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Purpose:We performed single-cell RNA sequencing (scRNA-seq), an unbiased and high-
throughput single cell technology, to determine phenotype and function of peripheral
immune cells in patients with diabetic macular edema (DME).

Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from DME patients
and healthy controls (HC). The single-cell samples were loaded on the Chromium platform
(10x Genomics) for sequencing. R package Seurat v3 was used for data normalizing,
clustering, dimensionality reduction, differential expression analysis, and visualization.

Results:We constructed a single-cell RNA atlas comprising 57,650 PBMCs (24,919 HC,
32,731 DME). We divided all immune cells into five major immune cell lineages, including
monocytes (MC), T cells (TC), NK cells (NK), B cells (BC), and dendritic cells (DC). Our
differential expression gene (DEG) analysis showed that MC was enriched of genes
participating in the cytokine pathway and inflammation activation. We further
subdivided MC into five subsets: resting CD14++ MC, proinflammatory CD14++ MC,
intermediate MC, resting CD16++ MC and pro-inflammatory CD16++ MC. Remarkably, we
revealed that the proinflammatory CD14++ monocytes predominated in promoting
inflammation, mainly by increasingly production of inflammatory cytokines (TNF, IL1B,
and NFKBIA) and chemokines (CCL3, CCL3L1, CCL4L2, CXCL2, and CXCL8). Gene
Ontology (GO) and pathway analysis of the DEGs demonstrated that the proinflammatory
CD14++ monocytes, especially in DME patients, upregulated inflammatory pathways
including tumor necrosis factor-mediated signaling pathway, I-kappaB kinase/NF-
kappaB signaling, and toll-like receptor signaling pathway.

Conclusion: In this study, we construct the first immune landscape of DME patients with
T2D and confirmed innate immune dysregulation in peripheral blood based on an unbiased
scRNA-seq approach. And these results demonstrate potential target cell population for
anti-inflammation treatments.
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INTRODUCTION

Diabetic retinopathy (DR) is a significant microvascular
complication of diabetes, dividing into nonproliferative
diabetic retinopathy (NPDR) and proliferative diabetic
retinopathy (PDR) clinically based on the proliferative status
of the retinal vasculature (Cheung et al., 2010). Diabetic macular
edema (DME) is a significant complication of DR, mainly caused
by the breakdown of the blood-retinal barrier (BRB) and leaking
microaneurysms (Xu and Le, 2011). DME can occur at any stage
in the pathogenesis of DR and lead to severe vision loss in diabetic
patients (Das et al., 2015).

Recent studies suggest that DR is a chronic low-grade
inflammatory disease (Donath and Shoelson, 2011; Tang and
Kern, 2011). Inflammation plays a critical role in diabetic
retinopathy and contributes to vascular permeability and
edema by releasing inflammatory cytokines, leukocyte
activation, and leukostasis (Miyamoto et al., 1999; Chibber
et al., 2000; Noda et al., 2012; Mesquida et al., 2019).
Increasing evidence indicates that cytokines such as
interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), IL-6,
and IL-8 were significantly upregulated in vitreous and serum of
DR patients, resulting in a persistent chronic inflammation state
in the retina (Ben-Mahmud et al., 2004; Demircan et al., 2006;
Boss et al., 2017; Feng et al., 2018; Khaloo et al., 2020). Innate
immune cells, especially monocytes, are reported to play a pivotal
role in promoting the pathogenesis of DR (Van Hove et al., 2020;
Wan et al., 2020). In peripheral blood of diabetic patients with
microvascular or macrovascular complications, CD45+CD14+

classical monocytes were increased, but CD16+ nonclassical
monocytes were decreased, compared with patients without
complications (Min et al., 2012). Serra et al. showed that
circulating CD11b monocytes from diabetic mice were
preferentially trapped in retinal microvascular bed and may
lead to diabetic retinal vasculopathy by expressing higher
levels of chemokine receptor CCR5(Serra et al., 2012).
Recently, neutrophils were identified to promote microvascular
occlusions and small-vessel vasculitis by producing neutrophil
extracellular traps in PDR (Binet et al., 2020). These studies
indicate that immune cells may play essential roles via attaching
to vascular endothelium and cause retinal vasculopathy. One
single-cell RNA sequencing study has established a high-
resolution transcriptome landscape of blood immune cell
subsets in T1D children and revealed a high level of IL-32
produced mainly by activated T cells and NK cells could be an
early indicator for T1D (Kallionpaa et al., 2019).

Despite these studies, it is still unclear whether chronic
vascular inflammation accelerates BRB breakdown and fluid
accumulation in DME patients with T2D. Furthermore, little is
known regarding the phenotypic and functional diversity of
different immune cell types in DME. In addition, their
contribution to vascular inflammation remains to be fully
elucidated. Thus, defining key cell subsets and their states in
DME is crucial in acquiring critical insights into the immune
mechanisms and developing new therapeutic strategies for DME.

