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Abstract

Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational
diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in
putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a
subset of familial amyotrophic lateral sclerosis (ALS) cases confer dominant but clinically variable toxicity, thought to be
mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both
the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we
established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of
mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the
appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However,
introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity
of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent
on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive
mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations.
Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of
the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly
destabilizing missense alleles.
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Introduction

ALS (OMIM #105400 http://www.ncbi.nlm.nih.gov/entrez/

dispomim.cgi?cmd=entry&id=105400) is a progressive degenera-

tive disorder affecting motor neurons in the brain stem and spinal

cord. Up to 10% of cases have a dominant familial inheritance

pattern with mutations in SOD1 (OMIM *14750 http://www.

ncbi.nlm.nih.gov/entrez/dispomim.cgi?cmd=entry&id=147450)

contributing about 20% of those [1,2]. While it is accepted that

disease results from toxic gain of function by the mutant protein

[3–5], the mechanisms contributing to toxicity remain unknown.

Two main hypotheses have been proposed; the first invokes

abnormal chemistry of mutant SOD1 proteins, resulting in

nitration of tyrosine residues on cellular proteins [6] and increased

production of hydroxyl radicals [7,8]. However, mutant SOD1

retains its toxic properties even when abnormal chemical reactions

are greatly reduced [9] suggesting that abnormal chemistry alone

may not be the basis of toxicity. Furthermore, the role of the

dismutase genes in preventing the long-term protein damage have

recently being questioned [10]. The second hypothesis suggests

that, as for many other neurodegenerative diseases, the toxicity is

mediated by misfolding and aggregation of mutant proteins [9,11–

13]. Accumulation of proteinaceous inclusions in conformational

disease indicates an inability of the protein folding quality control

machinery to efficiently recognize, fold, and degrade abnormal

proteins [14], including the mutant forms of SOD1. The role of

damaged proteins is further supported by observations that

elevated levels of molecular chaperones decrease mutant SOD1

toxicity [15,16]. However, it is still unclear how misfolding or

aggregation of SOD1 mutant protein leads to cellular toxicity.

ALS patients harboring different or even the same SOD1

mutations exhibit a high degree of clinicopathologic variation,

including clinical severity, age at onset, and the types of motor

neurons involved [17–20]. Both different biophysical properties of

mutant proteins and variation in the genetic background may

independently modulate the toxicity, providing a range of

phenotypes [21,22]. The importance of genetic interactions in

modulating disease is further underscored by findings that ALS

phenotypes in transgenic mice vary greatly depending on the

strain in which the mutant protein is expressed [23,24].
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Understanding the differences between SOD1 mutants in

misfolding/aggregation behavior and in their interactions with

cellular proteins and pathways may thus provide insights into the

toxic mechanisms and the nature of modifier genes.

To systematically examine the aggregation behavior and genetic

interactions of mutant forms of SOD1, we established a C. elegans

model expressing human SOD1-YFP fusion proteins in the body-

wall muscle cells. The ability to employ dynamic imaging in live

animals throughout their lifespan and availability of both forward

and reverse genetic approaches makes C. elegans an attractive

model to study aggregation toxicity. Similar models in C. elegans

have been used to investigate the aggregation toxicity and genetic

modifiers of polyglutamine expansions and a-synuclein [25–27].

Here, we show that three biophysically distinct [28] mutants of

SOD1 form strikingly polymorphic aggregates in C. elegans.

Expression of mutant SOD1 alone was associated with mild

toxicity. However, when mutant SOD1 was introduced into

genetic backgrounds harboring destabilizing temperature-sensitive

mutations, the toxicity was enhanced significantly and a variety of

toxic phenotypes was observed. These phenotypes reflected both

the specific SOD1 mutant and the loss-of-function of each of the

destabilized temperature-sensitive proteins. Thus, we propose that

specific phenotypes in conformational disease may be influenced

by the mildly destabilizing missense mutations present in the

genetic background.

Results

C. elegans Model for Expression of Wild Type and Mutant
Human SOD1-YFP Fusions

We established a C. elegans model to study SOD1 aggregation

toxicity by expressing wild type and mutant SOD1 in body wall

muscle cells, employing a tissue-specific promoter (pUnc-54) and

C-terminal YFP-tagging scheme (Figure S1A) [25]. The YFP-

tagged wild type SOD1 retained its enzymatic activity (Figure S2,

lane 1), indicating that the tag does not interfere with SOD1

folding. Because various mutations in the SOD1 protein exhibit

different biophysical and biochemical properties [28], we chose

three distinct mutant SOD1 proteins associated with ALS. G85R

is representative of inactive ‘‘metal-binding’’ mutants [29],

deficient in copper and zinc binding and significantly destabilized

[30]. G93A represents ‘‘wild type-like’’ mutants that bind copper

and zinc, exhibit mild loss of thermal stability when fully

metallated, and retain enzymatic activity [31]. 127X (G127in-

sTGGGstop) is a frameshift mutation resulting in a C-terminal

truncation of the last 21 amino acids and a highly unstable protein

[32]. These mutants form protein aggregates with toxic pheno-

types when expressed in mammalian cultured cells and transgenic

mice [3,5,32,33].

Transgenic lines expressing pUnc-54::WT SOD1::YFP ( WT

SOD1), pUnc-54::SOD1-G85R::YFP (G85R), pUnc-54::SOD1-

G93A::YFP (G93A) and pUnc-54::SOD1- G127insTGGGsto-

p::YFP (127X) were established. We verified that SOD1 proteins

expressed in the muscle cells were of the expected molecular sizes

(Figure S1B). Only transgenic lines expressing steady-state levels of

mutant proteins similar to or lower than WT SOD1 were selected

for further study since high expression levels could influence

aggregation and toxicity (Figure S1B).

Wild type SOD1 exhibited diffuse fluorescence in body wall

muscle cells throughout development and during adulthood

(Figure 1A,I) with broad distribution in the muscle belly (the

cytoplasmic space of a muscle cell below the myofilaments) and the

muscle arms (the projections from muscle cells toward the neural

ring). Although WT SOD1 had patchy appearance in some of the

cells, the brighter areas were diffuse upon examination at higher

magnification (insert in Figure 1I), corresponding to soluble

protein (Figure 2A). In contrast, all three mutant SOD1 proteins

presented a punctate fluorescent pattern that appeared in

embryonic stages (Figure 1B–D) and persisted throughout larval

development and adulthood (Figure 1 and Figure S3). In all three

mutant forms of SOD1, we observed both diffuse and punctate

fluorescence corresponding to two populations of protein. Thus,

SOD1 proteins in C. elegans exhibit properties similar to those

observed in other model systems, where only the mutant SOD1

protein forms inclusions when expressed ectopically [3,5,32,33].

