1), there have been few attempts to rigor-
ously characterize technical and biological variation across
these studies. In 2013, two studies independently compiled
DNAm array samples from GEO and elsewhere, analyzing
epigenetic age across tissues and diseases (5), and investigat-
ing cross-study normalization (28). More recent cross-study
analyses include (29) from 2018, which evaluated metadata
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Table 1. Abbreviations used frequently in this paper

Term Meaning Description

GEO Gene Expression
Omnibus

Public database containing all methylation array data analyzed in this paper.

GSE Study accession
number

Unique identifier for a study record in GEO that includes a platform, set of sample records and
supplemental matrices containing assay data.

GSM Sample accession
number

Unique identifier for a sample record that includes sample-specific metadata and may also
include supplemental sample datasets.

CpG Cytosine-guanine
dinucleotide

Dinucleotide sequence, or locus, consisting of a cytosine followed by a guanine.

DNAm DNA methylation The presence of a nucleotide-bound methyl group, typically at the 5’ cytosine position in a CpG
locus.

HM450K HumanMethylome
450K

Popular array platform, manufactured by Illumina, that uses BeadArray technology to probe
DNAm at roughly 480 000 CpG loci.

and sample quality across 8327 DNAm array samples, and
(30) from 2020, which validated sperm-specific DNAm pat-
terns using 6288 samples.

While the GEO website provides access to submit-
ted experiment and sample metadata, the metadata are
not necessarily structured and require harmonization to
facilitate cross-study analyses. There are currently no
R/Bioconductor (31) packages providing access to uni-
formly normalized array data across GEO studies accom-
panied by harmonized metadata. It should also be noted
that most GEO studies do not include raw intensity data
(IDAT) files, which are needed to uniformly normalize sam-
ples and thus limits their utility for novel cross-study anal-
yses.

The vast majority of GEO DNAm array data is com-
posed of samples using Illumina’s HumanMethylation
450K (HM450K) BeadArray platform. Restricting atten-
tion to HM450K samples with IDATs published on or be-
fore 31 March 2019, we identified 35 360 samples from 362
studies, over three times the number of samples studied by
either (5),(28), or (29). From sample IDATs, we extracted
raw signals and probe significance data, derived quality
metrics from control probe data and performed normal-
ization on out-of-band signal with the noob method (32).
We also learned a controlled vocabulary of sample labels
by applying regular expressions to metadata and used ex-
isting DNAm array-based models to predict sex, epigenetic
age and blood cell fractions (5,33,34). We conducted anal-
yses investigating the performances of standard quality as-
sessments and identified studies with frequent failed sam-
ples. Finally, we characterized autosomal DNAm variation
in 7484 samples from seven non-cancer tissue types. This
analysis complements recent independent efforts to quan-
tify tissue-specific DNAm patterns (30) and showcases sev-
eral of the relatively rare sample types we compiled from
GEO (e.g. sperm, adipose and nasal).

To aid other investigators interested in reanalyzing
DNAm array data from GEO, we compiled raw and
noob-normalized DNAm array data with our learned
and predicted metadata into Hierarchical Data For-
mat 5 (HDF5)-based databases accessible using re-
countmethylation, a companion R/Bioconductor (31)
package available at https://doi.org/doi:10.18129/B9.bioc.
recountmethylation. Use of this package is covered thor-
oughly in accompanying vignettes, which also reproduce
some of the results contained in this paper.

MATERIALS AND METHODS

Discovery and download of DNAm array IDATs on GEO

We used the esearch function of Entrez Programming
Utilities v10.9 to search for every HM450K sample pub-
lished to GEO as of 31 March 2019 for which two gzip-
compressed IDAT download URLs were available. We
ultimately downloaded IDATs for 35,360 sample records.
Search and download were performed using the script
https://github.com/metamaden/recountmethylation server/
blob/master/src/server.py. Note, the HM450K plat-
form accession ID, GPL13534, is specified in the script
https://github.com/metamaden/recountmethylation server/
blob/master/src/settings.py, and changing this will cause
the server to target a different array platform.

Preprocessing of DNAm array IDATs on GEO

We preprocessed DNAm array IDAT pairs for 35 360
HM450K samples on GEO using the R/Bioconductor
package minfi v1.29.3 (33), applying the normalized
exponential out-of-band probe method (i.e. noob nor-
malization) in the analysis pipeline at https://github.com/
metamaden/recountmethylation.pipeline. The noob nor-
malization technique mitigates run-specific technical biases
and precedes batch- and/or study-level normalization steps
(32).

Quality control results

We computed 19 quality metrics from red and green
color channel signals for HM450K samples (Supplemen-
tary Table S2). To obtain the 17 BeadArray controls,
we referred to Illumina’s official documentation (35,36)
as well as methods in the ewastools v1.7 package
(29). For our calculations, we used signal from the ex-
tension green control as background, and we used a
denominator offset of 1 where it would otherwise be 0
(Supplemental Information) (29)). These calculations
were done with the script https://github.com/metamaden/
recountmethylationManuscriptSupplement/blob/main/
R/beadarray cgctrlmetrics.R. We thereby obtained a
binary matrix of outcomes across the 17 BeadArray
controls, where pass = 1, and fail = 0, on which we
performed PCA using the ‘prcomp’ R function from
the stats v4.0.2 R package. We then used ANOVAs to

https://doi.org/doi:10.18129/B9.bioc.recountmethylation
https://github.com/metamaden/recountmethylation_server/blob/master/src/server.py
https://github.com/metamaden/recountmethylation_server/blob/master/src/settings.py
https://github.com/metamaden/recountmethylation.pipeline
https://github.com/metamaden/recountmethylationManuscriptSupplement/blob/main/R/beadarray_cgctrlmetrics.R
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determine the variances explained by each control for
each component, and we obtained stacked barplots of
component variances with ggplot2 (Supplementary
Figure S4). The script https://github.com/metamaden/
recountmethylationManuscriptSupplement/blob/main/
inst/scripts/figures/figS4.R reproduces our steps.