Here, to clarify the phenotype and function of peripheral
immune cells in DME, we utilized single-cell RNA sequencing

(scRNA-seq) to comprehensively characterize the transcriptional
heterogeneity of PBMCs from healthy individuals and DME
patients. Our study depicted a landscape of blood immune cell
subsets, including monocytes, dendritic cells, NK, T, and B cells,
and characterized their gene expression programs.

MATERIALS AND METHODS

Human Subjects
Four DME patients and four healthy individuals were enrolled at
the Zhongshan Ophthalmic Center, Guangzhou, China. All
patients were diagnosed with type 2 diabetes with diabetic
retinopathy determined by fluorescein angiography and
comprehensive ophthalmologic examinations. The clinical-
stage of diabetic retinopathy was classified according to the
International Clinical Diabetic Retinopathy (Wilkinson et al.,
2003). The characteristic of the patients is shown in
Supplemental Table S1. We selected DME patients with a
central macular thickness of 300 μm or more evaluated by
optical coherence tomography (OCT). Individuals with
autoimmune disease, cancer, cardiovascular diseases, and other
eye diseases (such as age-related macular degeneration, cystoid
macular edema of other origins, uveitis) were excluded to avoid
confusion with other systemic diseases. Written informed
consent was obtained from all patients after explaining the
purpose and procedures to be used. The study was approved
by the Ethics Committee of Zhongshan Ophthalmic Center,
China.

Isolation of Peripheral Blood Mononuclear
Cells (PBMCs) for scRNA-Seq
Blood samples from healthy individuals and patients were
processed within 2 h after collection and diluted 1:1 with
phosphate-buffered saline (PBS, Gibco, C10010500BT). Then,
the diluted samples were layered onto the Ficoll-Paque PLUS (GE
Healthcare Life Sciences, 17-1440-03) in the centrifuge tubes and
centrifuged at 400 g for 30 min at 18–20°C. The PBMCs layer was
collected and washed twice in PBS and identified the viability and
quantity of single cells using Trypan blue. If the cell survival rate
exceeded 90%, PBMC samples were used for the following
scRNA-seq experiment.

scRNA-Seq
The single-cell samples were loaded on the Chromium platform
(10x Genomics) for library preparation, and the barcoded
scRNA-seq libraries were constructed using the Chromium
Single Cell 5′ Reagent kit (10x Genomics) and following the
manufacturer’s instructions. In brief, single-cell gel beads in
emulsions (GEMs) were generated, and reverse transcription
(RT) was performed to produce 10x barcoded, full-length
cDNA from polyadenylated mRNA. Then, the 10x barcoded
cDNA was amplified via PCR, followed by enzymatic
fragmentation, end repair, A-tailing, adaptor ligation, and
sample index PCR. After the library preparation was
completed, the next-generation sequencing was performed on
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the 10x Genomics Chromium Illumina NovaSeq6000 platform
according to Illumina standard procedures. The quality of the
libraries was checked using the FastQC software.

ScRNA-Seq Data Alignment and Quality
Control
The raw sequencing data of patients and healthy controls were
demultiplexed by CellRanger Software (version 3.1.0) and aligned
to the GRCh38 human reference genome with default
parameters. The CellRanger count function was used to
generate single-cell feature counts for a single library, and the
CellRanger aggr function was used to aggregate gene counts of all
patients and healthy controls. The single-cell expression matrix
was further analyzed by Seurat (V3) according to the tutorial at
https://satijalab.org/seurat/site. For quality control, high-quality
cells were retained following the criteria: 1) gene number was
between 200 and 3,000; 2) the percentage of mitochondrial RNA
was <8% per cell. Low-quality cells with high HBB and HBA1
expression levels were also filtered, which identified as the RBC-
contaminated cell population. After quality control, 57,650 cells
(24,919 HC and 32,731 DME) were left for the following analysis.
Mitochondria (M.T.) and ribosomes (RPL and RPS) genes were
also eliminated in downstream analysis.

Dimensionality Reduction and Clustering
Analysis
Data normalization, scaling, clustering, dimensionality
reduction, differential expression analysis, and visualization
were processed using the R package Seurat. The global-
scaling normalization method “LogNormalize” was employed
to normalize the feature expression measurements for each cell.
Highly variable features were identified by the
FindVariableFeatures function, and data was scaled by the
ScaleData function. Moreover, the R package harmony was
used to remove batch effects to create a corrected expression
matrix for further analysis. Next, dimensionality reduction was
performed using principal component analysis (PCA), and cell
clusters were visualized with the t-distributed stochastic
neighbor embedding (t-SNE) algorithm.