Mutant SOD1 Forms Biophysically Distinct Classes of
Protein Aggregates

Accumulation of mutant SOD1 proteins into visible foci,

although consistent with their in vitro aggregation propensity, does

not necessarily indicate the formation of aggregates. We used

dynamic imaging and FRAP analysis to establish the aggregation

state of SOD1 proteins in live animals. As shown in Figure 2A, the

diffusion of WT SOD1-YFP fusion protein in body wall muscle

cells (light blue) was indistinguishable from that of YFP alone

(purple), with nearly complete recovery within the dead-time of

measurement post bleaching. In contrast, the fluorescent foci of all

three mutant proteins exhibited reduced recovery indicative of

immobile aggregate species (Figure 2A,B). G85R and G93A

proteins had 35 and 50% recovery over 275 seconds, respectively,

higher than that observed for foci of well-characterized aggrega-

tion-prone polyQ40 (30%), which contain only an immobile

protein [34]. The recovery of fluorescence in 127X foci continued

beyond 100 sec and reached nearly 60% over the course of the

experiment, which suggests either partially mobile species, or the

presence of multiple populations of protein.

Since these SOD1 mutants have different structural and

biophysical properties in vitro [28], the observed differences in

the fluorescence recovery of aggregates could reflect the presence

of different molecular species or interactions in vivo. We analyzed

Author Summary

Correct folding and stability are essential for protein
function. In cells, a network of molecular chaperones and
degradative enzymes facilitate folding, prevent aggrega-
tion and ensure degradation of the misfolded proteins,
thus maintaining protein homeostasis. In many diseases,
including Amyotrophic Lateral Sclerosis (ALS), expression
of a single mutant protein that misfolds and aggregates
causes cellular toxicity that is strongly dependent on the
genetic background. To address the influence of genetic
background on the toxicity of aggregation-prone proteins,
we established a C. elegans model of misfolding and
aggregation of several distinct ALS-related mutants of
superoxide dismutase 1 (SOD1). In one wild type genetic
background (N2), these proteins exhibited only mild
cellular toxicity despite strong, mutant-specific aggrega-
tion phenotypes. However, when SOD1 mutants were
expressed in the background of mildly destabilized protein
polymorphisms, their toxicity was enhanced and a number
of distinct phenotypes were exposed. These synthetic
phenotypes reflected the loss-of-function of the destabi-
lized polymorphic proteins. Furthermore, the degree to
which each of these phenotypes was exposed depended
on the nature of the SOD1 mutation. These data suggest
that the presence of mildly destabilizing polymorphisms in
the genetic background may modulate and direct the
specific toxic phenotypes in protein aggregation diseases.

Protein Polymorphisms Direct SOD1 Toxicity
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Figure 1. SOD1 mutant proteins aggregate in the body wall muscle cells of C. elegans. (A–D) Fluorescent micrographs of three-fold
embryos showing the diffuse pattern of WT SOD1-YFP fusion (A) and punctate fluorescence of YFP fusions of G93A (B), G85R (C) and 127X (D). (E–H)
G85R animals in all larval stages – L1 (E), L2 (F), L3 (G), L4 (H) – display punctate fluorescent pattern. Inserts are close-ups of the head area. (I–L)
Confocal projections of transgenic adult animals showing the distribution of the SOD-YFP fluorescence (green) and Rhodamine-phalloidin stained
myofilaments (red). WT SOD1 protein exhibits diffuse, if patchy, fluorescence (I), while all mutant strains contain discrete fluorescent foci as well as
some diffuse fluorescence (J through L). Inserts are close-ups of the boxed areas. Scale bars in A and L are 50 and 20 micrometers, respectively. All
images are of representative animals with typical fluorescent patterns.
doi:10.1371/journal.pgen.1000399.g001

Figure 2. Mutant SOD1 proteins form biophysically variable aggregates. (A) FRAP analysis of fluorescent foci of SOD1. WT SOD1 protein
(light blue) is indistinguishable from soluble YFP protein (purple). The fluorescence recovery of G85R and G93A (pink and yellow) is consistent with
stable aggregates, but shows higher initial recovery than polyQ40 species (red). 127X protein demonstrates continued slow recovery consistent with
less stable aggregates (blue). The traces are averages of 7 replicates. (B) Fluorescent micrographs of representative FRAP experiments. Panels I
through III show a concentrated area of fluorescence in WT SOD1 muscle cell before bleaching (pre), immediately post bleaching (6 seconds) and at
the end of the experiment (275 seconds). The bleached area is denoted by a white square. Panels IV through XII show FRAP experiments on G85R (IV
to VI), G93A (VII to IX) and 127X (X to XII) foci, note presence of bleached area even at 275 seconds post bleach. (C). 7.5% native PAGE of extracts from
indicated mutant strains. Mutant proteins contain high molecular weight material that did not enter the gel (lanes 2 to 4). WT SOD1 (lane 1) and G93A
(lane 3) contain a major soluble band (star), which corresponds to enzymatically active SOD1 protein (Figure S2, arrows). G85R (lane 2) and 127X (lane
4) exhibit presence of multiple soluble species, none of which contain enzymatic activity (Figure 2S); 127X also presents unresolved smear below the
aggregated material (bracket), suggesting a continual dissociation of aggregates during electrophoresis. (D) Native extracts were treated with 0.5%
Triton X-100 or 5% SDS for 15 minutes at room temperature and resolved by 5% native PAGE. SOD1 mutants contained aggregates that dissociated
upon SDS treatment (lower panel, lines 4 to 6). Polyglutamine aggregates were used for comparison (line 2). Gels in panels (C) and (D) are
representative of at least three experiments.
doi:10.1371/journal.pgen.1000399.g002

Protein Polymorphisms Direct SOD1 Toxicity

PLoS Genetics | www.plosgenetics.org 3 March 2009 | Volume 5 | Issue 3 | e1000399



the oligomeric state of SOD1 proteins by native gel electropho-

resis. Extracts from G85R, G93A and 127X lines contained

soluble SOD1 protein in addition to large aggregate species that

did not enter the gel, while extracts of WT SOD1 lines contained

mainly soluble protein (Figure 2C). The distribution of the soluble

G93A protein appeared similar to the WT SOD1, with one major

band containing enzymatically active protein (Figures 2C, star and

S2, arrow). In contrast, G85R and 127X were resolved as multiple

species of different intensities lacking enzymatic activity (Figures 2C

and S2B). This is in agreement with the known native-like

properties of G93A [31] and suggests that human SOD1 proteins

can preserve their characteristics when expressed in C. elegans.

