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Abstract 
The auditory brainstem response (ABR) is an essential diagnostic indicator of overall 

cochlear health, used extensively in both basic research and clinical studies.  A key 
quantification of the ABR is threshold, the lowest sound level that elicits a response. 
Because the morphology of ABR waveforms shift with stimulus level and the overall 
signal-to-noise ratio is low, threshold estimation is not straightforward. Although several 
algorithmic approaches have been proposed, the current standard practice remains the 
visual evaluation of ABR waveforms as a function of stimulus level. 

We developed an algorithm based on the cross-correlation of two independent 
averages of responses to the same stimulus. For each stimulus level, the individual 
responses to each tone-pip are randomly split into two groups. The median waveform 
for each group is calculated, and then the normalized cross-correlation between these 
median waveforms is obtained. This process is repeated 500 times to obtain a 
resampled cross-correlation distribution. For each frequency, the mean values of these 
distributions are computed for each level and fit with a sigmoid or a power law function 
to estimate the threshold. 

Algorithmic thresholds demonstrated robust and accurate performance, achieving 
92% accuracy within ±10 dB of human-rated thresholds on a large pool of mouse data. 
This performance was better than that of several published algorithms on the same 
dataset. This algorithm has now fully replaced the manual estimation of ABR thresholds 
for our preclinical studies, thereby saving significant time and enhancing objectivity in 
the process. 
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1. Introduction 
Auditory Brainstem Response (ABR) thresholds serve as a translational estimate of 

hearing sensitivity, providing a crucial metric in basic science, preclinical research, and 
clinical audiology. Traditionally, the standard in the field has been for expert human 
raters to use their knowledge and experience to visually determine these thresholds. 
Over time, there have been numerous attempts to automate this process by developing 
algorithms to decide the threshold, but none of these attempts have been widely 
adopted. Some of these algorithmic approaches include assessing waveform similarity 
to templates (Cone-Wesson et al., 1997; Elberling, 1979), evaluating waveform stability 
across repeated measures or levels (Berninger et al., 2014; Ozdamar et al., 1994; 
Suthakar and Liberman, 2019; Wang et al., 2021; Xu et al., 1995), analyzing signal 
quality through F-ratios and other metrics (Cebulla et al., 2000; Don and Elberling, 
1994; Sininger, 1993) and using Bayesian nonlinear regression (Gaussian process, 
Chesnaye et al. 2024). Other methods have involved neurophysiological parameters 
derived from fitting the responses to different stimulus intensities (Schilling et al., 2019). 
More recently, artificial intelligence, in particular deep learning techniques, have been 
explored as a potential solution, given their ability to infer complex patterns in large 
datasets (Acır et al., 2006; Erra et al., 2024; Thalmeier et al., 2022). Despite these 
efforts, the field continues to rely heavily on human expertise for ABR threshold 
determination. 

The automation of ABR threshold estimation is complicated by several factors. Firstly, 
ABR morphology, or waveform shape, is not static but varies with the frequency and 
level of the sound stimulus. It also varies based on other factors such as species, strain, 
genetic model, electrode position, repetition rate, and more. This variability is a 
challenge to developing a universally applicable algorithm, particularly those that 
measure waveform similarity across levels or to a template. Secondly, ABRs typically 
have a low Signal-to-Noise Ratio (SNR), making the estimation of the true threshold 
difficult. If the ABR has more noise than typical the SNR is decreased, potentially 
causing an elevated estimation of threshold by a human rater. Because of the low SNR 
and variable morphology, an iso-response strategy like that used for detecting the 
thresholds of distortion product oto-acoustic emissions (DPOAE), where the threshold is 
defined as the stimulus level at which the signal crosses a criterion, is difficult to 
implement. The ABRpresto algorithm described here transforms the waveform into a 
single measure for each stimulus level and frequency, allowing for an iso-response 
strategy. Lastly, even when peak amplitudes are within the noise floor, consistent 
responses can still be apparent. This means that even low-amplitude signals within the 
background noise fluctuations, which might be considered noise in other contexts, can 
be genuine auditory responses.  On the other hand, there are also cases where noise 
peaks that occur in line with ABR peaks at higher stimulus levels are not genuine 
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auditory responses, but are mistaken as such by the human rater, causing 
underestimation of the threshold.  