ScRNA-Seq Differential Expression
Analysis
Seurat package FindMarkers function with default parameters
was used to perform differential gene expression analysis between
the control and disease groups of the same cell type. The
Wilcoxon rank-sum test within the FindAllMarkers function
was used to analyze all single-cell differential gene expression
for identified cell subsets. The marker genes for each cluster were
detected by comparing them against all other cells in the
experiment. The upregulated and downregulated differentiated
expressed genes among different comparisons were shown by the
volcano plots. In addition, the Venn diagram was used to show
the overlap of differentiated expressed genes among different cell
clusters.

GO and Pathway Enrichment Analysis
The detected differentiated expressed genes were further used to
perform Gene Ontology, gene-set enrichment analysis, and
KEGG pathway analysis using Metascape webtool (www.
metascape.org) (Zhou et al., 2019).

Transcription Factor Module Analysis
The gene regulatory network of monocytes was constructed by
SCENIC, a computational method to predict critical regulators
and identify cell state from single-cell RNA -seq data. The R
package GENIE3 was first used to generate co-expression gene
regulatory networks (GRN), and the co-expression data was then
subjected to cis-regulatory motif analysis using the R package
RcisTarget. Furthermore, the AUCell algorithm was used to score
the activity of significant regulons enriched in different clusters.

Cell-Cell Communication Analysis
The cell-cell communication networks betweenmonocytes and other
cell clusters were performed using CellphoneDB statistical analysis, a
computational approach predicting cell-cell interactions by ligand-
receptor interactions analysis. The ligand-receptor interactions
calculated by CellphoneDB were based on the expression of a
ligand by one cell cluster and a receptor by another cell cluster.
Using this method, we compared the enriched ligand-receptor
interactions in DME with HC and NPDR. Furthermore, the dot
plots generated by R package ggplot2 were used to visualize the top
significant interactions in DME.

Statistical Analysis
The Wilcoxon rank-sum test was used to identify the DEGs and
compare the differences in the expression of genes of interest
between the HC and DME groups. The hypergeometric test and
the Benjamini- Hochberg p value were used in Metascape to
identify the ontology terms. Furthermore, we used Wilcoxon
rank-sum test to assess the significance of the number differences
of MC subsets between the HC and DME group.

RESULTS

Study Design and Analysis for Single-Cell
Immunophenotyping in DME Patients
To profile the peripheral immune microenvironment of DME, we
performed single-cell RNA sequencing (scRNA-seq) to
investigate PBMCs from four prospectively enrolled DME
patients with T2D and four healthy donors as controls
(Figure 1A). Single-cell suspensions of PBMCs were collected
and converted to barcoded scRNA-seq libraries using 10X
Genomics. CellRanger software was used for the initial
processing of the sequencing data. Quality metrics included
the number of unique molecular identifiers (UMI), genes
detected per cell, and reads aligned to the human genome.
Miscellaneous cells with high HBB and HBA1 expression
levels were filtered, which identified as the RBC-contaminated
cell population. After quality control, a total of 57,650 cells
(24,919 HC and 32,731 DME) were used for downstream
analysis.
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FIGURE 1 | Experimental approach and characterization immune cell clusters from scRNA-seq data. (A) Experimental outline showing PBMC collection and
scRNA-seq data analysis. (B) T-sne plot of major immune cell clusters in PBMCs. Cell types are labeled with colors as indicated. Monocytes (MC); T cells (TC); NK cells
(NK); B cells (BC) and dendritic cells (DC). (C) T-sne plot of cell clusters in HC and DME respectively. Cell types are labeled with colors as indicated. HC: health control;
DME: diabetic macular edema. (D) Violin plot of major immune cell clusters in PBMCs, clustered by their relative expression of the cell type-specific markers.
Monocytes (MC); T cells (TC); NK cells (NK); B cells (BC) and dendritic cells (DC). (E) The feature plot showing the expression of representative markers in each cluster.
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Based on the expression of canonical markers in each cluster,
we divided all immune cells into five major immune cell lineages,
including monocytes (MC), T cells (TC), NK cells (NK), B cells
(BC), and dendritic cells (DC). Then we generated two-
dimensional visualization of the high-throughput sequencing
data using t-distributed stochastic neighbor embedding
(t-SNE), an unbiased dimensionality reduction algorithm
(Figure 1B). We demonstrated that the residual batch effect
was removed, and the scRNA-seq data across different groups
showed consistent repeatability after gene expression
normalization (Figure 1C). The violin plots indicated
expression levels, and the t-SNE maps confirmed the relative

distribution of cell type-specific marker genes across all clusters
(Figures 1D,E). These plots showed that each cluster was
identified by their unique signature genes: CD14 and CD16
(MC marker), CD3E, CD4 and CD8A (TC marker), NCAM1
(NK marker), MS4A1 and CD19 (BC marker), CD1C and
FCER1A (DC marker) (Figures 1D,E).