127X extracts also contained a heterogeneous population of

electrophoretic states (Figure 2C, bracket), which could indicate

conformational instability and continual dissociation of larger

molecular species, in agreement with the continual recovery of

fluorescence by FRAP assay (Figure 2A, dark blue).

We further characterized the SOD1 aggregates using detergent

solubility. The large molecular weight material was resistant to

non-ionic detergent (0.5% Triton X-100), but was readily

dissociated by 5% SDS at room temperature (Figure 2D).

Thus, mutant SOD1 in C. elegans appears to form a molecularly

heterogeneous mixture of SDS-labile aggregates and soluble

protein, which for G85R and 127X does not attain a stably

folded, native conformation.

Mutant SOD1 Aggregates Display Morphological
Heterogeneity

The observed biochemical heterogeneity paralleled a striking

heterogeneity in aggregate morphology and distribution in SOD1-

transgenic strains. While all three mutant SOD1 strains had some

cells devoid of visible aggregates, most contained aggregates that

exhibited a wide range of shapes, sizes, and cellular distribution

(Figure 3). The majority of cells (up to 75%) in G85R animals

contained 1–5 aggregates with the apparent size of the fluorescent

foci of 5–7 mm, while some cells contained more than 20 smaller

(less than 1 mm) dispersed aggregates (Figure 3B). Both types of

aggregates exhibited similar biophysical properties by FRAP

analysis (not shown). The G93A strain had a more uniform

distribution of morphological types (Figure 3C), with aggregates

often seen in close apposition to each other (Figure S4A,B). 127X

animals differed from both G85R and G93A strains in that they

contained up to 40% of cells with irregular, non-spherical

aggregates (Figure 3D). The presence of distinct morphological

classes did not depend on the expression level, as we observed a

similar distribution in heterozygous SOD1 animals, despite lower

extent of aggregation (not shown). These data show that the wild

type and three different mutants of SOD1 form morphologically,

structurally and enzymatically different molecular species in vivo,

supporting the possibility of distinct interactions with cellular

components.

Expression of Mutant SOD1 Causes Limited Toxicity
We next asked whether expression of these aggregation-prone

proteins caused toxicity. We assessed several phenotypes as

indicators of dysfunction of muscle cells expressing the transgenes,

such as decrease in motility of animals, disturbance of ultrastruc-

tural organization of myofilaments, developmental defects, and

egg-laying defects. The motility of WT SOD1 animals grown at

15uC was similar to that of wild type (N2) strain on the second day

of adulthood, as measured by number of body bends per minute

(Figure 4A). In contrast, animals expressing G85R, G93A or 127X

SOD1 mutant proteins had 25–30% reduction in motility relative

to that of N2 animals. This decrease in motility was only minimally

enhanced by the sixth day of adulthood (Figure 4A, light grey

bars).

To assess the ultrastructural organization of myofilaments, we

visualized actin filaments with Rhodamine-labeled phalloidin. We

found no major disruptions of the organization of actin filaments

in cells containing aggregates in either of three mutant strains

(Figures 4B, S4A). In fact, SOD1 aggregates were localized to a

different focal plane than the myofilaments (Figure S4B), unlike

polyQ aggregates, which were found intercalating into filaments

and disrupting their structure (Figure S4AVII and AVIII).

Dysfunction of muscle cells during embryonic development

leads to defective elongation of the body shape of C. elegans and to

embryonic lethality (emb) or hatching of deformed, growth arrested

larvae (lva). Although SOD1 mutant proteins aggregate already in

embryos, neither of the mutant SOD1 strains exhibited substan-

tially elevated emb+lva phenotype relative to the WT SOD1 strain

(Table 1). The highest toxicity was in G85R strain (8.2%

phenotype, compared to 1.8% in WT SOD1). Likewise, despite

the presence of aggregates in vulva muscle cells, no increase in egg

laying defect was found in mutant SOD1 strains (Table 1)

compared with WT SOD1 strain. Thus, under given experimental

conditions, expression of mutant SOD1 proteins seems to exert

limited toxicity in the muscle cells of C. elegans.

The Toxicity of Mutant SOD1 in Muscle Cells Is
Modulated and Directed by Destabilizing Protein
Polymorphisms

The relatively mild toxicity, despite misfolding and aggregation

of mutant SOD1, indicates that the putative toxic species are

Figure 3. Mutant SOD1 forms morphologically distinct aggre-
gates. Projections of confocal Z-stacks with several adjacent muscle
cells; punctate lines delineate individual cells, red staining shows
myofilaments stained with Rhodamine-phalloidin. G85R protein (B)
forms morphologically diverse aggregates, including large foci indicat-
ed by arrowheads and small dispersed foci, indicated by arrow.
Aggregates in about 40% of cells of 127X animals appear as irregular,
elongated foci (D, arrows and inserts in Figure 1 J–L). Scale bar in A is 10
micrometers. Images are selected as representative of typical aggrega-
tion morphology among at least 100 imaged cells per genotype.
doi:10.1371/journal.pgen.1000399.g003

Protein Polymorphisms Direct SOD1 Toxicity
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either transient or suppressed by the cellular folding/quality

control machinery. We had previously found that metastable

temperature-sensitive (ts) mutations in various unrelated genes,

such as unc-15, unc-45 and let-60, coding for paramyosin(ts), UNC-

45(ts) and Ras(ts) proteins, respectively, destabilized the cellular

folding environment and modulated the toxicity of polyQ

expansions [35]. To examine whether protein polymorphisms in

genetic background could influence SOD1 toxicity, we introduced

WT and mutant SOD1 proteins into ts mutant strains and assayed

ts phenotypes at the permissive temperature. WT SOD1 showed

no synthetic toxicity with ts mutants. In contrast, G85R, G93A

and 127X mutants of SOD1 caused exposure of each specific ts

phenotypes at permissive temperature (Table 1).