We subsequently computed array-wide log2 median
methylated and log2 median unmethylated signals, as
reproduced in the recountmethylation data analy-
sis vignette at https://www.bioconductor.org/packages/
release/bioc/vignettes/recountmethylation/inst/doc/
recountmethylation data analyses.pdf.

Obtaining sample metadata

Sample metadata was downloaded from GEO as
study-level Simple Omnibus Format in Text (SOFT)
files using the script https://github.com/metamaden/
recountmethylation server/blob/master/src/dl.py. From
SOFT files, sample-level metadata were extracted as JSON-
formatted files. Study-specific metadata fields were filtered
prior to learning sample annotations (below). These steps
were performed using the scripts at https://github.com/
metamaden/recountmethylationManuscriptSupplement/
tree/main/inst/scripts/metadata.

Learning sample annotations

We took a partially automated approach to learn sample an-
notations from mined metadata (Supplementary Table S1).
Our annotations were inspired by those in Marmal-aid
(28) and included disease/experiment group, age and sex
(Supplementary Table S1, (28)). To learn labels, we first co-
erced SOFT-derived metadata into annotation terms, then
used manually constructed regular expressions to extract
new labels (Supplemental Information).

Learning sample type predictions

We learned additional metadata using the MetaSRA-
pipeline (https://github.com/deweylab/MetaSRA-pipeline
(37), Supplementary Table S1, (38)). This pipeline uses
natural language processing to map sample metadata to
curated ontology terms from the ENCODE project. It
returns mapped terms and sample type confidences for each
of six categories. We retained categories with the highest-
confidence predictions as the most-likely sample types
(Supplementary Table S1, Figure S2 and Supplemental
Information).

Model-based metadata predictions from DNAm

After noob normalization, we performed model-based
predictions of sample age (5), sex (33) and blood
cell type fractions (34) using the minfi (v.1.29.3)
and wateRmelon (v.1.28.0) R/Bioconductor pack-
ages in our script https://github.com/metamaden/
recountmethylationManuscriptSupplement/blob/main/
inst/scripts/metadata/metadata model predictions.R. We
tested concordance of mined and predicted sex and age
to inform the use of these predictions and reliability of
learned annotations (Results).

Principal component analyses of autosomal DNAm

We performed array-wide approximate principal compo-
nent analyses (PCA) with the stats (v.3.6.0) R package,
using noob-normalized autosomal DNAm from all sam-
ples and a subset of filtered samples from seven non-cancer
tissues (Beta-values, Figure 3 and Supplementary Figure
S6). Missing values were imputed by array-wide DNAm
medians (Beta-value scale) within samples. To improve
computational efficiency, we first applied feature hashing
(also known as the hashing trick) (39,40) to project the
normalized Beta-value arrays into an intermediate reduced
space before performing PCA. PCA results were visually
almost identical whether we invoked an intermediate
dimension of 1000 or 10 000 (results not shown). We used
the 1000-dimension mapping for analyses in Figure 3 (data
provided in Supplementary Files). The above analysis steps
are shown in the script https://github.com/metamaden/
recountmethylationManuscriptSupplement/blob/main/
inst/scripts/analyses/pca analysis fig3.R.

Annotation of studies for cross-tissue DNAm variability anal-
yses

We identified samples of seven distinct tissues (adipose,
blood, brain, buccal, liver, nasal and sperm), where
each tissue included at least 100 samples across at least
two study records (Supplementary Table S6). While we
noted sufficient samples from placenta (study accessions
GSE100197,GSE71678 and GSE74738), these were omit-
ted due to high differences between mined and predicted
ages, which prevented imputation using epigenetic age as
for other tissues (below). We summarized study character-
istics, including phenotype or disease of interest, in Sup-
plementary Table S6. Targeted samples were from a vari-
ety of studies targeting various diseases, syndromes, dis-
orders and exposures. Patient demographics spanned all
life stages, including fetal, infant, child and young and
old adult, and several studies focused on ethnic groups
not commonly studied (e.g. Gambian children from record
GSE100563;GSE100561).

Preprocessing and analyzing seven non-cancer tissues for
DNAm variability analyses

We studied samples in seven tissue types, including adi-
pose, blood, brain, buccal, nasal, liver and sperm (Supple-
mentary Table S6, Supplementary Figures S7a and S7b).
We removed likely low-quality samples that showed low
study-specific (less than fifth quantile) methylated and un-
methylated signal, or showed signal below manufacturer-
prescribed quality thresholds for at least one BeadArray
control. We also removed putative replicates according
to genotype-based identity predictions from ewastools
(Supplemental Information, (29)).

We preprocessed noob-normalized DNAm for each tis-
sue separately. First, we performed linear model adjustment
on study IDs using DNAm M-values, defined as logit(Beta),
with the limma v3.39.12 package. We then converted the
adjusted DNAm to Beta-value scale. To account for the im-
pact of confounding variables, we removed probes whose
DNAm variances showed significant (p-adjusted < 0.01)

https://github.com/metamaden/recountmethylationManuscriptSupplement/blob/main/inst/scripts/figures/figS4.R
https://www.bioconductor.org/packages/release/bioc/vignettes/recountmethylation/inst/doc/recountmethylation_data_analyses.pdf
https://github.com/metamaden/recountmethylation_server/blob/master/src/dl.py
https://github.com/metamaden/recountmethylationManuscriptSupplement/tree/main/inst/scripts/metadata
https://github.com/deweylab/MetaSRA-pipeline
https://github.com/metamaden/recountmethylationManuscriptSupplement/blob/main/inst/scripts/metadata/metadata_model_predictions.R
https://github.com/metamaden/recountmethylationManuscriptSupplement/blob/main/inst/scripts/analyses/pca_analysis_fig3.R
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and substantial (percent variance ≥ 10%) contributions
from model-based predictions of age, sex and cell type frac-
tions, which removed 39 000 to 194 000 (8–40% of) probes
across tissues (ANOVAs, Supplementary Figure S7c).

