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A B S T R A C T   

The global market demand for natural astaxanthin is rapidly increasing owing to its safety, the potential health 
benefits, and the diverse applications in food and pharmaceutical industries. The major native producers of 
natural astaxanthin on industrial scale are the alga Haematococcus pluvialis and the yeast Xanthopyllomyces 
dendrorhous. However, the natural production via these native producers is facing challenges of limited yield and 
high cost of cultivation and extraction. Alternatively, astaxanthin production via metabolically engineered non- 
native microbial cell factories such as Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica is another 
promising strategy to overcome these limitations. In this review we summarize the recent scientific and 
biotechnological progresses on astaxanthin biosynthetic pathways, transcriptional regulations, the interrelation 
with lipid metabolism, engineering strategies as well as fermentation process control in major native and non- 
native astaxanthin producers. These progresses illuminate the prospects of producing astaxanthin by microbial 
cell factories on industrial scale.   

1. Introduction 

Astaxanthin is a keto-carotenoid with dark reddish color, and is 
widely distributed in algae, shrimp, crab, shellfish and other organisms 
[1,2]. Due to its safety and the stable reddish color, astaxanthin became 
an ideal source for pigmentation in aquaculture and food industry [3]. 
Additionally, several studies showed potential health benefits associated 
with astaxanthin supplementation including antioxidant, 
anti-inflammation, anti-cancer, neuroprotection and 
immuno-enhancement activities [4]. Owing to these benefits and uses, 
the demand and market size of astaxanthin have been rapidly 
increasing. The global astaxanthin market is expected to reach USD 3.5 
billion by 2026, from USD 1.37 billion in 2020, at a compound annual 
growth rate (CAGR) of 16.8% [5]. The animal feed application domi-
nated the market, with a share of 65.5% in 2020, while China dominated 
the Asia Pacific market for astaxanthin with a share of 40.4% [6]. 

The chemical structure of astaxanthin (3,3′-dihydroxy-4,4′-dione- 
β,β′-carotene) resembles that of many other carotenoids. It contains a 
main chain composed of four isoprene units connected by conjugated 
double bonds, and one β-ionone ring at each end of the chain. Each 
ionone ring carries a characteristic 3-hydroxy (OH) and a 4-keto (C––O) 
groups. These structural arrangements enable the compound to attract 
free radicals and provide them electrons resulting in termination of the 
free radical chain reaction, which explains the strong antioxidant ac-
tivity of astaxanthin [2,7]. Astaxanthin has many optical and geometric 
isomers [8]. The 3 and 3′ hydroxygroup of each ionone ring can exist in 
the S or R form. Accordingly, three different optical isomers have been 
reported ((3S, 3′S), (3R, 3′R), and (3R, 3′S)) for astaxanthin. The anti-
oxidant activity is influenced by the form of astaxanthin isomer used, 
and the (3S, 3′S) form showed stronger antioxidant activity than that of 
(3R, 3′R) and (3R, 3′S) [9]. Several astaxanthin derivatives have been 
reported in nature including esterified astaxanthin (mono- and di-ester), 
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glycosylated astaxanthin (astaxanthin β-D-glucoside, astaxanthin 
β-D-diglucoside and astaxanthin dirhamnoside) and 
glycosylated-esterified astaxanthin (astaxanthin diglucoside diester) 
[10–14]. These modifications take place at the 3 and 3′ hydroxygroup of 
the ionone rings and are believed to influence the polarity, solubility and 
the biological activity of astaxanthin [4,10,15]. 