We developed an algorithm (ABRpresto) for the determination of thresholds based on 
the resampled cross-correlation of two independent averages of responses to the same 
stimulus. The algorithm mitigates the uncertainty of low-amplitude signals by measuring 
a distribution of correlations via resampling of the single-trial data. The results were 
compared to thresholds determined by expert human raters. Algorithmic thresholds 
were consistent with human-rated thresholds on a large pool of mouse data.  
 

2. Materials and Methods 

2.1. Animals and ABR acquisition  

All experiments were approved by the Animal Care and Use Committee of Decibel 
Therapeutics. A total of 7,857 ABR waveform stacks from 351 mice were analyzed with 
ABRpresto and compared to human-rated manual thresholds. This dataset includes 
mice with normal hearing and hearing loss from multiple strains and genotypes, totaling 
123,140 unique ABR waveforms (full dataset is available at 
https://zenodo.org/records/13987792, Shaheen, 2024a). In addition, analogous 
performance metrics were calculated on Suthakar and Liberman (2019) dataset to 
facilitate direct comparison with the current algorithm.  

ABRs to acoustic tone-pips were recorded under anesthesia (Ketamine 100 mg/kg, 
Xylazine 10 mg/kg, i.p.). Mice were placed in an acoustic chamber, and body 

temperature was maintained at 37C using a feedback-controlled heating system 
(FHC). Acoustic stimuli were generated at a nominal sampling rate of 100 kHz and 
delivered through a custom amplifier and dual speaker system based on designs 
published by the Eaton-Peabody Labs at the Massachusetts Eye and Ear Infirmary 
(Hancock et al., 2015).  

ABRs were recorded with 3 needle electrodes (LifeSync Neuro) inserted into the skin 
in the dermal layers: (1) a ground electrode near the base of the tail, (2) a recording 
electrode at vertex along the midline of the skull between the ears, and (3) a reference 
electrode through the bare skin ventral to the pinna.  

Data were collected using a customized version of Psiexperiment, a plugin-based 
framework for auditory experiments (Buran and David, 2020). Five-millisecond tone-pips 
with a 0.5 ms rise-fall time delivered at 81/s in alternating polarity were used for 
frequency-specific measurements of hearing function. Sound levels were tested in 5 dB 
steps, at either a 15–105 dB, 15–85dB, or 65–105 dB sound pressure level (SPL) 
range. Stimulus frequencies ranged from 4 to 45.3 kHz in half-octave steps. Stimuli 
were presented in interleaved order such that a train of tone-pips containing a single 
presentation of each level and frequency was repeated in an interleaved ramp paradigm 
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(as described in Buran et al. 2020). Electrical signals were recorded through a digitizing 
amplifier (TDT RA4PA or Medusa4Z). Responses from 512 repetitions were recorded, 
and individual responses to each trial and averaged responses were stored for further 
analysis.  

2.2. Human-rated manual thresholds  

To estimate ABR thresholds, the signal was filtered from 300 to 3000 Hz, and the 
lowest sound level that elicits an ABR was estimated using custom peak-picking 
software (EPPeak). Analysis was performed by blinded raters. Most waveform stacks 
were evaluated by a single rater, but in cases where multiple raters evaluated a 
waveform stack, the median value was taken as the estimated threshold.  

2.3. ABRpresto: Automatic thresholding algorithm  

Figure 1 is a flow chart of the automatic thresholding process based on cross-
correlation distribution to provide more accurate and reliable results. Due to how the 
processing workflow was configured, single-trial data were filtered twice, forward and 
backward each time using a first-order 300–3000 Hz Butterworth filter and the filtfilt 
function of Python’s SciPy module (for a total of 4 times). For each iteration: 1) ABR 
waveform samples are randomly split into two groups, each containing an equal number 
of responses to positive and negative polarity stimuli; 2) a median waveform for each 
group is calculated; 3) a normalized cross-correlation between the two median 
waveforms at a lag of 0 ms is performed to determine a Pearson correlation coefficient. 
This process is repeated 500 times to obtain a distribution of correlation coefficients for 
each sound level.  