After preprocessing, we identified probes with recurrent
low variance and low mean intervals (max–min, mean
tissue-wise DNAm, <0.01 or 1%) across seven distinct
tissues. We also identified probes with high and tissue-
specific variance. For each analysis we used a two-step
probe selection process in each tissue where we selected (i)
probes in the highest or lowest 10th quantile of variance
(e.g. an absolute quantile variance filter), and (ii) probes
in the highest or lowest 10th quantile variance across
mean DNAm bins (e.g. a binned quantile variance filter,
10 bins of magnitude 0.1 or 10% DNAm, Supplementary
Figure S7a). The recountmethylation Data Analyses
vignette reproduces these analyses for two tissues, and the
full analysis scripts are contained at https://github.com/
metamaden/recountmethylationManuscriptSupplement/
tree/main/inst/scripts/analyses.

Statistical analyses and visualizations

Statistical analyses and visualizations were conducted with
the R and Python programming languages. We used the
numpy (v1.15.1), scipy (v1.1.0) and pandas v0.23.0
Python packages to manage jobs and downloads, perform
data extraction and calculate summary statistics. We used
the minfi v1.29.3 and limma v3.39.12 R/Bioconductor
packages for downstream quality control, preprocess-
ing and analyses. Plots were generated using base R
functions, ggplot2 (v3.1.0) and ComplexHeatmap
(v1.99.5) (41,42). To reproduce analyses, see Supplemen-
tary Methods, files at https://github.com/metamaden/
recountmethylationManuscriptSupplement, and the
Data Analyses vignette in the recountmethylation
R/Bioconductor package.

Supplemental Information

Supplemental Information, including methods, code,
and scripts reproducing analyses, figures, and ta-
bles are accessible at https://github.com/metamaden/
recountmethylationManuscriptSupplement. Large supple-
mental data files are accessible at https://recount.bio/data/
recountmethylation manuscript supplement/.

Companion R/Bioconductor package

Databases of the samples compiled and analyzed in this
manuscript are accessible, along with comprehensive in-
structions and analysis examples, in the recountmethy-
lation R/Bioconductor package at http://bioconductor.
org/packages/devel/bioc/html/recountmethylation.html.

RESULTS

Recent growth in GEO DNAm array samples is linear

We obtained sample IDATs and metadata for studies from
the GEO. GEO is the largest public database for human
DNAm array studies, and the majority of GEO’s DNAm

array samples use one of three of Illumina’s BeadArray plat-
forms: the HumanMethylation27K (HM27K), the Human-
Methylation450K (HM450K) and EPIC, also known as the
HumanMethylation850K (HM850K). On GEO, we identi-
fied 104 746 unique sample accession numbers (a.k.a. GSM
IDs) from 1605 study accession numbers (a.k.a. GSE IDs)
published using one of the three major Illumina DNAm ar-
ray platforms (Figures 1A and Supplementary Figure S1).
Among 1605 published studies, 74% used HM450K, 21%
used HM27K and 5% used EPIC. Among 104 746 pub-
lished samples, 79% were on HM450K, 18% on HM27K
and 3% on EPIC. All three platforms showed increasing
publication rates of samples and studies over the first three
years of their availability. Few new studies and samples from
2013 to 2018 used the HM27K platform, while samples and
studies using HM450K have grown linearly through 2018.

Fewer than half of DNAm array studies on GEO include raw
data

Raw data for a DNAm array sample is comprised of two
IDAT files, one for each of the red and green color chan-
nels. Accessible raw data is important for uniform normal-
ization of samples across studies, yet not all samples on
GEO come with these data. In total, 37 919 samples (36%
of total) included sample IDATs, where 93% were run on
HM450K, 5% on EPIC, and 2% on HM27K. By platform,
EPIC included the largest percentage of sample records
with available IDATs at 63%, followed by HM450K at 43%
and HM27K at just 3%. The more frequent availability of
IDATs for newer arrays seems to reflect a significant shift
in data submission norms well after the inception of the
HM27K platform.

Most annotated GEO HM450K samples with available raw
data are from blood or brain

There were enough study and sample metadata for us to an-
notate 27 027 samples, 76% of the 35 360 we analyzed. We
annotated these samples by applying regular expressions to
the mined metadata. Our vocabulary for annotations was
composed of 72 distinct terms (‘Materials and Methods’
section) strongly inspired by those used in the methylation
array resource Marmal-aid (28). Tissue terms for blood ac-
counted for the majority (18 212 samples, 67% of total), fol-
lowed by brain (6690 samples, 25% of total), tumor (1977
samples, 7% of total), breast (1525 samples, 6% of total)
and placenta (1338 samples, 5% of total). We further anno-
tated disease and experiment group for 22 790 samples (64%
of total) using 38 distinct disease- and group-related terms.
Among these, disease terms for cancer were assigned to over
half (13 131, 58% of total) of samples, while terms for nor-
mal, control, or healthy were assigned to 10 808 samples
(47% of total). The most frequently annotated cancers in-
cluded leukemia (2585 samples, 20% of total), breast cancer
(511 samples, 4% of total), colorectal cancer (314 samples,
2% of total) and prostate cancer (196 samples, 1% of to-
tal). We compared disease and tissue characteristics to dis-
tinguish between tumor and normal samples from cancer
patients, estimating that a third of samples were from tu-
mor (‘Materials and Methods’ section and Supplementary
Table 1).