Loss of function of paramyosin during embryonic development

leads to defects in muscle structure and thus to the emb+lva

phenotype [36]. Expression of mutant SOD1 in the paramyosin(ts)

strain caused differential exposure of these phenotypes at the

permissive temperature (Table 1), depending on the identity of the

SOD1 mutant: expression of G85R resulted in 55% of emb+lva at

15uC, 127X had 33% of emb+lva phenotype, and G93A had

intermediate toxicity. The surviving animals had very few

progeny. To ask whether this toxic interaction is specific to

paramyosin, we crossed SOD1 strains to a strain harboring a ts

mutation in unc-45 gene. Expression of SOD1 mutant proteins in

unc-45(ts) genetic background resulted in exposure of egg laying

and reproductive phenotype (egl+rep) at the permissive temperature

(Table 1). This phenotype is characteristic of dysfunction of UNC-

45-expressing embryonic muscle cells, vulva muscle cells and

gonad sheath cells, and is present in a 100% of unc-45(ts) mutant

animals at the restrictive temperature. Here, G93A exhibited over

80% toxicity at 15uC, compared with less than 5% for either

G93A or UNC-45(ts) expressed alone. Furthermore, the surviving

animals expressing both G93A and UNC-45(ts) developed into

severely uncoordinated (Figure S5), sick adults.

Paramyosin and UNC-45 both affect the formation of

myofilaments: paramyosin is a structural component and UNC-

45 regulates myosin assembly. To assess whether SOD1 mutants

were toxic towards a metastable mutant in a different cellular

pathway, we crossed SOD1 strains to a strain expressing a

temperature-sensitive Ras variant. Expression of G85R and G93A

in ras(ts) background did not have strong effects on embryonic

lethality (Table 1), while 127X, which was the least toxic with

paramyosin(ts) and UNC-45(ts), caused lethality in 23% of

embryos. SOD1 mutant proteins did cause Ras(ts) animals to

Figure 4. SOD1 mutants exert mild toxicity in the body-wall
muscle cells. (A) Body bends of individual animals per minute were
measured. Expression of mutant SOD1 proteins lead to 25 to 30%
decrease in motility on day 2 of adulthood (dark grey bars), and further
decrease by approximately 10% on day 6 of adulthood (light grey bars).
Error bars are standard error of the mean, n$15. P,0.001 between N2
and each SOD1 strain, except where indicated (ns). (B) SOD1
aggregation does not disrupt the myofilaments structure. Panel I
shows distribution of G85R aggregates in several muscle cells, panel II
shows Rhodamine-phalloidin staining of filaments in same cells. Both
panels represent a single confocal plane with aggregates (I) or filaments
(II) in focus.
doi:10.1371/journal.pgen.1000399.g004

Table 1. SOD1 toxicity is modulated by destabilizing protein polymorphisms.

15uC 25uC

phenotype protein expressed SOD1 param(ts) Ras(ts) SOD+param(ts) SOD+Ras(ts) param(ts) Ras(ts)

emb+lva WT SOD 1.8+/21.2 0.9+/21.6 **

G85R 8.2+/22.5 55.1+/212.8 7.1+/28.0

G93A 3.8+/21.6 44.4+/28.8 10.6+/22.8

127X 0.3+/20.4 33.8+/29.5 23.3+/24.0

param(ts) 6.8+/20.1 100+/20.0

Ras(ts) 3.5+/22.7 100+/20.0

phenotype protein expressed SOD1 UNC-45(ts) Ras(ts) SOD+UNC-45(ts) SOD+Ras(ts) param(ts) Ras(ts)

egl+rep WT SOD 6.3+/24.6 9.5+/23.0 **

G85R 7.1+/22.1 64.8+/26.6 14.4+/29.2

G93A 3.4+/21.8 81.0+/28.5 30.9+/28.3

127X 5.5+/23.9 54.6+/217.3 72.3+/212.0

UNC-45(ts) 3.4+/20.1 100+/20.0

Ras(ts) 6.9+/24.0 93.1+/27.0

**- these phenotypes were not measured due to inability to obtain double homozygous animals.
doi:10.1371/journal.pgen.1000399.t001

Protein Polymorphisms Direct SOD1 Toxicity
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exhibit defects in egg laying (Table 1), with 72% egl+rep phenotype

exposed in 127X and 14% in G85R animals. The ts strain by

itself, however, did not present the same egg laying defect (egl) at

25uC. Instead, Ras(ts) animals raised at the restrictive temperature

had a fluid-filled appearance with degenerated gonads, and

produced few embryos (100% reproductive phenotype, rep). Note

that Table 1 shows a combined egl+rep phenotype. Ras is

ubiquitously expressed, and pleiotropic phenotypes that are

exposed at the restrictive temperature reflect its dysfunction in

different cell types. The egl phenotype exposed by SOD1mutants

in ras(ts) background is likely due to the genetic interaction

between the two mutations specifically in the in vulva muscles or

gonad sheath cells, where the Unc-54 promoter driving SOD1

expression is active.

These data show that while expression of the three distinct

SOD1 mutants in the wild-type N2 strain of C. elegans leads to mild

toxicity, their expression in the genetic backgrounds harboring

diverse temperature-sensitive mutations uncovers toxic pheno-

types, with each SOD1 mutant affecting the activity of a given

metastable protein to different extents.

Discussion

We show here that introduction of mildly destabilized protein

polymorphisms into the defined genetic background of C. elegans

modulates the toxicity of three mutant SOD1 proteins, leading to

the development of specific toxic phenotypes. While either SOD1

aggregation or loss-of-function of metastable ts proteins can each

be viewed as a separate consequence of failure of protein folding

homeostasis, the toxic phenotypes observed here resulted from

their genetic interaction and thus were directed by the nature of

the ts mutation present. Similar to ts mutations in C. elegans, the

phenotypic expression of mildly destabilizing protein polymor-

phisms in higher organisms is thought to depend on the robustness

of the protein folding environment [37]. Thus, the demand on the

folding resources as a consequence of aging, proteotoxic

conditions, and genetic background, may alter the threshold for

the toxicity of an aggregation-prone protein, while specific

pathways and protein complexes containing such polymorphisms

may direct cell-type specific phenotypes.

C. elegans Model for SOD1 Aggregation and Toxicity
We established a C. elegans model in which aggregation, toxicity,

and cellular interactions can be directly compared between

different SOD1 mutants. Furthermore, as models of other

aggregation-prone proteins, such as polyglutamine expansions

[25], a-synuclein [27], and Ab [38] use similar expression schemes

in the same N2 genetic background, these C. elegans models could

be instrumental in deciphering both common and protein-specific

regulation of aggregation or toxicity. Expression of three different

ALS-related mutants of SOD1 in body-wall muscle cells of C.

elegans lead to mild cellular disfunction and appearance of protein

aggregates with distinct morphological characteristics. We also

observed an unexpected variability of aggregate morphology in

neighboring cells of the same animal, which could indicate that

factors other than genetically encoded interactions also affect the

fate of SOD1 in the cell. Similar stochastic variability between

muscle cells of the same animal was previously reported with

respect to onset of sarcopenia in wild type C. elegans [39].