Astaxanthin can be obtained through extraction from natural sources 
or chemical synthesis [16]. Astaxanthin biosynthesis has been reported 
in several organisms including microalgae, bacteria, yeast and plants [4, 
17]. Although, astaxanthin has been detected in several aquatic animals, 
these animals cannot synthesis astaxanthin, but they obtain it through 
feed [16]. Several microalgae have been extensively studied for their 
ability to synthesize and accumulate astaxanthin naturally when cells 
are cultured under stress [18]. Amongst these algae, Haematococcus 
pluvialis is recognized as the best natural source of astaxanthin with the 
highest astaxanthin content, which can reach up to 4% of the dry cell 
weight under optimal cultivation conditions [18]. Therefore, H. pluvialis 
astaxanthin covers over 50% of the natural astaxanthin market in the 
global nutraceutical industry [19,20]. In addition to H. pluvialis, Chlor-
ella zofingiensis is also considered as a promising source of natural 
astaxanthin production [21]. However, the large scale production using 
these algae requires high light intensity, large cultivation areas and 
complex cultivation process which makes the industrial production 
challenging [22]. Bacterial astaxanthin biosynthesis have been reported 
in many strains, such as Brevundimonas sp., Sphingomonas sp. and Par-
acoccus sp [23–25]. The marine bacterium Paracoccus carotinifaciens is 
considered the best among bacterial astaxanthin producers, with a high 
level at 480 mg/L by fed-batch fermentation [18,26]. One of the major 
astaxanthin producing yeasts is Xanthophyllomyces dendrorhous [27]. 
X. dendrorhous is the earliest strain used in the industrial production of 
astaxanthin, and contains about 0.2–0.5 mg/g DCW carotenoids, of 
which 40–95% is astaxanthin [28,29]. Several strategies have been 

extensively applied for enhanced production of astaxanthin from 
X. dendrorhous, and the highest yield reported has reached 9.7 mg/g dry 
cell weight (DCW) [18,30]. In addition to the above mentioned micro-
organisms, astaxanthin biosynthesis has been detected in some plant 
species of the genus Adonis [17,31]. 

At present, the human health consumption of astaxanthin is strictly 
limited to H. pluvialis [32]. However, natural astaxanthin cannot meet 
the market demand due to the low yield and high costs of cultivation and 
extraction [16]. Therefore, chemically synthesized astaxanthin is the 
most dominant source for commercial use due to its low cost and higher 
profitability. Nevertheless, the demand is still in the favor of natural 
astaxanthin due to safety concerns related to the byproducts formed 
during the chemical synthesis of astaxanthin [20]. Additionally, natural 
astaxanthin has higher antioxidant activity, as it mainly exists either in 
(3S, 3′S) or (3R, 3′R) forms. For instance, more than 95% of astaxanthin 
from H. pluvialis is in (3S, 3′S) form [33], while, the (3R, 3′R) is the 
dominant form in the red yeast X. dendrorhous [34]. However, the 
chemically synthesized astaxanthin is composed of a mixture of the 
three isomers at a ratio of 1:2:1 (3R,3′R:3R,3′S:3S,3′S). Thus, to over-
come the imperfections of the native producers or chemical synthesis 
and benefiting from the advances in biotechnology, the engineering of 
the non-carotenogenic microbes, such as Escherichia coli, Saccharomyces 
cerevisiae and Yarrowia lipolytica, to produce astaxanthin shows prom-
ising results to become better alternative cell factories on industrial 
scale. 

In this review we intend to address the recent advances in microbial 
astaxanthin production with a main focus on the major native and non- 
native producers (Table 1) in regards to astaxanthin biosynthesis regu-
lations, engineering strategies and fermentation optimization attempts. 

Table 1 
Major native and non-native astaxanthin producing microorganisms.  

Organism Highest Yield 
or Titer 

Fermentation scale Pros Cons Ref 

Native      
Haematococcus 

pluvialis 
Modified: 
87.4 mg/L 

500 mL volume glass 
tubular airlift 
photobioreactors 
8 days 

High astaxanthin content; safe for human 
consumption; environment-friendly; stable 
non-GMO; well accepted by laws and 
regulations of different countries 

Complex cultivation; slow growth rate; large 
space required; easy to be contaminated in 
open culture system; high cost of production; 
difficult to scale up and extract; limited by 
light and nutrition; astaxanthin in esterified 
form 

[3,19,220, 
239,240] 

Unmodified: 
77.2 mg/g 
DCW 

Shake-flask 
18 days 

Chlorella zofingiensis 73.3 mg/L Shake-flask 
14 days 

High growth rate and high cell density when 
cultivated in heterotrophic conditions; high 
lipid content; non-GMO 