https://github.com/metamaden/recountmethylationManuscriptSupplement/tree/main/inst/scripts/analyses
https://github.com/metamaden/recountmethylationManuscriptSupplement
https://github.com/metamaden/recountmethylationManuscriptSupplement
https://recount.bio/data/recountmethylation_manuscript_supplement/
http://bioconductor.org/packages/devel/bioc/html/recountmethylation.html
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Figure 1. Cross-study summaries of DNAm array samples from GEO. (A) Cumulative samples by year using one of three major Illumina BeadArray
DNAm array platforms (HM27K, HM450K and EPIC/HM850K, point shapes), showing either all samples or subsets with available IDAT files for
each platform (line colors). Samples with IDATs using the HM450K platform (dark green line, circle shape) were compiled and analyzed (‘Materials and
Methods’ and ‘Results’ sections). (B) Scatter plot of mined chronological (x-axis) and epigenetic (y-axis) ages, in years, with linear model fit (blue line),
for 6019 non-cancer tissues run using the HM450K platform (‘Results’ section). Chronological age was mined from sample metadata. Epigenetic age was
calculated using the model in (5) (‘Materials and Methods’ section).

Chronological age is accurately predicted from epigenetic age
in non-cancer tissues

Prior work showed chronological age can be predicted with
high accuracy from DNAm among non-cancer tissues (5,6).
We calculated model-based age predictions (a.k.a. ‘epige-
netic ages’) from IDATs for 35 360 samples using the clock
from (5), and we were able to mine chronological ages from
metadata (a.k.a ‘chronological ages’) for a subset of 16 510
samples (47% of total, Supplementary Table and ‘Materi-
als and Methods’ section). We investigated variance sources
and differences between these ages, and determined whether
missing chronological ages could be imputed using the epi-
genetic ages for certain types of samples.

In the 16 510 samples for which we were able to mine
chronological ages from metadata, analysis of variance
(ANOVA) showed most epigenetic age variation was ex-
plained by chronological age (52% of variances, P < 2.2e-
16), followed by study (i.e. GSE ID; 24%, P < 2.2e-16), can-
cer status (7e-2%, P = 1.3e-9), and predicted sample type
(8e-3%, P = 1.6e-2). Compared to variances attributed to
the study variable, the relative low variances attributed to
the cancer status and predicted sample type variables may
be due to high study-specific variance in metadata com-
pleteness or availability. High age differences (12.9 years
mean absolute difference, or MAD) and errors (R-squared
= 0.76) likely resulted from either metadata inaccuracies,
age label misattributions from our mining strategy, or inclu-
sion of cancers and non-tissue samples (e.g. cell lines, ‘Mate-
rials and Methods’ section). In the subset of 6019 likely non-
cancer tissue samples across 37 study records with study-
wise MADs ≤ 10 years, epigenetic age variance contribu-
tion from mined age increased to 93% (ANOVA, P < 2.2e-
16) and contribution from study decreased to 2% (P < 2.2e-
16, Figure 1B). Unsurprisingly, the non-cancer tissue sam-
ples showed lower age differences (MAD = 4.5 years) and
errors (R-squared = 0.94), and ages were highly correlated
(Spearman Rho = 0.96, P < 2.2e-16), supporting the well-
established finding that chronological age is accurately pre-
dicted from epigenetic age in non-cancer tissues (5,6). We

therefore imputed missing chronological ages using the epi-
genetic age for non-cancer tissue analyses below.

We next studied age acceleration (5,6) by probing the dif-
ferences between epigenetic and chronological ages among
the 6019 previously identified samples with low study-
wise age differences. Among the 68 samples with outly-
ing positive age acceleration (≥15 years), the most fre-
quently represented study accounted for 18 adipose sam-
ples from severely obese patients (accession ID: GSE61454
(43)). We observed 86 negative age acceleration outliers
(≤−15 years), including 14 saliva samples from control sub-
jects in a study of Parkinson’s disease (GSE111223 (44))
and 19 whole blood samples from patients with genetic syn-
dromes (GSE97362 (45)). In the latter study, we suspect re-
ported ages are inaccurate and older than actual ages (pri-
vate correspondence, investigation ongoing).

Almost a fifth of samples fail at least one of 17 BeadArray
quality control assessments

Illumina prescribes 17 quality assessments for its 450K ar-
ray, each measuring the performance of a different step
in a methylation assay such as extension or hybridization
(35,36). A given assessment comprises a quality metric and
a minimum threshold value below which the assessment is
failed. We call these assessments BeadArray controls. We
used the 17 BeadArray controls and their minimum qual-
ity thresholds to evaluate assay qualities in 35 360 sam-
ples (Supplementary Tables S2 and S3). Results are summa-
rized in Supplementary Figure 2A. The highest proportions
of samples failed the non-polymorphic green and biotin
staining green controls, with about 6.7% failing each (2381
and 2368 samples, respectively). By contrast, there are six
BeadArray controls, each failed by fewer than 100 samples.
A substantial number of samples (6813, 19% of total) failed
at least one control. Of samples that failed at least one con-
trol, 4456 samples (66%) failed exactly one control, while
2357 samples (34%) failed more than one control. Of sam-
ples that failed more than one control, 634 failed both bi-
otin staining controls and 648 failed both non-polymorphic
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Figure 2. Quality analyses across samples, storage conditions, and studies. (A) Barplots counting samples (y-axis) falling above (blue) or below (gold)
manufacturer-prescribed thresholds across the 17 BeadArray controls (x-axis). Full view is on right, and magnification is on left. (B) Scatter plots (left)
and 95% confidence intervals (right) for log2 median methylated (x-axis) and log2 median unmethylated (y-axis) signal of 3467 formalin-fixed paraffin
embedded (FFPE, orange) and 5729 fresh frozen samples (purple). (C) Percentages of FFPE (orange) and fresh frozen (purple) samples failing BeadArray
controls. (D) Heatmaps depicting fraction (fst in legends) of samples in a study failing quality assessments across 28 studies with high failure rates (fst >