Proinflammatory Phenotype Mediated by
Monocytes in DME Patients
It has been demonstrated that immune cells, such as T cells, NK
cells, and monocytes, play different roles in neovascularization

FIGURE 2 | A proinflammatory phenotype mediated by MC in DME patients. (A) Volcano plot showing up-regulated and down-regulated DEGs of all immune cells
in DME compared to in HC (DME: red; HC: blue). DEG: differential expression gene. (B) Venn plot showing unique upregulated genes expressed in MC, DC, TC, NK and
BC from DME compared to the ones from HC. (C) The dot plot showing the expression of inflammatory genes in the five major cell clusters from the HC and DME group.
(D) The feature plot showing the expression of representative inflammatory genes, ILB, TNF, and CCL3, in each cluster from the HC and DME group.
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and vascular permeability in diabetic retinopathy (Kallionpaa
et al., 2019;Wan et al., 2020). However, the predominant immune
cell populations contributing to macular edema in DME remain
unknown. Firstly, to understand the transcriptional changes in
the immune cells, we conducted a comparative analysis of
differential expression genes (DEGs) between HC and DME
patients. The volcano plot revealed that inflammatory-related
genes (TNF, TNFAIP6, IL1B, NFKBIA, and DUSP2), chemokines
(CCL3, CXCL2, and CXCL8) were all expressed at high levels in
DME patients compared to HC (Figure 2A). These highly
expressed inflammation-associated genes implied that the
immune cells in the blood of DME patients were in a
proinflammatory state, which may contribute to vascular
endothelial cell damage and retinopathy.

To further investigate transcriptional heterogeneity of
immune cell signatures, we analyzed DEGs of each cluster in
DME patients compared to HC, and we showed unique and
shared upregulated expression genes of MC, TC, NK, BC, and DC
in DME using the venn plot (Figure 2B). Specific upregulated
DEGs of the five immune cell subsets were different in numbers
and presented distinct biological functions. Remarkably, we
found MC contained the highest number of specific
upregulated genes, followed by NK (Figure 2B). Interestingly,
upregulated DEGs of DME, including inflammatory genes (for
example, CCL3, IL1B, and TNF) and transcriptional factors (for
example, FOSB and JUN) found in the volcano plot were
significantly differentially expressed by MC only (Figures
2A,B), suggesting that MC may mediate the expression
changes to activate the inflammatory response. Except for MC,
other clusters displayed a resting state with low numbers of
proinflammatory genes (Figure 2B).

In order to systematically show the differences in the DEGs of
immune cell subsets, we compared the expression level of the top
inflammatory genes among the five clusters in HC and DME,
respectively. The MC had the most robust inflammatory
signature with high levels of cytokine genes expression among
five immune cell subsets (Figure 2C). Our comparison between
the two groups also suggested the considerable accumulation of
increased cytokine activity in DME patients (Figure 2C). The
t-SNE maps further confirmed that distribution of upregulated
inflammatory genes, such as IL1B, TNF, and CCL3, concentrated
in MC of DME patients especially (Figure 2D).

A Proinflammatory Monocyte Subset
Predominated in the Pathological Process
of DME
The analysis above demonstrated that MC was the main
proinflammatory cell in DME. Based on the relative
expression of CD14 and CD16, monocytes can be traditionally
subclassified as classical (CD14++ CD16−), nonclassical (CD14dim

CD16++), and intermediate monocytes (CD14++ CD16+)
(Ziegler-Heitbrock et al., 2010). To further understand the
heterogeneity of MC in DME patients, we re-clustered all the
MC and conducted precise cell classification (Figure 3A). We
observed distinct distributions of MC subsets in HC and DME on
the t-SNE maps (Figure 3B). Based on the expression level of

canonical lineage markers (CD14 and CD16) and inflammatory-
related markers (IL1B and TNF) (Figure 3C), we classified five
monocyte subsets and described each subset by the top 10
markers (Figure 3D). Here, we discovered that the CD14++

MC consisted of two clusters (Figure 3D). One presented high
CD14 gene expression and low inflammatory gene expression
signature, namely resting CD14++ MC. Another cluster called
proinflammatory CD14++ MC exhibited high CD14 and
inflammatory gene expression (Figure 3D), indicating that this
subpopulation may be associated with pathogenic processes
through inflammation activation. Furthermore, the CD16++

MC can also be re-clustered into two subsets. So, we
subdivided MC into five subsets: resting CD14++ MC,
proinflammatory CD14++ MC, intermediate MC, resting
CD16++ MC and proinflammatory CD16++ MC, based on the
expression of canonical monocyte marker genes and
proinflammatory genes (Figure 3D). From the heatmap and
dot-plot of the five MC subsets, we found that both the
CD14++ MCs expressed not only recognized markers (S100A9,
LYZ, S100A8, VCAN, and S100A12) but also newly identified
markers (MS4A6A, CAPG, MGST1, and RBP7) (Figures 3D,E).
The proinflammatory CD14++ MC highly expressed
distinguishing biomarkers, including inflammatory markers
(CCL3, CCL4, CCL4L2, CCL3L1, IL1B, NFKBIA, and TNF)
and typical transcription factors (IER2 and EGR1) (Figures
3D,E). The intermediate MC with high CD14 and moderate
CD16 expression was at the connection of the CD14++ MCs, and
CD16++MCs showed in the t-SNE plot (Figure 3A). HLA-related
genes, including HLA-DPB1, HLA-DRA, and HLA-DQA1, were
upregulated in this subset, suggesting an increased antigen
processing and presentation (Figures 3D,E). The two CD16++