Complex cultivation; easy to be contaminated; 
difficult to scale up and extract; slow growth 
rate and large space required when cultured in 
photoautotrophic conditions, astaxanthin in 
esterified form 

[3,21,36, 
241–243] 

6.8 mg/g DCW NA 

Xanthophyllomyces 
dendrorhous 

Modified: 
9.7 mg/g 

Fermenter 
216 h 

Simple requirements for growth; easier to 
scale up and achieve high biomass; high 
growth rate; can use a variety of carbon 
sources; can act as a non-GMO 

Low yield; the growth rate of yeast cells is 
inversely proportional to the accumulation of 
astaxanthin; low market demand for its 
astaxanthin configuration; harder to obtain 
pure free astaxanthin; unknown regulatory 
pathways and thus harder to be rationally 
engineered 

[3,30,80, 
198] 

Unmodified: 
420 mg/L 

1 L bioreactor 
240 h 

Non-native      
Escherichia coli 18.7 mg/g 

DCW 
1 L bioreactor 
85 h 

Easier to scale up and extract; high biomass; 
fastest growth rate; clear genetic 
background and mature genetic 
manipulation; low cost of using glucose as a 
carbon source, simple equipment 
requirements 

Multiple purification steps and high 
purification cost are required to remove 
recombinant DNA and endotoxin 

[3,124, 
138,244] 

1.18 g/L 5 L bioreactor 
60 h 

Saccharomyces 
cerevisiae 

404.78 mg/L 5 L bioreactor 
180 h 

Easier to scale up and extract; high biomass; 
fast growth rate; GRAS; environment 
friendly; clear genetic background; mature 
genetic manipulation 

Purification is required to remove recombinant 
DNA; low yield; complex intermediate 
metabolites 

[3,172, 
225,244] 

13.8 mg/g 5 L bioreactor 
68 h 

Yarrowia lipolytica 858 mg/L 
(16.7 mg/g) 

Shake Flask (Fed- 
Batch) 
288 h 

Easier to scale up and extract; high biomass; 
fast growth; GRAS; high lipid content 

Purification is required to remove recombinant 
DNA; low yield; complex intermediate 
metabolites 

[3,117, 
149,245]  
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2. Astaxanthin biosynthesis: pathways, regulations and 
distribution 

2.1. Astaxanthin biosynthetic pathways 

As a terpenoid, astaxanthin biosynthesis starts from the 5-carbon 
isomers isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophos-
phate (DMAPP) (Fig. 1). IPP and DMAPP can be natively synthesized by 
mevalonic acid (MVA) pathway in eukaryotic microbes using acetyl-CoA 
as precursor, or 2-methyl-D-erythritol-4-phosphate (MEP) pathway in 
prokaryotic microbes and plant plastids using glyceralehyde-3- 
phosphate and pyruvate as precursors [35,36]. In the MVA pathway, 
acetyl-CoA acetyltransferase (AACT) condensates two acetyl-CoA mol-
ecules to give acetoacetyl-CoA, which is further condensed with addi-
tional molecule of acetyl-CoA by hydroxymethylglutaryl-CoA synthase 
(HMGS) to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) [37]. 
Then, a reduction step by 3-hydroxy-3-methylglutaryl-CoA reductase 
(HMGR) results in mevalonate formation. Afterwards, IPP is formed by a 
three step reactions mediated by mevalonate kinase (MK), phospho-
mevalonate kinase (PMK), and at last mevalonate diphosphodecarbox-
ylase (MVD). The formed IPP is then isomerized to DMAPP by 
isopentenyl diphosphate isomerase (IDI) [37]. 