The mean of the cross-correlation function is then fit with two separate functions: a 
sigmoid and a power law function, and the best fit is then chosen based on root-mean-
squared (RMS) error in a similar way to Suthakar and Liberman (2019). If all means are 
greater than the criterion, the fits are not considered and the threshold is set to negative 
infinity as an indicator that the exact threshold is not known, but is below the minimum 
level tested for that waveform stack. If all means are less than the criterion, the fits are 
not considered and the threshold is set to positive infinity as an indicator that the exact 
threshold is above the maximum level tested. If the RMS error of the sigmoid fit is lower, 
threshold is defined as the level where the sigmoid curve crosses the criterion; 
otherwise, it is defined by the crossing of the power law curve.  

In the event that neither fit crosses criterion, the threshold is marked as undefined for 
review by a human rater with two exceptions. First, if the means for two levels or fewer 
are above the criterion, assume that spurious correlations pushed these levels above 
the criterion and infer that the true result is likely all less than the criterion, but some 
noise pushed some above. Therefore, we set the threshold to negative infinity. Second, 
if the means for two levels or fewer are below the criterion, then we set the threshold to 
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positive infinity by the same logic. If neither condition is met, there was an error in fitting 
and the threshold is set to undefined for further review.  

We explored the performance of the algorithm as a function of this criterion (see 3. 
Results), and chose a criterion of 0.3. We also explored algorithm performance with 
and without artifact rejection by excluding trials with any peaks above an absolute level 
of 20 μV, which excluded trials containing heartbeat artifacts and some larger muscle 
artifacts. The algorithm performed similarly with and without artifact rejection prior to 
step 1; the results reported here were computed without artifact rejection. In addition to 
the mean Pearson correlation coefficient, we evaluated two other metrics to obtain 
thresholds from the cross-correlation distributions generated by resampled 
subaverages. 1) Similar to Wang et al. (2021), we measured the cross correlogram as a 
function of lag between the two subaverages and quantified the percentage of times the 
peak of the cross-correlation function fell within 0.5 ms. We evaluated several criterion 
values for this parameter, but none performed well. Unlike Wang et al. (2021), we then 
fit this percentage with sigmoid and power law functions and found the threshold in the 
same manner as described above. 2) We quantified the separation between the 
distribution of cross correlation values at a lag of 0 ms (over resamples) for each level 
and a null distribution drawn from the lowest tested level using the Kolmogorov-Smirnov 
test statistic. This value was then plotted as a function of level, fit with a sigmoid and a 
power law function, and threshold was found as described above. Both approaches 
yielded worse performance than the ABRpresto method (based on the mean of the 
cross correlation at a lag of 0 ms). 

Figure 2A shows two median ABR waveforms in response to 65 dB SPL tone-pips, 
and Figure 2B shows the distribution of the cross-correlograms over 500 repetitions 

(mean SD) along with the cross-correlogram of the example shown in Figure 2A. At a 
sound intensity well above the threshold, the similarity between the two waveforms is 
apparent, captured by the peak at a lag of 0 ms in the cross-correlogram (Figure 2B). In 
contrast, two median ABR waveforms in response to 30 dB SPL sub-threshold stimulus 
do not overlap (Figure 2C). The cross-correlogram distribution at this level shows larger 
variability and no clear peak at a lag of 0 ms (Figure 2D).  