We find that ALS-related SOD1 variants exert a potent

destabilizing influence on the functionality of metastable temper-

ature-sensitive proteins at permissive conditions, exposing a range

of phenotypes that are not present in strains expressing SOD1

mutants alone. Moreover, the most toxic of the SOD1 mutants

(127X) in the Ras(ts) background was the least toxic in the

paramyosin(ts) background, whereas the G85R mutation was most

toxic with paramyosin(ts). Strain-dependent differences in SOD1

toxicity were previously observed in a mouse model carrying

G86R mutation in murine SOD1 (corresponding to G85R in

human SOD1), with complete suppression of toxicity up to

2.5 years in one genetic background, but a rapid onset of paralysis

by 90–120 days in a different genetic background [23]. Our data

suggests that mildly destabilizing missense mutations, present in

the genetic background, could effect the exposure of specific

phenotypes.

Disruption of Protein Folding Is a Common Mechanism
of Toxicity of Aggregation-Prone Proteins

The nature of the toxicity of aggregation-prone proteins

remains one of the central questions for diseases of protein

conformation. We have previously showed that unrelated ts

mutations caused premature aggregation of polyQ-expanded

proteins [35]. Furthermore, metastable proteins encoded by these

ts mutations were found to misfold and lose function in polyQ

strains, indicating that protein folding homeostasis was disrupted

by chronic protein misfolding. Unlike polyQ, mutant SOD1

proteins, though highly aggregation-prone, exhibited much lower

toxicity on their own. The demonstration that toxicity of both

mutant SOD1 and polyQ expansions can be modulated by

metastable proteins supports our contention that the proteostasis

network [40] is sensitive to cumulative protein damage, and that

the disruption of protein folding may be a common mechanism

that underlies the toxicity of different aggregation-prone proteins.

Aggregation-Prone Proteins and Mildly Destabilized
Protein Polymorphisms Compete for Folding Resources

Each of the SOD1 mutant proteins used in this study exhibits

distinct biophysical properties in vitro [28], and forms morpholog-

ically, structurally and enzymatically distinct molecular species and

aggregates in C. elegans. It is thus possible that SOD1 mutant

proteins form different intermediate folding states in vivo depending

on the nature of the mutation, and as such may possess different

functional interactions with the folding machinery of the cell.

Indeed, G85R and G93A proteins were recently shown to have

different interactions with HSP70 in cultured cells [41]. On the

other hand, the structure and functions of paramyosin, UNC-45,

and Ras are diverse (a structural coiled-coil protein, a soluble TPR

domain-containing protein and a small GTPase, respectively) and

these proteins are not overexpressed as they are expressed from

their endogenous chromosomal loci. Thus, it is unlikely that the

synergistic effects on toxicity are because of direct and specific

molecular interactions between these protein polymorphisms and

mutant SOD1. This is in agreement with our previous observation

that polyQs cause misfolding of metastable proteins in the absence

of direct molecular interactions [35], and with a recent report that

many of the modifiers of toxicity of polyQ-expanded ataxin-3 in

Drosophila also rescue the generic toxicity of protein misfolding due

to the reduced function of HSP70 [42]. Furthermore, both the

functionality of metastable proteins and polyglutamine aggrega-

tion can be compromised by neuronally-mediated overexcitation

of the muscle cells in C. elegans [43]. These findings parallel recent

computational evidence that the selection against the toxicity of

misfolding due to mistranslation exerts strong evolutionary

pressure specifically on the highly expressed proteins [44],

indicating that the flux of destabilized proteins in a cell bears a

significant fitness cost, and that folding resources are indeed

limiting. In support of this, we show that overexpression of the
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heat-shock transcription factor HSF-1 rescues the toxic pheno-

types in a strain co-expressing an SOD1 mutant G93A and a

metastable ts mutant of UNC-45 (Figure S5B). Thus, we propose

that the genetic interactions between disease-causing mutations

and mildly destabilizing protein polymorphisms are mediated at

the cellular level by competition of their respective gene products

for folding resources.

Cell-Type Specific Toxicity of Aggregation-Prone Proteins
This hypothesis could offer an explanation for the apparent

paradox of cell-type-specific toxicity caused by ubiquitously

expressed toxic proteins in conformational diseases. Indeed, in

SOD1-related ALS, Huntington’s disease, and Alzheimer’s

disease, specific neuronal subtypes are affected despite ubiquitous

expression of SOD1, huntingtin and APP, respectively. The

differential modulation of mutant SOD1 toxicity in C. elegans by

specific ts mutations suggest that the presence of mildly

destabilizing protein polymorphisms in the genetically diverse

human population could direct such specific phenotypes: because

each cell type contains characteristic complement of expressed

proteins, the genetic interactions of aggregation-prone proteins

with destabilizing polymorphisms are expected to manifest in a cell

type-specific manner. The disease variability across the population

suggests that such protein polymorphisms may be specific to

individuals or families, and missed in the population-based linkage

analyses. A recent study found that up to 70% of rare missense

alleles are mildly deleterious in humans [45]; some of these

polymorphisms may result in the production of metastable or

folding-deficient proteins [46,47]. Identification of cell-specific

pathways or protein complexes, which may disfunction when

folding or stability of their components is challenged by co-

expression with an aggregation-prone protein, may thus provide

specific toxic mechanisms for conformational diseases and help

focus the search for disease-modifying polymorphisms.

Materials and Methods

Nematode Strains and Growth Conditions
Nematodes were grown on NGM plates seeded with E. coli

OP50 strain. Animals were synchronized by picking L4 larva or

pre-comma stage embryos onto fresh plates. Assays were

performed with young adult animals, at the second day of

reproductive adulthood at either 15uC (3.5 days after L4 stage) or

25uC (2 day after L4 stage). C. elegans strains were obtained from

the Caenorhabditis Genetic Center. Ts mutants were: paramyo-

sin(ts) - CB1402[unc-159(e1402)], UNC-45(ts) - CB286[unc-

45(e286)] and Ras(ts) - SD551[let-60(ga89)].

The SOD1 transgenic strains were created by injection and

integration of complex arrays, allowing for uniform expression of

transgenes. Human SOD1 sequences were obtained by PCR

amplification from plQL01 or plQL03 (gift from Dr. Q. Liu,

Harvard Medical School), and cloned into a Fire Lab pPD30.38

plasmid. DNA mixture for injection contained 1 ng of linearized

plasmid DNA and 100 ng of worm genomic DNA digested with

PvuII (NEB).