In MEP pathway, the first step starts by condensation of 

glyceralehyde-3-phosphate and pyruvate by 1-deoxy-D-xylulose-5- 
phosphate synthase (DXS) to form 1-deoxy-D-xylulose-5-phosphate 
(DXP), followed by a reduction step by 1-deoxy-D-xylulose-5-phosphate 
reductoisomerase (DXR) to form 2C-methyl-D-erythritol-4-phosphate 
(MEP) [38]. The formed MEP is then converted into 4-(cytidine 
5′-diphospho)-2-C-methyl-D-erythritol (CDP-ME) which is catalyzed by 
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (MCT). Then 
2C-methyl-D-erythritol-2,4-cyclodiphosphate (MECDP) is generated 
through phosphorylation and cyclization by the activity of CDP-ME ki-
nase (CMK) and MECDP synthase (MDS), respectively. The MECDP is 
then converted into 1-hydroxy-2-methyl-2-butenyl 4-diphosphate 
(HMBPP) under the action of 4-hydroxy-3-methylbut-2-enyl-diphos-
phate synthase (HDS). Then IPP and DMAPP are derived from HMBPP 
by the activity of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 
(HDR) [38]. In addition to these differences between MVA and MEP 
pathways, the two pathways differ in carbon use efficiency, energy and 
cofactor requirements, and IPP yields [39,40]. Starting from glucose, the 
carbon loss in the form of CO2 Via MVA pathway is higher than that of 
MEP. In the course of the precursors formation, one molecule of CO2 is 
generated to form a single acetyl-CoA molecule as the MVA pathway 
precursor, while, the formation of the MEP pathway precursors, pyru-
vate and G3P, does not involve any carbon loss [39]. For each IPP 
molecule formation in the MVA pathway, a total of 1.5 molecules of 

Fig. 1. Scheme for astaxanthin biosynthesis and strategies for enhancing precursors and cofactors supply. Enzymes are as follows: (1) EMP-TCA pathway (pruple): 
HK, Hexokinase; GPD, glyceraldehyde 3-phosphate dehydrogenase; PD, pyruvate dehydrogenase; GltA, citrate synthase; Acon, aconitate hydratase; Icd, aconitate 
hydratase; SucAB, α-ketoglutarate dehydrogenase; SucCD, succinyl-CoA synthetase; SdhABCD, succinate dehydrogenase; FumAC, fumarate hydratase; Mdh, malate 
dehydrogenase; ME, malic enzyme. (2) Pentose phosphate pathway (gold): G6PDH, glucose 6-phosphate dehydrogenase; PGL, 6-phosphogluconolactonase; PGDH, 6- 
phosphogluconate dehydrogenase; Rpe, ribulose 5-phosphate 3-epimerase; Rpi, ribose-5-phosphate isomerase; Tkt A/B, transketolase subunit A/B; Tal, transaldolase. 
(3) DMAPP/IPP moldule (green): MVA Pathway: AACT, acetyl-CoA acetyltransferase; HMGS, hydroxymethylglutaryl-CoA synthase; HMGR, 3-hydroxy-3-methylglu-
taryl-CoA reductase; MK, mevalonate kinase; PMK, phosphomevalonate kinase; MVD, diphosphodecarboxylase; IDI, isopentenyl pyrophosphate isomerase; MEP 
Pathway: DXS, 1-deoxy-D-xylulose-5-phosphate synthase; DXR, 1-deoxy-D-xylulose-5-phosphate reductoisomerase; MCT, 2-C-methyl-D-erythritol 4-phosphate cyti-
dylyltransferase; CMK, CDP-ME kinase; MDS, MECDP synthase; HDS, 4-hydroxy-3-methylbut-2-enyl-diphosphate synthase; HDR, 4-hydroxy-3-methylbut-2-enyl 
diphosphate reductase, IDI, isopentenyl pyrophosphate isomerase. (4) β-carotene biosynthesis (orange): GPS, geranyl pyrophosphate synthase; FFPS, farnesyl 
diphosphate synthase; GGPPS, geranylgeranyl pyrophosphate synthase; CrtY(CrtYB), lycopene cyclase. (5) Astaxanthin biosynthesis (red): CrtZ, β-carotene hy-
droxylase; CrtW, β-carotene ketolase; CBFD, carotenoid beta-ring 4-dehydrogenase; HBFD, 4-hydroxy-beta-ring 4-dehydrogenase; CrtS, cytochrome P450 mono-
oxygenase; CrtR, cytochrome P450 reductase. (6) Electron transport chain (grey). The Solid arrows indicate a single step reaction. The dashed arrows indicate 
multistep reactions. The dashed purple boxes indicate the engineered steps via overexpression of the corresponding gene in the engineered host. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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glucose, three ATP molecules and two molecules of NADPH are needed 
[40]. However, the MEP pathway requires 1.25 molecules of glucose, 
three molecules of NADPH and three ATP molecules (two for the 
regeneration of CTP, one for CDP-ME conversion to CDP-MEP) (Fig. 1). 
Thus, the theoretical IPP yield on glucose from MEP pathway is expected 
to be higher than that of MVA pathway, while more cofactors are 
needed. 