60%) and >10 samples. BeadArray fst values are shown on the left, where blue is low, orange is intermediate and red is high. Signal fst values for three
methylated (M, ‘meth’) and unmethylated (U, ‘unmeth’) signal levels (10, 11 and 12) are shown in the middle, where black is low, dark green intermediate
and light green is high. The log2 study sizes are shown on the right.

controls. Samples failing at least one control were signif-
icantly enriched for certain labels including ‘cord blood,’
‘brain cancer’, ‘prostate cancer’, ‘arthritis’ and ‘obese’ (bi-
nomial test, BH-adjusted P < 1e-3).

The intrinsic dimension of the 17 BeadArray controls is small

We studied signals and outcomes to determine how best
to use the BeadArray controls for sample quality assess-

ments. Cross-sample signal distributions for five BeadAr-
ray controls were bimodal, with distinct low- and high-
signal modes; minimum quality thresholds fell near low-
signal modes (Supplementary Figure S3). For these con-
trols, modifying minimum thresholds to more robustly cap-
ture low-signal samples could improve their utility. PCA of
sample control performances showed the top five compo-
nents explained 84% of overall variances. Component-wise
ANOVAs showed that just five of the 17 controls explained
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the majority of sum of squared variances across these top
five components (minimum = 67%, maximum = 99%, me-
dian = 97%). This suggests that the intrinsic dimension of
sample quality is around 5. We conclude that sample qual-
ity is adequately captured by the performance of only 5 of
the Illumina control probes (both biotin staining controls,
both non-polymorphic controls and bisulfite conversion I
red, Supplementary Figure S4).

FFPE samples fail at least one BeadArray control almost
twice as often as fresh frozen samples

We investigated the impact of storage conditions on sam-
ple quality across 28 studies by comparing 3467 formalin-
fixed paraffin embedded (FFPE) and 5729 fresh frozen (FF)
samples (Supplementary Table S4 and Figure 2B). FFPE
samples showed greater variance than FF samples in both
methylated (0.36 for FFPE versus 0.27 for FF) and un-
methylated (0.50 for FFPE versus 0.21 for FF) signal chan-
nels. The trend could be driven either by condition-related
sample characteristics (e.g. increased DNA deamination
and/or lower DNA yield in FFPE, etc.) or differing prepa-
ration protocols (e.g. addition of the DNA restoration step
for FFPE, (46–48)). Enriched labels also varied by storage
condition among low-signal samples (binomial test, BH-
adjusted P < 1e-3), where ‘colorectal,’ ‘intestine,’ and ‘mu-
cosa’ were enriched among FFPE, while ‘nasal,’ ‘pancreas,’
and ‘epithelial’ were enriched among FF samples.

Across the 12 of 17 total BeadArray controls each with
at least one failing sample, 228 FFPE samples (8.31% of to-
tal FFPE sample count) and 241 FF samples (4.21% of to-
tal FF sample count) failed more than one control. FFPE
samples failed 10 of the 12 metrics between 0.1 and 3.2%
more often than FF, including all three bisulfite conversion
metrics (Figure 2C). FF samples had higher failure rates
for two BeadArray controls (extension red and specificity
I red; Supplementary Table S4). While no samples failed
the restoration BeadArray control, increasing the mini-
mum threshold for failure from the default manufacturer-
prescribed value of 0 to 1, which is recommended as an
alternative in Illumina documentation (35,36), failed 69
FFPE samples (2%) and one FF sample (2e-3%). In sum-
mary, while FFPE samples were of lower quality than FF
samples across assessments, the differences were modest,
and the vast majority of FFPE samples passed all controls
considered.

10% of studies each have >60% samples failing quality as-
sessments

Across 362 studies, we evaluated the fraction fst of failed
samples per study, defining a failed sample as one that ei-
ther (i) fails at least one BeadArray control, or (ii) has log2
median methylated and log2 median unmethylated signals
each <11 as described in (33) (Supplementary Table S5
and Supplementary Figure S5). Of the 36 studies each with
fst > 60%, samples fail in each of 23 studies due only to
(i), samples fail in each of five studies due only to (ii), and
samples fail in each of the remaining eight studies due to
either (i) or (ii). These 36 studies ranged in size from 6 to
692 samples and comprised a total of 2020 samples, with a
median study size of 23 samples. Of the 320 studies that re-
mained after removing those with ≤10 samples, 28 showed

fst > 60% (8.8% of remaining studies, Figure 2D). One of
these was a study of condition-specific DNAm data relia-
bility (GSE59038, (47)) and included several stress tests of
the assay, so many failed samples are not unexpected. An-
other study was GSE62219 (49) and included blood from
10 young individuals. We further noted the previous study
(50) also determined these samples were of low quality.