Crosses between SOD1 transgenic and ts strains were

performed by first mating N2 males with SOD1 hermaphrodites,

and subsequently mating SOD1 heterozygous fluorescent males

with ts hermaphrodites. 3–5 fluorescent F1 hermaphrodite

progeny from these crosses were allowed to self, and 15–20 F2

fluorescent progeny were singled onto individual plates. Plates

containing 100% temperature-sensitive progeny were used for

generation of double-homozygous strains. To generate a strain

double homozygous for G85R and Ras(ts), a singe fluorescent F2

hermaphrodite exhibiting a strong muv phenotype was picked

directly from a pool of F2 progeny. We could not generate a WT

SOD+Ras(ts) animals, presumably due to close genetic location of

respective loci.

We noted that strains co-expressing SOD1 and ts mutant

proteins tended to accumulate suppressors, similar to what was

observed with polyQ expansions [35]. Strains with low progeny

number were particularly unstable, resulting in segregation of

strains revertant for the toxic phenotype either during selection of

homozygotes or in the first few generations thereafter, or in

gradual improvement of fitness of the entire population (data from

such strains were discarded). All double homozygous lines were

periodically re-built, and assays were performed within two weeks

of obtaining double homozygous animals.

Biophysical Characterization and Enzymatic Assay
Fluorescence recovery after photobleaching (FRAP) analysis was

performed as previously described [48]. Imaging was performed

on a Zeiss LSM 510 Meta confocal microscope. YFP alone

(polyQ0) and polyQ40 strains, used as controls for soluble and

stably aggregated protein species, are described in [34].

For native extracts, nematode pellets were mechanically

disrupted, lysed in native lysis buffer (50 mM Tris pH7.4, 5 mM

MgCl2, 0.5% Triton-X 100, 0.2 mM PMSF, 1 ug/ml Leupeptin,

1 ug/ml Pepstatin A, Complete protease inhibitor (Roche)) and

centrifuged for 1 min at 306g (Eppendorf 5417C centrifuge). All

reagents were from Sigma, unless indicated otherwise. This

protocol is optimized for the removal of debris and large fragments

of cuticle while preserving the majority of aggregates in the

supernatant, verified by examination of supernatant under

fluorescent microscope. For detergent solubility, native extracts

were incubated in the indicated detergent for 15 min at room

temperature prior to resolving by native PAGE. 20 or 30

micrograms total protein was run on a 5% or 7.5% continuous

native gels. Gels were imaged on Storm 860 scanner (Molecular

Dynamics) with ImageQuant software to detect YFP fluorescence,

or processed for the in-gel enzymatic assay.

Immunostaining and Microscopy
For epifluorescence, nematodes were mounted on 1% agarose

pads with 1 mM levamisole and imaged using Zeiss Axiovert 200

microscope. For immunofluorescence and confocal imaging,

synchronized adults were fixed, permeabilized and stained with

Rhodamine-phalloidin (Molecular Probes), as described previously

[35], and imaged with Zeiss LSM 510 Meta confocal microscope

through a 4061.0 numerical aperture objective with either a 514-

nm or 543-nm line for excitation.

Motility Assay
To measure motility, nematodes at indicated age were placed

individually in a drop of M9 buffer and acclimated for 1 min; the

completed body bends were counted for 1 min. At least15 animals

were used per experiment. Similar decrease in motility was found

by this method and by measuring rate of movement of animals

raised at 20uC on a plate seeded with OP50 bacteria (not shown).

Assays for Specific Temperature-Sensitive Phenotypes
For emb+lva at 15uC, freshly laid pre-comma stage embryos were

picked onto new plates. Unhatched embryos and larvae that

hatched but did not crawl or were severely deformed were scored

after 2 days. Alternatively, young adults were acclimated to 25uC
for 1 day prior to egg laying, transferred onto new plates and

allowed to lay embryos. Embryos were picked and scored one day
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later at 25uC. About one hundred embryos was used per

experiment and experiments were repeated at least three times.

To score egl+rep and severe uncoordination, 30 L4 larvae grown

at 15uC were picked to a fresh plate and incubated for 3 days at

15uC or 1.5 days at 25uC. Animals retaining eggs or containing

three-fold embryos (detected with Nomarski optics) were scored as

egg laying defective (egl). Animals with degenerated gonads, sterile,

and those accumulating oocytes were scored as having a

reproductive defect (rep). Animals that did not move on their

own or did not exhibit sinusoidal movement pattern after being

prodded were scored as severely uncoordinated. Experiments were

repeated at least three times.

Supporting Information

Figure S1 (A) Schematic representation of the SOD1-YFP

expression constructs. The Unc-54 promoter/enhancer and

39UTR direct expression of the fusion protein in body wall,

intestinal, anal depressor, and sphincter muscles, as well as sex-

specific muscles that develop postembryonically (WormBase). (B)

Steady-state protein levels of SOD1 WT and mutant proteins.

G85R and 127X proteins are expressed at level similar to the WT

SOD1, while G93A is expressed at lower steady-state level. The

level of YFP protein in the control strain is more than 2 fold higher

than in any of the SOD1-YFP strains. The upper panel shows

immunoblot with anti-YFP antibody, the bottom panel - with anti-

tubulin antibody. 10 individual young adult animals were picked

from indicated strains, boiled (15 min) in SDS sample buffer and

resolved on 10% SDS gel. Immunoblots were scanned and

quantified using Odyssey Infrared Imaging System (LI-COR

Biosciences). The numbers below the gel represent quantitation of

YFP signal normalized to tubulin.

Found at: doi:10.1371/journal.pgen.1000399.s001 (0.53 MB TIF)

Figure S2 Only soluble species of WT SOD1 and G93A

proteins possess specific dismutase activity. G93A extract (line 3,

arrow) contains one main population of similar electrophoretic

mobility (A) and enzymatic activity (B) to the WT SOD1 (line 1,

arrow). The aggregated G93A protein is inactive (arrowhead), as is

G85R and 127X protein (lanes 2 and 4, respectively). Native

extracts were resolved by 5% native PAGE (same gel as in

Figure 2D, upper panel), YFP fluorescence was visualized with

Storm 860 scanner, and in-gel enzymatic activity assay was

subsequently performed as previously described [49]. The assay

measures SOD1-mediated inhibition of nitro blue tetrazolium

(NBT) reduction by riboflavin and TEMED. 20 micrograms total

protein was used for this assay.