The IPP and DMAPP produced through MEP or MVA pathways are 
then condensed to give geranyl pyrophosphate (GPP; C10) by the ac-
tivity of geranyl pyrophosphate synthase (GPS), which is subsequently 
converted to farnesyl pyrophosphate (FPP; C15) by farnesyl diphosphate 
synthase (FFPS), and then to geranylgeranyl pyrophosphate (GGPP; 
C20) by the action of GGPP synthase (GGPPS) [41]. GGPP is then 
catalyzed by phytoene synthase (PSY or CrtB) to produce the first C40 
carotenoid phytoene, which is desaturated and converted into lycopene 
by the consecutive action of phytoene desaturase (PDS) and 
zeta-carotene desaturase (ZDS). β-carotene is then formed from lyco-
pene by the activity of lycopene cyclase (LCY, CrtY, CrtYB, CarRRP or 
LCYB). Afterwards, β-carotene is converted into astaxanthin in enzy-
matic reactions dependent on the producing organisms [42]. 

The biosynthesis of astaxanthin in bacteria and algae from β-carotene 
is mediated by two enzymes, the β-carotene hydroxylase encoded by the 
crtZ (crtR-B or CHYB in algae) gene, and the β-carotene ketolase encoded 
by the crtW (bkt in algae) gene [43–45]. In response to different envi-
ronmental stress conditions, three different BKTs have been reported to 
be expressed in H. pluvialis [46–48]. The expression level of these pro-
teins varies among each other on a manner dependent on the stress 
conditions [47]. Luo et al. identified six copies of bkt genes (bkt1a, bkt1b, 
bkt1c, bkt2a, bkt2b and bkt3) in H. pluvialis genome, and they are 
believed to be a result of gene duplications during genome evolution 
[49]. Similarly, two different β-carotene hydroxylase genes (crtR-B1 and 
crtR-B2) were also found in H. pluvialis genome [50]. In addition to the 
multi-copies of these genes in H. pluvialis, the products of these genes are 
believed to be localized to different cellular compartments [50–52]. 
These findings might explain the significant high level of astaxanthin in 
H. pluvialis over other producers. Given that the conversion from 
β-carotene to astaxanthin involves four reactions that takes place by the 
addition of two carbonyl groups and two hydroxyl groups at 4, 4′-C and 
3, 3′-C positions of the β-ionone ring, respectively (Fig. 1), the hydrox-
ylation and ketolation reactions may occur alternatively dependent on 
the substrate preferences of the different enzymes which also leads to 
the accumulation of several intermediates [53]. 

A bi-functional cytochrome P450 astaxanthin synthase, CrtS, is 
believed to mediate the conversion of β-carotene to astaxanthin in 
X. dendrorhous (Fig. 1), however the mechanism is not well understood 
[54]. It should be noted that, the redox partner cytochrome P450 
reductase, CrtR, is essential for astaxanthin biosynthesis in this yeast 
[55]. In this context, the sole expression of crtS in β-carotene producing 
S. cerevisiae did not result in accumulation of astaxanthin until crtR was 
co-expressed [54,56]. 