Figure 3A shows an ABR waveform stack in response to 8 kHz tone-pips at 15–65 dB 

SPL. For each sound level, the mean (SE) of all trials and an example set of two 
medians from one resample repetition are shown. With increasing sound level, the 
morphology of ABR peaks becomes clearer, with increasing similarity between the two 
median waveforms and decreasing overall variability. This trend is clearly captured in 
the increasing mean and decreasing SD of correlation coefficients shown in Figure 3B. 
In this example, a sigmoid function results in a better fit, and the threshold is defined as 
where the curve crosses the criterion of 0.3.  
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2.4. Comparison  

The algorithmic thresholds were compared to human-rated thresholds. In addition to 

Spearman’s ρ, the fraction of threshold values within 10 dB of manual thresholds was 
computed to capture the absolute difference between human-rated thresholds and 
algorithmic thresholds. For both methods, when no response was detected within the 
range of levels tested, the threshold was imputed to a level 5 dB greater than the 
highest level tested (typically set to 110 dB) and included in the comparison. When a 
response was detected at the lowest level tested, the threshold was imputed with a level 
5 dB lower than the lowest level tested (typically set to 10 dB SPL) and included in the 
comparison. 

The algorithm by Suthakar and Liberman (2019) employs cross-correlation of the 
average waveforms across levels. We tested this algorithm on the present dataset. 
Because there was no artifact rejection employed during the collection of the present 
dataset, but there was in the Suthakar datasets, we applied an artifact rejection prior to 
averaging across trials by excluding trials with any peaks above an absolute level of 20 
μV. We also evaluated the performance of this algorithm as a function of criterion level. 
Suthakar and Liberman (2019) found that a criterion of 0.35 provided the best 
performance of their data. On our data, a criterion of 0.6 gave the best performance. 
The algorithm by Wang et al. (2021) uses cross-correlation across subaverages, but 
rather than basing the threshold on the value of the cross-correlation at a lag of 0 ms, it 
instead defines the threshold as the lowest level for which the cross-correlation 
functions have a peak within ~1 ms of 0 lag. We re-implemented this algorithm and 
tested it on the present dataset, again applying 20 μV artifact rejection before 
averaging. 

2.5. Code and Data Availability 

The code for the ABRpresto algorithm is available for non-commercial use at 
https://github.com/Regeneron-RGM/ABRpresto (Shaheen, 2024b). The single-trial ABR 
waveforms used to test the algorithm are available for non-commercial use at 
https://zenodo.org/records/13987792 (Shaheen, 2024a). 

3. Results 
We created an algorithm to find threshold based on the cross correlation between 

resampled subaverage (see 2. Material and Methods). A comparison between manual 
thresholds vs algorithmic thresholds from 7,857 ABR waveform stacks show a strong 
correlation (Spearman’s ρ=0.97) between the thresholds estimated manually (by human 
rater) and by ABRpresto (Figure 4A). Notably, the data set includes a wide range of 
ABR thresholds from ~20 dB SPL to no response up to the equipment limit recorded 
from mice across multiple strains and genotypes and a wide range of frequencies (4–45 
kHz).   
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Next, the difference between algorithmic and manual thresholds were computed 

(Figure 4B). 92% of the algorithmic threshold values fell within 10 dB of the manual 
threshold values, indicating strong agreement between the proposed algorithm and 
human raters. Despite this strong agreement, the algorithm tended to predict higher 
thresholds than the human rater when the manual threshold was less than 30 dB SPL. 
In contrast, the algorithm tended to predict slightly lower thresholds when the manual 
threshold was 30 dB SPL or greater. 

Defining the “ground truth” of ABR threshold is a challenging task due to the inherent 
noise in the evoked potential signal. Figure 5 illustrates an example case for where the 
human rater likely underestimated the threshold due to noise. The averaged ABR 
waveform shows clear ABR peaks from 70 dB SPL down to 30 dB SPL. The falling 
slope of wave 1 is visible in the response to 25 dB SPL. Peaks are observed around the 
latency matching wave 1 in 20- and 15-dB SPL responses. In this case, the human rater 
selected 15 dB SPL as the threshold. However, the distribution of median ABR 
waveforms obtained by resampling shows that peaks in the 15-dB SPL response are 
not from a robust response and are more likely due to fluctuations in the waveform 
caused by noise. The low correlation coefficient values over 15–25 dB SPL support this 
interpretation. The algorithmic threshold in this example is 29.5 dB SPL, a value more 
than 10 dB higher than the manual threshold.  