DNAm principal component analysis shows clustering by tis-
sue with greater variances among cancers

We studied DNAm variance using PCAs of autosomal
DNAm (Figure 3) as measured by noob-normalized Beta-
values (‘Materials and Methods’ section). The first two
components from PCA of 35 360 samples explained 35%
of total variance, with PC1’s contribution 25% and PC2’s
contribution 10% (Figure 3A). Four outlying blood samples
(PC1 > −10) included two from whole blood, one of T cells,
and one stem cell sample from umbilical cord blood (left
plot of Supplementary Figure S6a). For the top two com-
ponents, leukemia samples showed greater variances than
blood samples: the ratio of variance in PC1 for leukemia
samples to variance in PC1 for blood samples was 1.25 (F-
test P < 1e-2), and the ratio of variance in PC2 for leukemia
samples to variance in PC2 in blood samples was 6.18 (F-
test P < 1e-2). This is consistent with how (i) leukemia sam-
ples have greater variance than blood samples at each of
the majority of probes (311 127 or 66%) and (ii) leukemia
samples have greater median variance than blood samples
across probes (median Beta-value variance for blood sam-
ples = 1e-3, median Beta-value variance for leukemia sam-
ples = 5e-3; Supplementary Figure S6b).

From PCA of the 28 579 samples remaining after blood
and leukemia samples were removed (Figure 3B), the first
two components explained 30% of total variance, with
PC1’s contribution 19% and PC2’s contribution 11%. Seven
outlying (PC1 > 0, PC2 < -5) brain tumor samples included
two primary tumors and one metastasis each from medul-
loblastoma cases, as well as four brain metastases from
uncertain primary tumors, from the studies GSE108576
(51,52) and GSE63669 (53) (Supplementary Figure S6c).
For the top two components, brain tumors showed greater
variances than non-cancer brain samples: the ratio of vari-
ance in PC1 for brain tumors to variance in PC1 for non-
cancer brain samples was 12.05 (F-test P < 1e-5), and the
ratio of variance in PC2 for brain tumors to the variance
in PC2 for non-cancer brain samples was 22.40 (F-test P
< 1e-5). This is consistent with how (i) brain tumors have
greater variance than non-cancer brain samples at each of
the majority of probes (444 304, or 94%), and (ii) brain tu-
mors have greater median variance than non-cancer brain
samples across probes (median Beta-value variance for non-
cancer brain samples = 1e-3, median Beta-value variance
for brain tumors = 1e-2; Supplementary Figure S6d). Our
findings are consistent with previous evidence of higher
DNAm variances in cancers compared to non-cancer sam-
ples (54,55).

PCA of 7484 samples from seven non-cancer tissues (adi-
pose, nasal, blood, brain, buccal, sperm and liver), which we
also used to study DNAm variability (below), showed clear
clustering by tissue. The first two components explained
57% of total variance, with PC1’s contribution 38% and
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Figure 3. Scatter plots of top two components from PCAs of autosomal DNAm (‘Materials and Methods’ section). Each axis label also contains percent
of total variance explained by the component. (A) PCA of 35 360 samples, with color labels for non-cancer blood (N = 6001 samples, red points) and
leukemias (780, purple) and remaining samples (28 579, black). (B) PCA of 28 579 samples remaining after exclusion of blood and leukemias from (A),
highlighting non-cancer brain (N = 602 samples, blue), brain tumors (221, dark cyan) and remaining samples (27 756, black points). Facet plots of sample
subsets in (A) and (B) are shown in Supplementary Figure S6. (C) and (D) display samples from seven non-cancer tissues for which at least 100 samples
were available from at least two studies (‘Materials and Methods’ section). (C) PCA of 7484 samples from all seven tissue types, including sperm (N = 230
samples, blue), adipose (104, dark red), blood (6,001, red), brain (602, purple), buccal (244, orange), nasal (191, light green) and liver (112, dark green).
(D) PCA of 7254 non-cancer tissue samples remaining from (C) after exclusion of sperm, with color labels as in (C).

PC2’s contribution 19%. Sperm samples clustered far apart
from the six somatic tissues (Figure 3C). After repeating
PCA with sperm samples excluded, the first two compo-
nents still explained over half (54%) of total variance, with
PC1’s contribution 42% and PC2’s contribution 12% (Fig-
ure 3D).

Over two-thirds of CpG probes that do not distinguish tissues
map to gene promoters near CpG islands

CpG probes with low DNAm variation and low mean
DNAm differences across experimental groups are less
informative for quantifying group-specific DNAm dif-
ferences. We analyzed autosomal DNAm variation in
seven distinct tissues (adipose, nasal, blood, brain, buc-
cal, sperm and liver), as measured by noob-normalized,
study-corrected Beta-values (‘Materials and Methods’ sec-
tion). We identified 4577 probes each with consistently low
variance (≤10th quantile) in each tissue and low differ-
ence between highest and lowest mean Beta-value (<0.01)
across tissues (Supplementary Figures S7a and S9 as well
as Supplementary Table S7). Among probes with consis-

tently low variance, 4111 (90% of total) mapped to genes in
CpG islands, typically at promoter regions of CpG island-
overlapping genes (2203 probes) and these fractions repre-
sented significant increases compared to the background of
all autosomal CpG probes (binomial tests, P-values < 1e-3).
It is likely the 4577 probes are of low utility for quantifying
DNAm differences across tissues, and their removal prior to
performing an EWAS across non-cancer tissues could help
increase statistical power.