MCs represented nonclassical monocytes with high expression of
CD16 and other unique signature makers identified by our
scRNA-seq data, such as LYPD2, VM O 1, CDKN1C, MS4A7,
andHMOX1 (Figures 3D,E). Inflammatory markers (TNF, IL1B,
and NFKBIA) were highly expressed in the proinflammatory
CD16++ MC compared to the resting CD16++ MC (Figures
3D,E). Among all the MC subsets, the proinflammatory
CD14++ MC expressed the highest level of inflammatory genes
(Figures 3D,E). We also observed that the composition of cell
subsets in MC differed largely between the HC and DME groups,
and the fraction of proinflammatory CD14++MCwas remarkably
elevated in DME patients (Figure 4A). Furthermore, the
frequency of proinflammatory CD14++ MC in all PBMCs was
significantly increased in DME compared to HC (HC vs DME;
p < 0.05; Figure 4C), while resting CD14++ MC was significantly
decreased (HC vs DME; p < 0.05; Figure 4B). These results
suggested that CD14++ MC in DME patients turned from a
resting state into a pro-inflammatory state.

The Inflammatory Genes and Signaling
Pathways Were Enriched in the
Proinflammatory CD14++ MC
In order to delineate howMC changed between HC and DME, we
first compared the unique DEGs of each group. The MC in DME
was uniquely characterized by the upregulation of inflammatory
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FIGURE 3 |MC subset classification and characterization in DME patients. (A) T-sne plot of major MC subsets. Cell subtypes are labeled with colors as indicated.
(B) T-sne plot of major MC subsets in HC and DME, respectively. Cell subtypes are labeled with colors as indicated. (C) The feature plot showing the expression of
canonical lineage markers in all clusters. (D) The heatmap showing expression of top 10 marker genes in all MC subsets. (E) The dot plot showing expression of top 10
marker genes in all MC subsets.
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FIGURE 4 | The inflammatory genes and signaling pathways enriched in proinflammatory CD14++MC. (A)Comparation of relative fractions of MC subsets from the
HC and DME group. (B) Quantification of resting CD14++ MC in PBMCs from the DME group compared to the HC group. (n � 4, *: p value <0.05). (C) Quantification of
proinflammatory CD14++ MC in PBMCs from the DME group compared to the HC group. (n � 4, *: p value <0.05). (D) Volcano plot showing up-regulated and down-
regulated DEGs of MC in DME compared to in HC (DME: red; HC: blue). (E) The dot plot showing the expression of inflammatory genes in the five MC subsets from
the HC and DME group. (F) The feature plot showing the expression of inflammatory markers from the HC and DME group. (G) The bar plot showing the signaling
pathways enriched in proinflammatory CD14++ MC by Gene Ontology (GO) analysis.
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genes, including inflammatory cytokines (TNF, IL1B, NFKBIA,
DUSP2, NLRP3, and TNFAIP6), chemokines (CCL3, CCL3L1,
CCL4L2, CXCL2, and CXCL8), and transcriptional factors (FOS,
FOSB, and JUNB) (Figure 4D). The most distinct transcriptional
differences of the proinflammatory CD14++ MC compared to
other MC subsets were the higher levels of inflammatory genes,
consistent with a proinflammatory phenotype (Figure 4E).
Furthermore, the dot plot revealed DME patients owned the
most activated MC, while MC in H.C. presented a resting state
(Figure 4E). We further identified that distribution of
upregulated inflammatory genes, such as IL1B, TNF, and
CCL3, concentrated in the proinflammatory CD14++ MC of
DME patients especially confirmed by the t-SNE maps
(Figure 4F). These analysis data further confirmed that MC,
especially the proinflammatory CD14++ MC, played an essential
role in the pathogenesis of DME by inflammation activation.