Found at: doi:10.1371/journal.pgen.1000399.s002 (1.34 MB TIF)

Figure S3 The aggregation pattern and morphological variabil-

ity of aggregates in G85R strain. (A) Aggregation pattern of G85R

mutant protein at 20uC is similar to that observed at 15uC (shown

in Figure 1H). Shown are Nomarski and fluorescent micrographs

of representative L4 WT SOD1 and G85R animals. The scale bar

in panel I is 50 micrometers. (B) Area posterior to the vulva is

shown in four individual young adult G85R animals grown at

15uC. The nematodes were anesthetized, but not fixed, prior to

microscopic examination.

Found at: doi:10.1371/journal.pgen.1000399.s003 (3.56 MB TIF)

Figure S4 SOD1 aggregates do not disrupt myofilaments and

localize to the muscle belly. (A) Phalloidin-stained myofilaments

(red) appear intact in the cells containing SOD1 aggregates (green,

panels I through VI). In contrast, polyQ40 aggregates (panel VII)

intercalate into myofilaments and disrupts their continuity (panel

VIII). Arrows in each panel point to the location of selected

aggregates. Panels I, III and V, showing SOD1 aggregates, and II,

IV and VI, showing myofilaments in corresponding cells, are in

different confocal planes. The scale bar in I is 10 micrometers. (B)

G93A aggregates are localized to the cytoplasmic area beneath the

myofilaments - muscle belly. Confocal image through the middle

plane of individual nematode, the muscle cells on the ventral side

(towards the bottom of the image) are seen edge-on. Short arrows

indicate positions of the muscle quadrants, arrowheads outline an

oocyte. Several G93A aggregates (green) are seen in close

apposition to each other (long arrow), adjacent to myofilaments

(red). The scale bar is 10 micrometers.

Found at: doi:10.1371/journal.pgen.1000399.s004 (3.06 MB TIF)

Figure S5 Expression of SOD1 mutants in unc-45(ts) back-

ground leads to defect in cellular protein folding and exposure of

severe uncoordination phenotype. (A) Double homozygous

animals were scored on day 2 of adulthood. Animals that did

not move on their own or did not exhibit sinusoidal movement

pattern after being prodded were scored as severely uncoordinat-

ed. The hatched bar represents unc-45(ts) animals at 25uC. (B)

Overexpression of heat-shock transcription factor HSF-1 rescues

the synergistic toxicity between G93A and UNC-45(ts) mutant

proteins. HSF-1 is expressed from ubiquitous promoter let-858, as

described in [50].

Found at: doi:10.1371/journal.pgen.1000399.s005 (0.35 MB TIF)

Acknowledgments

We thank members of the Morimoto laboratory for their discussions and

comments on the manuscript and Dr. Klaus Richter and M. Catarina Silva

for assistance with establishing C. elegans strains. Some nematode strains

used in this work were provided by Caenorhabditis Genetics Center, an NIH

supported National Center for Research Resources.

Author Contributions

Conceived and designed the experiments: TG RIM. Performed the

experiments: TG TK. Analyzed the data: TG. Contributed reagents/

materials/analysis tools: TK SG. Wrote the paper: TG RIM.

References

1. Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated

with familial amyotrophic lateral sclerosis. Nature 364: 362.

2. Majoor-Krakauer D, Willems PJ, Hofman A (2003) Genetic epidemiology of

amyotrophic lateral sclerosis. Clin Genet 63: 83–101.

3. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, et al. (1994) Motor

neuron degeneration in mice that express a human Cu,Zn superoxide dismutase

mutation. Science 264: 1772–1775.

4. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, et al. (1995) An

adverse property of a familial ALS-linked SOD1 mutation causes motor neuron

disease characterized by vacuolar degeneration of mitochondria. Neuron 14:

1105–1116.

5. Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, et al. (1997) ALS-

linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly

progressive disease with SOD1-containing inclusions. Neuron 18: 327–338.

6. Beckman JS, Carson M, Smith CD, Koppenol WH (1993) ALS, SOD and

peroxynitrite. Nature 364: 584.

7. Yim MB, Kang JH, Yim HS, Kwak HS, Chock PB, et al. (1996) A gain-of-

function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide

dismutase mutant: An enhancement of free radical formation due to a decrease

in Km for hydrogen peroxide. Proc Natl Acad Sci U S A 93: 5709–5714.

8. Wiedau-Pazos M, Goto JJ, Rabizadeh S, Gralla EB, Roe JA, et al. (1996) Altered

reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis.

Science 271: 515–518.

9. Wang J, Slunt H, Gonzales V, Fromholt D, Coonfield M, et al. (2003) Copper-

binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native

SOD1 delineate a common feature. Hum Mol Genet 12: 2753–2764.

10. Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, et al. (2008)

Against the oxidative damage theory of aging: superoxide dismutases protect

Protein Polymorphisms Direct SOD1 Toxicity

PLoS Genetics | www.plosgenetics.org 8 March 2009 | Volume 5 | Issue 3 | e1000399



against oxidative stress but have little or no effect on life span in Caenorhabditis

elegans. Genes Dev 22: 3236–3241.
11. Jonsson PA, Ernhill K, Andersen PM, Bergemalm D, Brannstrom T, et al.

(2004) Minute quantities of misfolded mutant superoxide dismutase-1 cause

amyotrophic lateral sclerosis. Brain 127: 73–88.
12. Kabashi E, Agar JN, Taylor DM, Minotti S, Durham HD (2004) Focal

dysfunction of the proteasome: a pathogenic factor in a mouse model of
amyotrophic lateral sclerosis. J Neurochem 89: 1325–1335.

13. Rakhit R, Robertson J, Vande Velde C, Horne P, Ruth DM, et al. (2007) An

immunological epitope selective for pathological monomer-misfolded SOD1 in
ALS. Nat Med 13: 754–759.

14. Kopito RR, Ron D (2000) Conformational disease. Nat Cell Biol 2: E207–209.
15. Gifondorwa DJ, Robinson MB, Hayes CD, Taylor AR, Prevette DM, et al.

(2007) Exogenous delivery of heat shock protein 70 increases lifespan in a mouse
model of amyotrophic lateral sclerosis. J Neurosci 27: 13173–13180.

16. Zou T, Ilangovan R, Yu F, Xu Z, Zhou J (2007) SMN protects cells against

mutant SOD1 toxicity by increasing chaperone activity. Biochem Biophys Res
Commun 364: 850–855.

17. Orrell RW, King AW, Hilton DA, Campbell MJ, Lane RJ, et al. (1995) Familial
amyotrophic lateral sclerosis with a point mutation of SOD-1: intrafamilial

heterogeneity of disease duration associated with neurofibrillary tangles. J Neurol

Neurosurg Psychiatry 59: 266–270.
18. Ikeda M, Abe K, Aoki M, Sahara M, Watanabe M, et al. (1995) Variable clinical

symptoms in familial amyotrophic lateral sclerosis with a novel point mutation in
the Cu/Zn superoxide dismutase gene. Neurology 45: 2038–2042.