Over two-thirds of CpG probes that distinguish tissues map
to genes

We identified 2000 CpG probes in each of seven distinct
non-cancer tissues (adipose, nasal, blood, brain, buccal,
sperm and liver) with high and tissue-specific variation
in autosomal DNAm, as measured by noob-normalized,
study-corrected Beta-values (‘Materials and Methods’ sec-
tion, Supplementary Table S8, and Figures 4 and Supple-
mentary S7a). Distinctive patterns in DNAm across these
probe sets may point to tissue-specific factors, such as dif-
ferences in environment exposure, cellular signaling and cell



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 9

Figure 4. DNAm and genome mapping patterns among 14 000 CpG probes showing tissue-specific high variance in seven tissues (2000 probes per tissue,
tissues: adipose, blood, brain, buccal, liver, nasal and sperm). (A and B) Violin plots of (A) means and (B) variances of normalized Beta-values across
tissue-specific probes. (C) Stacked barplots of genome region mappings (number of CpG probes, y-axis) across tissue-specific probes (x-axis). Color fills
depict (left) island and gene overlap, (center) gene region overlap and (right) island region overlap.

division rates. Compared to the background of all autoso-
mal CpG probes, adipose and sperm had significantly lower
fractions of gene-mapping probes, and all tissues except for
blood had significantly greater fractions of both open sea-
mapping probes and gene body-mapping probes (binomial
tests, BH-adjusted P < 1e-3). Of the 14 000 total high-
variance probes, 10 016 (71%) mapped to a gene region,
typically at the gene body (8006 probes, Supplementary Ta-
ble S8). The highest mean Beta-values were observed for
nasal and adipose tissues (Figure 4A), and the highest vari-
ances were observed for sperm and adipose tissues (Figure
4B), while probes in blood had relative low means and vari-
ances. While most probes mapped to open seas in liver (1014
probes), nasal (1100), adipose (1280) and sperm (1063),
greater fractions of open sea probes mapped to genes in
liver (70% of open sea probes), nasal (74%) and adipose
(71%) than in sperm (52%, Figure 4C). This observed spar-
sity of CpG island regions and enrichment of open sea, in-
tergenic and gene body regions among CpG probes with
tissue-specific DNAm was recently corroborated in an in-
dependent study comparing DNAm in matched sperm and
blood samples directly (30). This corroboration was espe-
cially striking because the discovery set samples in (30) were
processed on the newer EPIC/HM850K rather than the
HM450K platform.

Normalized Beta-values for GEO DNAm array studies are
rapidly accessed via the recountmethylation package

To accommodate a wide range of analysis strate-
gies, DNAm assays and sample metadata were
compiled into databases in two distinct formats,
including Hierarchical Data Format 5 (HDF5)
and HDF5-SummarizedExperiment. HDF5-
SummarizedExperiment compilations are tailored
for rapidly executing data summaries and query operations
in the R/Bioconductor framework via DelayedAr-
ray objects. Raw red and green signals are provided as
HDF5 (120 GB) and HDF5-SummarizedExperiment
(119 GB) files and raw methylated and unmethylated
signals and noob-normalized Beta-values are provided
as HDF5-SummarizedExperiment files (94 and
133 GB, respectively). The recountmethylation
R/Bioconductor package facilitates database access as
described in the user’s manual. It allows full database
utilization with rapid queries on the provided sample meta-
data, including model-based estimates for sex, epigenetic
age and blood cell types (5,33,34). The package Data
Analyses vignette further provides code to reproduce our
comparisons of mined and epigenetic ages, sample stor-
age type quality comparisons and tissue-specific DNAm
variability analyses described above.
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DISCUSSION

Limitations of this study

We conducted a cross-study analysis of methylation array
samples comprising a large subset of available HM450K
samples on GEO. While we omitted studies using the
HM27K and EPIC platforms, our compilation strategy
could also be generalized to these platforms (‘Materials
and Methods’ section, below). Further, while our results
suggest BeadArray controls could be improved by apply-
ing different quantitative thresholds for failure, it remains
unclear whether a single universal threshold or multiple
experiment-specific thresholds is desirable for each (‘Re-
sults’ section, Supplementary Figure S3). Nonetheless, five
of 17 BeadArray controls (both Biotin Staining controls,
both non-polymorphic controls, and Bisulfite Conversion
I Red) are demonstrably useful for assessing the quality of
an experiment. This finding also means a stringent quality
threshold of ≥1 failed controls, which we used for cross-
study analyses, mainly filtered samples due to failure in at
least one of these five principal controls. We further lacked
a definitive gold standard set of well-described DNAm ar-
ray samples, which could allow for more detailed estima-
tions of metadata errors beyond direct concordances, or for
more informative assessments of quality metric behaviors.
Our metadata mapping and annotation strategy can also
be improved to better capture available metadata for certain
samples, such as gestational and maternal ages for placenta
samples (‘Materials and Methods’ section). Finally, our
DNAm variability study across seven distinct non-cancer
tissues used a within-tissue preprocessing approach (‘Mate-
rials and Methods’ section). We were constrained this way
because study-specific variation was high relative to tissue-
specific variation, and effective study-and-tissue normaliza-
tion would have required considerably more data from stud-
ies of multiple tissues than were available at the time of anal-
ysis.

Recommendations for metadata reporting

Thoroughly characterizing samples submitted to public
archives with accurate metadata makes them easier to re-
purpose for new studies. After manually inspecting hun-
dreds of DNAm array studies on GEO, we formulated some
best practices for the submitter who is labeling samples in
a study to facilitate their discoverability and improve their
utility for other investigators:

i. Include key attributes (sex, age, tissue, disease, etc.) even
when any one is the same across a sample set, since that
attribute may vary in a cross-study analysis.

ii. Repeat study-level metadata in sample-level metadata.
This includes sample types (e.g. tissue, cell line, etc.)
and characteristics (e.g. storage conditions, preparation
steps, etc.).

iii. Include units of numerical variables to ensure their
proper interpretation.

iv. Clarify circumstances under which attributes were ob-
tained where appropriate. For example, age at diagnosis,
tumor-adjacent normal tissue and blood from leukemia
patient.