There are a few other potential causes of “outliers” with larger discrepancies. In some 
cases, ABRpresto may overestimate the threshold due to noise obscuring the evoked 
response at near-threshold levels. On the other hand, in some cases ABRpresto reports 
thresholds below manual thresholds because ABR peaks are detected consistently 
across resamples. Because ABRpresto uses the median, it is more robust to large 
artifacts than human raters.   

In order to find the threshold, the ABRpresto algorithm fits curves to determine when 
the normalized cross-correlation between subaverages is above a criterion level. Figure 
6 shows the performance of the algorithm as a function of this criterion level. The 

percentage of algorithmic threshold judgements within 5 dB and 10 dB of manual 
judgements peaked at 69% and 92%, respectively. The performance in terms of the 
Spearman’s correlation coefficient was relatively flat at 0.97 for all values tested. Due to 
the less than optimal electrical conditions where background electrical noise levels can 
complicate the ABR interpretation, there can be variability in human judgements. 

Therefore, we favor maximization of the percentage of judgements within 10 dB and 
chose a criterion of 0.3. Since the performance is relatively insensitive to the criterion, it 
is likely not critical to optimize this value for data acquired with other systems.  

Figure 7 shows an efficacy study evaluating two different constructs of gene therapy 
candidates injected into a strain of mutant mice. The orange line and shaded area 
shows median and 90th percentile range of ABR thresholds from wild-type control mice 
(C57BL/6), while the blue line and shaded area shows median and 90th percentile range 
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from untreated mutant mice. Pink and green lines represent thresholds from individual 
mice treated with two different gene therapy candidates. Both manual thresholds 
(Figure 7A) and algorithmic thresholds (Figure 7B) show that gene therapy 1 resulted in 
restoration of cochlear function to near normal level whereas gene therapy 2 produced 
partial restoration. The overall distribution of the thresholds based on manual vs. 
algorithmic thresholds is similar, leading to the same conclusion. However, the threshold 
curves of each individual mouse are smoother when using algorithmic thresholds. This 
is largely because of the algorithm’s ability to interpolate between tested levels, but also 
likely due to over- or under-estimation of human-rated manual thresholds due to noise.  
Therefore, the ABRpresto algorithm may increase the ability to infer differences 
between groups when the effect size is small. 

4. Discussion 
We developed a new algorithm for automatic estimation of ABR thresholds using 

resampled cross-correlation of two independent averages of responses to the same 
stimulus. The newly developed algorithm demonstrates robust and reliable 

performance, achieving 92% accuracy within 10 dB of human-rated thresholds.  
It is difficult to compare the performance of various existing algorithms because 

different metrics are used for evaluation. Here, we compare the current algorithm to 
select algorithms and directly compare the accuracy of two other algorithms based on 
cross-correlation on our data set (Table 1). The algorithm by Suthakar and Liberman 
(2019) employs cross-correlation of the average waveforms across levels. We re-

analyzed this dataset and found the accuracy within 10 dB to be 78% and 73% for the 
two observers of their dataset 1 (their Fig 6C and 6D) and 87% and 71% for the 
observers of their dataset 2 (their Fig 6E and 6F). We also applied this algorithm to the 
current dataset (of 7,857 thresholds) and found an accuracy of 78% of the reported 

thresholds within 10 dB of human rated thresholds.  
Like ABRpresto, the algorithm described by Wang et al. (2021) uses cross-correlation 

across subaverages. Rather than basing the threshold on the value of the cross-
correlation at a lag of 0 ms, they define the threshold as the lowest stimulus level for 
which the cross-correlation functions have a peak within ~1 ms of 0 lag. In a dataset of 
10 threshold judgements, they reported an adjusted R² of 0.99 and did not report 

percentage within 10 dB. We re-implemented this algorithm and found an accuracy of 

64% within 10 dB on the current dataset. Thus, ABRpresto estimates thresholds more 
accurately than the two other algorithms based on cross-correlation.  