We identified five distinct MC subsets and demonstrated the
most activated and proinflammatory MC by transcriptional
analysis. To further investigate functional heterogeneity of the
proinflammatory CD14++ MC in DME, we analyzed signaling
pathways of this subset by Gene Ontology (G.O.) and pathway
enrichment analysis using the upregulated DEGs in DME
compared to HC (Figure 4G). Consistent with the high levels
of inflammatory genes, signaling pathways related to monocytes
activation and inflammatory response were enriched in the
proinflammatory CD14++ MC of DME (Figure 4G). When
activated, circulating monocytes were recruited to the sites of
inflammation and initiated immune responses in the pathology of
many diseases (Shi and Pamer, 2011). As for DME, the
proinflammatory CD14++ MC was characterized by highly
upregulated myeloid leukocyte activation, migration, and
chemotaxis pathways (Figure 4G). We found the VEGFA-
VEGFR2 pathway, known to promote neovascularization and
BRB breakdown, was also significantly up-regulated (Figure 4G).
The abundance of inflammatory cytokine-related pathways, such
as cytokine signaling in the immune system, signaling by
interleukins, and interleukin-1 beta production, revealed that
the proinflammatory CD14++ MC initiated inflammatory
responses mainly by cytokine production, especially IL1B
(Figure 4G). This MC subset also enhanced cell adhesion
pathways (Figure 4G), indicating that monocytes may interact
with other immune cells and retinal vascular endothelial cells.
Common upregulated inflammatory pathways included tumor
necrosis factor-mediated signaling pathway, I-kappaB kinase/
NF-kappaB signaling, and toll-like receptor signaling pathway
(Figure 4G). These signaling pathway analyses highlighted the
activation and inflammatory functions of the proinflammatory
CD14++ MC.

Specific Transcription Factors Predicted by
SCENIC Regulated Activation of the
Proinflammatory CD14++ MC
We conducted single-cell regulatory network inference and
clustering (SCENIC) analysis to evaluate the expression levels
of transcription factors (TFs) in the four distinct monocyte
subsets and explore potential TFs involved in the

inflammatory responses. This computational method can
predict critical regulators and their direct target genes (Van de
Sande et al., 2020). We observed different SCENIC-predicted TFs
expressed exclusively in specific monocyte clusters, including new
and canonical transcription factors (Figure 5A). The
proinflammatory CD14++ MC was enriched in inflammation-
relevant TFs, such as FOS, JUN, JUNB, JUND, NF-κB1, NF-κB2,
REL, and XBP1, compared to the other four subsets (Figures
5A,B). The abundance of these TFs may promote
proinflammatory CD14++ MC in DME (Wagner and Eferl,
2005; Martinon et al., 2010; Sun, 2017). The motif enrichment
of these TFs is mainly localized in the regions of the
proinflammatory CD14++ MC (Figure 5B), consistent with the
activity of inflammatory gene expression (Figures 4E,F).
Through SCENIC analysis, we predicted candidate TFs of the
proinflammatory CD14++ MC participating in the inflammatory
process. Taken together, these results further demonstrated that
the proinflammatory CD14++ MC was predominated in the
pathological process of DME.

Cell-Cell Communication Was Enhanced
Among Monocytes and Other Immune Cells
in DME
The immune system is a complex network, and blood circulating
immune cells can contact and influence each other by cell-cell
interactions, which can be identified via scRNA-seq data analysis
(Armingol et al., 2021). To understand how monocytes
communicated with other four immune cell clusters in the
DME patients, we applied CellPhoneDB (Efremova et al.,
2020), a computational approach predicting cell-cell
interactions by ligand-receptor partners analysis, to explore
cellular behavior alterations of DME compared to HC
(Figure 6A). We discovered that the interactions of eight
chemokine, seven cytokine, and five adhesion molecule ligand-
receptor pairs were significantly elevated in DME patients
(Figure 6A). Notably, the interaction patterns of these ligand-
receptor pairs were mostly from MC to other immune cell
subsets, consistent with the high expression levels of
inflammatory genes (Figure 2C, Figure 6A). Compared to the
two groups, the CCL3-CCR1 and CCL3L3-CCR1 pair were
limited to the MC-MC and MC-DC interaction, and the
CCL3L3-DPP4 pair was only found in MC-TC (Figures 6A,B).

CCL4-CNR2 pair occurred only in MC-BC interaction
(Figures 6A,B). In contrast, the CCL4L2-VSIR pair
contributed to interactions of MC and other subsets except for
BC (Figures 6A,B). MC can also recruit TC and NK through
CXCL2 secretion. However, CXCL8 interacted uniquely with its
receptor CXCR2 in NK (Figures 6A,B). The proinflammatory
cytokine IL1B and receptor ADRB2 specially communicated MC
and TC and NK (Figures 6A,B). The cytokine TNF contributed
to a broad spectrum of cell communication through increased
ligand-receptor pairs such as TNF-VSIR, TNF-FAS, TNF-
TNFRSF1A, and TNF-TNFRSF1B (Figures 6A,B). The
adhesion molecule ICAM1 played an extensive role in cell-cell
interactions with its receptor such as SPN, ITGAL, aMb2, aXb2,
and aLb2 complex (Figures 6A,B). Specifically, we found that
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MC required self-recruitment and activation through
significantly increased cell interactions in DME patients
(Figure 6A). These results confirmed that monocytes had a
considerably enhanced propensity to initiate inflammation
responses by secreting chemokines and cytokines. Taken
together, these results predicted the possible molecular
mechanisms underlying cell-cell communication in DME
patients, further demonstrating the activation and
proinflammatory signatures of MC.