19. Andersen PM, Nilsson P, Keranen ML, Forsgren L, Hagglund J, et al. (1997)
Phenotypic heterogeneity in motor neuron disease patients with CuZn-

superoxide dismutase mutations in Scandinavia. Brain 120(Pt 10): 1723–1737.

20. Regal L, Vanopdenbosch L, Tilkin P, Van den Bosch L, Thijs V, et al. (2006)
The G93C mutation in superoxide dismutase 1: clinicopathologic phenotype

and prognosis. Arch Neurol 63: 262–267.
21. Kunst CB, Mezey E, Brownstein MJ, Patterson D (1997) Mutations in SOD1

associated with amyotrophic lateral sclerosis cause novel protein interactions.

Nat Genet 15: 91–94.
22. Parton MJ, Broom W, Andersen PM, Al-Chalabi A, Nigel Leigh P, et al. (2002)

D90A-SOD1 mediated amyotrophic lateral sclerosis: a single founder for all
cases with evidence for a Cis-acting disease modifier in the recessive haplotype.

Hum Mutat 20: 473.
23. Kunst CB, Messer L, Gordon J, Haines J, Patterson D (2000) Genetic mapping

of a mouse modifier gene that can prevent ALS onset. Genomics 70: 181–189.

24. Heiman-Patterson TD, Deitch JS, Blankenhorn EP, Erwin KL, Perreault MJ, et
al. (2005) Background and gender effects on survival in the TgN(SOD1-

G93A)1Gur mouse model of ALS. J Neurol Sci 236: 1–7.
25. Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, et al. (2000)

Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis

elegans. Proc Natl Acad Sci U S A 97: 5750–5755.
26. Nollen EA, Garcia SM, van Haaften G, Kim S, Chavez A, et al. (2004)

Genome-wide RNA interference screen identifies previously undescribed
regulators of polyglutamine aggregation. Proc Natl Acad Sci U S A 101:

6403–6408.
27. van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, et al. (2008)

C. elegans model identifies genetic modifiers of alpha-synuclein inclusion

formation during aging. PLoS Genet 4: e1000027.
28. Rakhit R, Chakrabartty A (2006) Structure, folding, and misfolding of Cu,Zn

superoxide dismutase in amyotrophic lateral sclerosis. Biochim Biophys Acta
1762: 1025–1037.

29. Borchelt DR, Lee MK, Slunt HS, Guarnieri M, Xu ZS, et al. (1994) Superoxide

dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis
possesses significant activity. Proc Natl Acad Sci U S A 91: 8292–8296.

30. Rodriguez JA, Valentine JS, Eggers DK, Roe JA, Tiwari A, et al. (2002) Familial

amyotrophic lateral sclerosis-associated mutations decrease the thermal stability
of distinctly metallated species of human copper/zinc superoxide dismutase.

J Biol Chem 277: 15932–15937.

31. Hayward LJ, Rodriguez JA, Kim JW, Tiwari A, Goto JJ, et al. (2002) Decreased
metallation and activity in subsets of mutant superoxide dismutases associated

with familial amyotrophic lateral sclerosis. J Biol Chem 277: 15923–15931.
32. Jonsson PA, Graffmo KS, Andersen PM, Brannstrom T, Lindberg M, et al.

(2006) Disulphide-reduced superoxide dismutase-1 in CNS of transgenic

amyotrophic lateral sclerosis models. Brain 129: 451–464.
33. Matsumoto G, Stojanovic A, Holmberg CI, Kim S, Morimoto RI (2005)

Structural properties and neuronal toxicity of amyotrophic lateral sclerosis-
associated Cu/Zn superoxide dismutase 1 aggregates. J Cell Biol 171: 75–85.

34. Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for
polyglutamine-expansion protein aggregation and cellular toxicity is dynamic

and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A

99: 10417–10422.
35. Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI (2006) Progressive

disruption of cellular protein folding in models of polyglutamine diseases.
Science 311: 1471–1474.

36. Gengyo-Ando K, Kagawa H (1991) Single charge change on the helical surface

of the paramyosin rod dramatically disrupts thick filament assembly in
Caenorhabditis elegans. J Mol Biol 219: 429–441.

37. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological
evolution. Nature 396: 336–342.

38. Link CD (2005) Invertebrate models of Alzheimer’s disease. Genes Brain Behav
4: 147–156.

39. Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, et al.

(2002) Stochastic and genetic factors influence tissue-specific decline in ageing C.
elegans. Nature 419: 808–814.

40. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for
disease intervention. Science 319: 916–919.

41. Ganesan S, Rohde G, Eckermann K, Sroka K, Schaefer MK, et al. (2008)

Mutant SOD1 detoxification mechanisms in intact single cells. Cell Death Differ
15: 312–321.

42. Bilen J, Bonini NM (2007) Genome-wide screen for modifiers of ataxin-3
neurodegeneration in Drosophila. PLoS Genet 3: 1950–1964.

43. Garcia SM, Casanueva MO, Silva MC, Amaral MD, Morimoto RI (2007)
Neuronal signaling modulates protein homeostasis in Caenorhabditis elegans

post-synaptic muscle cells. Genes Dev 21: 3006–3016.

44. Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as
a dominant constraint on coding-sequence evolution. Cell 134: 341–352.

45. Kryukov GV, Pennacchio LA, Sunyaev SR (2007) Most rare missense alleles are
deleterious in humans: implications for complex disease and association studies.

Am J Hum Genet 80: 727–739.

46. Pakula AA, Sauer RT (1989) Genetic analysis of protein stability and function.
Annu Rev Genet 23: 289–310.

47. Suckow J, Markiewicz P, Kleina LG, Miller J, Kisters-Woike B, et al. (1996)
Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions

and analysis of the resulting phenotypes on the basis of the protein structure.
J Mol Biol 261: 509–523.

48. Brignull HR, Moore FE, Tang SJ, Morimoto RI (2006) Polyglutamine proteins

at the pathogenic threshold display neuron-specific aggregation in a pan-
neuronal Caenorhabditis elegans model. J Neurosci 26: 7597–7606.

49. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and
an assay applicable to acrylamide gels. Anal Biochem 44: 276–287.

50. Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis

elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15:
657–664.

Protein Polymorphisms Direct SOD1 Toxicity

PLoS Genetics | www.plosgenetics.org 9 March 2009 | Volume 5 | Issue 3 | e1000399