Thalmeier et al. (2022) introduced two algorithms: one using a Convolutional Neural 
Network (CNN) and another based on sound level regression. The CNN has been 

reported to achieve approximately 93% accuracy within 10 dB. The sound level 
regression algorithm also does not use single-trial data, does not need retraining, and 

achieves around 86% accuracy within 10 dB. Erra et al. (2024) introduced 3 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2024. ; https://doi.org/10.1101/2024.10.31.621303doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.31.621303
http://creativecommons.org/licenses/by-nc-nd/4.0/


algorithms: a logistic regression, XGBoost, and a CNN. The CNN was the best 

performer, achieving 91% accuracy within 10 dB. We did not evaluate the performance 
of these algorithms on our dataset. These algorithms have the advantage of not relying 
on single trial data, however, retraining may be needed for new datasets with highly 
diverse ABR waveform morphologies.  

Given the reliance on human judgements to evaluate thresholding algorithms, the 
ABRpresto algorithm is likely close to optimal. Further refinement of curve fitting and 
edge cases may improve the performance slightly. Future work on algorithmic ABR 
thresholding could seek alternate strategies to identify a better “ground truth” upon 
which to compare top candidate algorithms and optimize. One possibility is to 
oversample threshold measurements by measuring responses to 10 times the normal 
number of repetitions in order to get a very clean signal for expert human judgement of 
thresholds, then compare that judgement to algorithm performance on a dataset with a 
normal number of repetitions. Another fruitful avenue may be to generate clean ABR 
waveforms with known thresholds using an auditory model and then computationally 
add noise and evaluate model performance. For both approaches, the challenge will be 
in maintaining representation of the vast array of waveform morphologies represented in 
various cases of pathology. 

One challenge to the adoption of the ABRpresto algorithm is its use of single-trial 
data. Commercial ABR acquisition systems typically store only the averaged data (but in 
some cases there is an option to save single-trial data). We captured single-trial data 
using Psiexperiment, which also allowed us to use a stimulus repetition rate of 81 Hz 
using the interleaved ramp paradigm, allowing for rapid data collection (Buran et al., 
2020). In some software that does not store single trials, separate averages in response 
to positive and negative polarity stimuli are stored. Unfortunately, these are likely not 
sufficient for the ABRpresto algorithm. In the current dataset, at least 10 resamples 
were needed to obtain a reasonably noise-insensitive estimate of the threshold. For 
datasets that do not contain single trials, the Suthakar and Liberman (2019), Thalmeier 
et al. (2022), or Erra et al. (2024) algorithms would all work well. 

5. Conclusion 
The newly developed algorithm has demonstrated good performance, achieving 92% 

accuracy within 10 dB of human-rated thresholds. This validation was conducted using 
a comprehensive database comprising 7,857 thresholds across multiple strains and 
genotypes of mice with a wide range of hearing functions. Although it is challenging to 
define the “ground truth”, the new algorithm consistently produced the same 
conclusions as those derived from human ratings in all tested studies. As a result, this 
algorithm has now fully replaced the manual estimation of ABR thresholds for our 
preclinical studies, thereby saving significant time and enhancing objectivity in the 
process. 
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Figure 1. Flowchart of the ABRpresto automaƟc thresholding algorithm   
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Figure 2. Examples of two subaverages and corresponding cross‐correlograms to 8 kHz tone‐pips at 

supra‐ and sub‐threshold sound levels. A: Two median ABR waveforms at 65 dB SPL. B: Cross‐

correlograms for all subaverage pairs at 65 dB SPL. Data represented as mean ±SD C: Two median ABR 

waveforms at 30 dB SPL. D: Cross‐correlograms for all subaverage pairs at 30 dB SPL. For panels B and D, 

the thin line corresponds to the cross‐correlogram of the example pairs in panels A and C, respecƟvely. 
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Figure 3. An example fit of ABR presto to 8 kHz tone‐pips (same results presented in Figure 2). A: Stacked 