DISCUSSION

It is increasingly recognized that chronic low-grade and sterile
inflammation contributes to the pathogenesis of DR, from early
phases to the vision-threatening advanced stages (Tang and Kern,
2011; Mesquida et al., 2019; Semeraro et al., 2019). Some studies
had reported an increased adherence of leukocytes that
contributes to physically capillary occlusion and microvascular
damage by producing cytokines (Schroder et al., 1991; Ulbrich
et al., 2003; Joussen et al., 2004). Despite decades of research, the
immune mechanisms contributing to these processes in DME
remain largely unresolved, and the identification of specific
immune dysregulation is needed to develop new therapeutic
strategies for DME. This study depicted the first single-cell
immune atlas of peripheral blood in DME patients, allowing a
precise understanding of inflammatory immune mechanisms.
Compared to HC, a hyper-inflammatory response in DME
was observed, which may explain why some DME patients

had severe vision loss. In addition, we identified five major cell
clusters with unique gene expression patterns and discovered that
monocytes are the domain proinflammatory cells in DME
patients. The monocytes were subdivided into four subsets,
and their activation status, function signatures, and immune
mechanisms were comprehensively described.

It has been demonstrated that monocytes are crucial
participants in mediating chronic inflammatory diseases such
as diabetes, atherosclerosis, and rheumatoid arthritis (Weber
et al., 2008; Grossmann et al., 2015; Tabas and Lichtman,
2017; Cecchinato et al., 2018; Jordan et al., 2019; Zhang et al.,
2019). Furthermore, accumulating evidence suggests that
monocytes are involved in the pathogenesis of diabetic
complications, including diabetic nephropathy and diabetic
retinopathy (Nakajima et al., 2002; Theocharidis et al., 2020;
Torres et al., 2020; Wan et al., 2020). In our study, monocytes in
DME displayed unique differences and highly specialized
functions compared to other immune cell subsets (Figures
2A,C,D). With DEG analysis of our transcriptional data, we
observed that the inflammatory cytokines (TNF, IL1B, and
NFKBIA) and chemokines (CCL3, CCL4L2, CXCL2, and
CXCL8) are highly expressed in monocytes (Figures 2B,C).
Compared to HC, monocytes showed higher expression of
inflammatory genes in DME patients (Figures 2C,D),
consistent with the high protein levels in vitreous and serum
of DME patients reported in the previous studies (Ben-Mahmud
et al., 2004; Demircan et al., 2006; Boss et al., 2017; Feng et al.,
2018; Khaloo et al., 2020). Thus, it is reasonable to conclude that
monocytes in DME exhibited an activated and proinflammatory

FIGURE 5 | A gene regulatory network among the TFs predicted by SCENIC. (A)Heatmap of the AUC scores of transcription factors (TFs) in monocyte subsets, as
estimated using SCENIC. (B) T-sne plots showing the regulon activity of the corresponding TFs (FOS, JUN, JUNB, JUND, NFKB1, NFKB2, REL, and XBP1).
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status, thus enhancing the generation of chronic low-grade
inflammation in the diabetic retina by releasing inflammatory
cytokines and chemokines.

Human monocytes are traditionally subdivided into classical
(CD14++ CD16−), nonclassical (CD14dim CD16++), and
intermediate monocytes (CD14++ CD16+), according to the
relative expression of CD14 and CD16 (Ziegler-Heitbrock
et al., 2010; Wong et al., 2011). Here, we discovered that
CD14++ MC showed two distinct states based on the
expression of inflammatory genes (Figures 3A,C–E).
Therefore, we classified CD14++ MC into resting CD14++ MC
and pro-inflammatory CD14++ MC (Figure 3A). We found that
the upregulation of inflammatory genes expression, including
inflammatory cytokines and chemokines, was largely focused on
the proinflammatory CD14++ MC (Figures 4E,F). Moreover, our
GO and pathway analysis indicated the proinflammatory CD14++

MC in DME was enriched with proangiogenic and
proinflammatory pathways (Figure 4G). Previous studies have

reported that VEGFA-VEGFR2 pathway contributed to
neovascularization through regulating proliferation and
sprouting of vascular endothelial cells, and also by increasing
the permeability (Goel and Mercurio, 2013; Stitt et al., 2016).
Hence, it is likely that the proinflammatory CD14++ MC may
promote angiogenesis and macular edema with up-regulated
VEGFA-VEGFR2 pathway. Corresponded to the high levels of
inflammatory cytokines, the proinflammatory CD14++ MC was
enriched in inflammatory cytokine-related pathways, such as
signaling by interleukins, tumor necrosis factor-mediated
signaling pathway, I-kappaB kinase/NF-kappaB signaling, toll-
like receptor signaling pathway, and so on (Figure 4G).
Consistent with the upregulation of chemokines, the
proinflammatory CD14++ MC was characterized by highly
upregulated myeloid leukocyte migration, chemotaxis, and
differentiation pathways (Figure 4G). These data suggested the
proinflammatory CD14++MCwas the predominant activated cell
population in peripheral blood of DME patients.