Next steps

We have several methodological changes planned that
will improve the DNAm array databases accessible with
the recountmethylation R/Bioconductor package.
First, future compilations will add samples run on the
newer EPIC/HM850K platform, allowing for novel cross-
platform analyses. Further, our metadata handling pipeline
will be revised to be fully automated by using regular ex-
pressions to recognize key metadata. This will replace the
manual variable aggregation step (‘Materials and Methods’
section). Finally, we will support regular compilation up-
dates by enabling rapid setup and better dependency han-
dling (e.g. with virtual environments). These improvements
will empower the researcher to maintain a comprehensive
compilation of DNAm array IDATs from GEO in a wide
array of computing environments.

Concluding remarks

We performed extensive analyses of 35 360 HM450K
samples with IDATs from 362 studies in GEO, approxi-
mately three times the number of samples considered in
prior cross-study analyses (5,28–30). We further released
the R/Bioconductor package recountmethylation in-
cluding our new tissue and disease state labels, model-based
predictions for age, sex and blood cell composition, as well
as noob-normalized Beta-values for array samples. This re-
source should prove valuable for reusing publicly available
methylation data.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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Kolde,R., Koltšina,M., Nilsson,T.K., Vilo,J., Salumets,A. et al.
(2014) DNA methylome profiling of human tissues identifies global
and tissue-specific methylation patterns. Genome Biol., 15, r54.

4. Jones,P.A. (2012) Functions of DNA methylation: islands, start sites,
gene bodies and beyond. Nat. Rev. Genet., 13, 484–492.

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqab025#supplementary-data


NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 11

5. Horvath,S. (2013) DNA methylation age of human tissues and cell
types. Genome Biol., 14, R115.

6. Hannum,G., Guinney,J., Zhao,L., Zhang,L., Hughes,G., Sadda,S.,
KlIotzle,B., Bibikova,M., Fan,J.-B., Gao,Y. et al. (2013)
Genome-wide methylation profiles reveal quantitative views of
human aging rates. Mol. Cell, 49, 359–367.

7. Yang,Z., Wong,A., Kuh,D., Paul,D.S., Rakyan,V.K., Leslie,R.D.,
Zheng,S.C., Widschwendter,M., Beck,S. and Teschendorff,A.E.
(2016) Correlation of an epigenetic mitotic clock with cancer risk.
Genome Biol., 17, 205.

8. Byun,H.-M., Siegmund,K.D., Pan,F., Weisenberger,D.J., Kanel,G.,
Laird,P.W. and Yang,A.S. (2009) Epigenetic profiling of somatic
tissues from human autopsy specimens identifies tissue- and
individual-specific DNA methylation patterns. Hum. Mol. Genet., 18,
4808–4817.

9. Bell,J.T., Pai,A.A., Pickrell,J.K., Gaffney,D.J., Pique-Regi,R.,
Degner,J.F., Gilad,Y. and Pritchard,J.K. (2011) DNA methylation
patterns associate with genetic and gene expression variation in
HapMap cell lines. Genome Biol., 12, R10.

10. Heyn,H., Vidal,E., Ferreira,H.J., Vizoso,M., Sayols,S., Gomez,A.,
Moran,S., Boque-Sastre,R., Guil,S., Martinez-Cardus,A. et al. (2016)
Epigenomic analysis detects aberrant super-enhancer DNA
methylation in human cancer. Genome Biol., 17, 11.

11. Issa,J.-P. (2004) CpG island methylator phenotype in cancer. Nat.
Rev. Cancer, 4, 988–993.

12. Irizarry,R.A., Ladd-Acosta,C., Wen,B., Wu,Z., Montano,C.,
Onyango,P., Cui,H., Gabo,K., Rongione,M., Webster,M. et al. (2009)
The human colon cancer methylome shows similar hypo- and
hypermethylation at conserved tissue-specific CpG island shores. Nat.
Genet., 41, 178–186.

13. Wang,Z., Yin,J., Zhou,W., Bai,J., Xie,Y., Xu,K., Zheng,X., Xiao,J.,
Zhou,L., Qi,X. et al. (2020) Complex impact of DNA methylation on
transcriptional dysregulation across 22 human cancer types. Nucleic
Acids Res., 48, 2287–2302.

14. Peters,T.J., Buckley,M.J., Statham,A.L., Pidsley,R., Samaras,K., V
Lord,R., Clark,S.J. and Molloy,P.L. (2015) De novo identification of
differentially methylated regions in the human genome. Epigenet.
Chromatin, 8, 6.

15. Siegmund,K.D. (2011) Statistical approaches for the analysis of DNA
methylation microarray data. Hum. Genet., 129, 585–595.

16. Michels,K.B., Binder,A.M., Dedeurwaerder,S., Epstein,C.B.,
Greally,J.M., Gut,I., Houseman,E.A., Izzi,B., Kelsey,K.T.,
Meissner,A. et al. (2013) Recommendations for the design and
analysis of epigenome-wide association studies. Nat. Methods, 10,
949–955.

17. Edgar,R., Domrachev,M. and Lash,A.E. (2002) Gene Expression
Omnibus: NCBI gene expression and hybridization array data
repository. Nucleic Acids Res., 30, 207–210.

18. Barrett,T., Wilhite,S.E., Ledoux,P., Evangelista,C., Kim,I.F.,
Tomashevsky,M., Marshall,K.A., Phillippy,K.H., Sherman,P.M.,
Holko,M. et al. (2012) NCBI GEO: archive for functional genomics
data sets––update. Nucleic Acids Res., 41, D991–D995.
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