ABR waveforms in response to sƟmulus levels surrounding the threshold. For each level, mean SE from 

all trials is ploƩed in black with grey shading, and the medians of the two subsets taken from the first 

resampling are shown in orange and blue. Waveforms are normalized (for each level, all 3 lines are 

scaled by the peak‐to‐peak of the mean of all trials). B: Black dots and shading show the mean 

correlaƟon coefficient and distribuƟon for each sƟmulus level. Sigmoid and power law fits are shown in 

green and purple, with the thicker green line indicaƟng that the sigmoid fit performed beƩer, and 

therefore was used to define threshold. The threshold is shown by the pink dashed line and is defined by 

where the curve crossed criterion (black dashed line).  
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Figure 4. Comparison between manual thresholds and algorithmic thresholds. A: Manual threshold vs. 

algorithmic threshold (Spearman’s ρ=0.97). Each dot represents a single threshold value. B: DistribuƟon 

of threshold difference as a funcƟon of manual threshold. Each cell represents the percent of occurrence 

corresponding to the manual threshold & threshold difference pair, normalized within a column (manual 

threshold bin). This normalizaƟon allows visualizaƟon of the distribuƟon of threshold differences as a 

funcƟon of manual threshold. A small bias indicaƟng higher algorithmic thresholds for manual 

thresholds < 30 dB SPL is apparent. N=7,857 threshold judgements are represented in the figure. 
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Figure 5. An example case of discrepancy between manual and algorithmic threshold. A: Stacked 

averaged ABR waveforms in response to 16‐kHz tone‐pips at levels surrounding threshold. Colored 

symbols represent peaks (circles) and troughs (triangles) of waves 1 to 5 idenƟfied by a human rater. B. 

Stacked ABR with mean SE and median of the two subsets (same representation is Figure 3A). C: 

CorrelaƟon coefficient as a funcƟon of level and curve fits (same representaƟon as in Figure 3B).  
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Figure 6. SensiƟvity to criterion. A: Spearman’s ρ. Note Ɵght axis limits, indicaƟng the correlaƟon 

coefficient is near 0.97 for all criteria. B: Percent of thresholds within 10 dB and 5 dB as a function of 

criterion for correlaƟon coefficient.   
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Figure 7. Manual vs algorithmic thresholds from a study evaluaƟng two different gene therapy (GT) 

candidates in a mutant mouse model. ABR thresholds for normal hearing and untreated mutants are 

represented at median and 90th percenƟle range. A: Manual thresholds. B: Algorithmic thresholds.  
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Algorithm Citation Uses 
single-
trial 
data? 

Needs 
retraining 
for new 
datasets? 

Reported in paper Accuracy  
(on Decibel data) 

Large 
dataset? 

Accuracy 

Cross-correlation 
across levels 

Suthakar and 
Liberman 
(2019) 

No Need to 
optimize 
criterion 

Yes Spearman’s 
ρ=0.8 
~77% within 
10 dB* 

72% within 10 dB 
Spearman’s ρ=0.95 

Cross-correlation 
across subaverages 
within a level, 
time of peak  

Wang et al. 
(2021) 

No Unknown No, N=10 Adjusted 
R2=0.99 

64% within 10 dB 

Convolutional Neural 
Network  

Thalmeier et 
al. (2022) 

No Yes Yes ~93% within 
10 dB 

Untested 

“Sound Level 
Regression” 
Smoothed low-
frequency signal power 

Thalmeier et 
al. (2022)  

No No Yes ~86% within 
10 dB 

Untested 

ABRA: Convolutional 
Neural Network 

Erra et al. 
(2024) 

No Possibly Yes 91% within 10 
dB 

Untested 

Resampled cross-
correlation across 
subaverages within a 
level, mean amplitude 

ABRpresto  
(this 
algorithm) 

Yes Need to 
optimize 
criterion 

Yes 92% within 10 dB 
Spearman’s ρ=0.97 
(reported in this paper, see Fig 4) 

Table 1. ABRpresto performance compared to other algorithms. *Re‐analysis of Suthakar and Liberman 

(2019) data, averaged result between two datasets and two human raters. 
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