FIGURE 6 | Cell-cell communication was enhanced among MC and other immune cells in DME. (A) Dot plot of the predicted interactions between monocytes and
the indicated immune cell types in the HC and DME group. (B) Summary illustration depicting the potential cytokine-receptor interactions betweenMC and other types of
peripheral immune cells in the DME.
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Previous studies had reported AP-1 family TFs (FOS, FOSB,
JUN, JUNB, and JUND), NF-κB family TFs (NF-κB1, NF-κB2,
and REL), and XBP1 that participated in immune response,
including immune cell activation, differentiation, and
proinflammatory cytokines production (Wagner and Eferl,
2005; Martinon et al., 2010; Sun, 2017). Our DEG analysis
indicated the proinflammatory CD14++ MC was uniquely
characterized by higher gene expression of transcriptional
factors (FOS, FOSB, and JUNB) (Figure 4D). Through
SCENIC analysis, we predicted FOS, JUN, JUNB, JUND, NF-
κB1, NF-κB2, REL, and XBP1 as key regulators directing
inflammatory gene expression proinflammatory CD14++ MC
(Figures 5A,B). These results may explain the transition from
resting CD14++ MC to proinflammatory CD14++ MC in DME
patients.

Interaction between monocytes and other immune cells may
help understand the functional states of monocytes in DME.
CellPhoneDB analysis predicted monocyte-centric ligand-
receptor pairs and constructed interaction networks (Figures
6A,B). As a result, multiple inflammation-related ligand-
receptor pairs’ expression was significantly increased in DME
patients compared to HC (Figure 6A). Previous studies have
noted that monocytes can sense environmental changes, migrate
into lesions and differentiate into macrophages, playing a
significant role in chronic inflammatory disease (Jakubzick
et al., 2017). In our study, monocytes predominated in
producing chemokines, cytokines, and adhesion molecules,
which promoted interaction with other immune cells by
different ligand-receptor pairs (Figure 6A). Early reports
suggest increasing chemokines and cytokines results in immune
cells recruitment to the diabetic retina and lead to immune
dysregulation and retinal tissue damage (Rubsam et al., 2018).

Intravitreal anti-VEGF drugs are first-line treatments for
DME, but a large fraction of patients didn’t show complete
response (Antonetti et al., 2012). There is need to explore new
therapeutics targeting VEGF-independent mechanisms, such as
anti-inflammation drugs. Due to technical and ethical issues, we
could only collect immune cells from patients’ peripheral blood
samples but not directly from their retinal tissues. Nevertheless,
we believe that a single-cell analysis on peripheral immune cells
could provide new insight into the systemic control of diabetes
that may reduce DME, possibly aided by anti-inflammatory
agents targeting monocytes in peripheral blood. We revealed
that the proinflammatory CD14++ MC in DME was uniquely
characterized by the upregulation of inflammatory genes,
including inflammatory cytokines (TNF, IL1B, NFKBIA,
DUSP2, NLRP3, and TNFAIP6), chemokines (CCL3, CCL3L1,
CCL4L2, CXCL2, and CXCL8), and transcriptional factors (FOS,
FOSB, and JUNB). GO and pathway analysis of the DEGs
demonstrated that the proinflammatory CD14++ monocytes
upregulated inflammatory pathways including tumor necrosis
factor-mediated signaling pathway, I-kappaB kinase/NF-kappaB
signaling, and toll-like receptor signaling pathway. Further
studies are needed to investigate the roles of these up-
regulated inflammatory cytokines and chemokines and
signaling pathways in the proinflammatory CD14++ MC for
new drug development.

Our studywas limited by the fact thatwe did not examine the entire
immune landscape of DME patients, given that we only included
PBMCs in our study, without including granulocytes and other
immune cells. Further studies should be undertaken to investigate
other cell populations associated with DME that were not fully
addressed in the current paper, such as the NK cell sub-populations.

In conclusion, this study constructed the first immune
landscape of DME patients with T2D and confirmed innate
immune dysregulation in peripheral blood based on an
unbiased scRNA-seq approach. With this high-resolution
technology, one particular cell subset, the proinflammatory
CD14++ MC, was identified to predominate in the
pathogenesis of DME, providing a more comprehensive
understanding of monocytes in human peripheral blood.
Notably, we discovered that this subset in DME required a
discriminative inflammatory gene expression signature,
indicating its activated status and proinflammatory functions.
Anti-inflammation treatments targeting this proinflammatory
monocyte subset would be helpful for DME patients.
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