The biosynthetic pathway of astaxanthin from β-carotene in Adonis is 
different than the above mentioned organisms (Fig. 1). In Adonis aesti-
valis, a carotenoid-β-ring-4-dehydrogenase (CBFD) hydroxylates the 
fourth carbon of β-ionone ring, then the hydroxylated products are 
further dehydrogenated into 4-keto group by carotenoid-4-hydroxy- 
β-ring-4-dehydrogenase (HBFD) [17,57]. The hydroxyl group on the 
third carbon of β-ionone ring is also introduced by the CBFD enzyme 
[17]. 

2.2. Astaxanthin biosynthesis regulation 

2.2.1. Transcriptional regulations of astaxanthin biosynthesis 
Given their protective rule against stress, carotenoids including 

astaxanthin are believed to be synthesized in response to different 
stressors [58,59]. Several studies have been conducted on the natural 
producers H. pluvialis, C. zofingiensis and X. dendrorhous to reveal the 

transcriptional regulations of astaxanthin biosynthesis. 
Multiple stressors have been reported to induce astaxanthin syn-

thesis in H. pluvialis including high light, nitrogen limitation, and 
chemical inducers. High Light can cause elevated levels of reactive ox-
ygen species (ROS) which in turn promotes the accumulation of astax-
anthin [60]. However, astaxanthin biosynthesis seems to be influenced 
not only by the light intensity, but the wavelength of light as well. For 
instance, red light was found to enhance the biomass, while blue light 
promotes astaxanthin production in a poorly understood mechanism 
[61,62]. Blue light signaling is known to induce ROS in algae [60]. Thus 
upon the exposure to the blue light, significant upregulation in the 
expression level of catalase has been detected in H. pluvialis suggesting 
the exposure of the cells to oxidative stress which in turn led to 
up-regulation of the genes encoding β-carotene ketolase and hydroxy-
lase [62]. Additionally, changes in the expression levels of the blue light 
receptors encoded by CPH1 and PHOT genes have been detected and 
influenced the astaxanthin accumulation, suggesting their rule in 
mediating the signal for astaxanthin biosynthesis [61,62]. For example, 
upon the upregulation in expression level of PHOT, up-regulation of the 
carotenoid biosynthesis genes PSY and PDS was detected [61]. Exoge-
nous supplementation with some chemicals can play a synergetic effect 
in enhancing astaxanthin production as well. Addition of Fe2+ under 
high light can increase astaxanthin levels indirectly through promoting 
oxidative stress and influencing photosynthesis by up-regulation of 
photosynthesis-antenna genes including Lhca1, Lhca3, Lhca4, Lhcb2, 
Lhcb3, Lhcb5, Lhcb6 and Lhcb7 [63]. Under high light conditions, 
γ-aminobutyric acid supplementation resulted in significant improve-
ment of the biomass and subsequently the astaxanthin yields [64]. The 
γ-Aminobutyric acid addition up-regulated several stress resistance 
related genes (PP2C, SnRK2, CPK, HSP90, WRKY1, PR-1) and led to 
increased stress resistance of the algal cells. Additionally, upregulation 
of Lhca2 and PTOX genes was detected upon the supplementation which 
resulted in enhancement of light protection and led to improved 
photosynthetic activity of the cells. The induction of the endogenous 
methyl jasmonate pathway by ethanol, upregulated DXS, the key 
enzyme in MEP pathway, and carotenogenic genes such as PSY, bkt and 
crtR-B, which resulted in enhanced astaxanthin accumulation [65]. 

Although, many transcriptomic analyses revealed the change in the 
expression level of key genes in astaxanthin biosynthesis upon the 
exposure to stress in H. pluvialis, the regulatory mechanism of these 
changes is not clear. Transcription factors (TFs) are important regulatory 
proteins that play important rule in the activation or repression of the 
expression of their target genes [66]. The bHLH family TFs are reported 
to be carotenogenesis suppressors in plants [67]. In consistent with these 
findings, nitrogen limitation in the presence of high light can induce 
high level of astaxanthin accumulation in H. pluvialis, which was 
accompanied with downregulation of the TFs from bHLH family [68]. 
On the other hand, C3H, MYB, Nin-like, MTB_related and ERF TFs were 
highly expressed TF families under the effects of salicylic acid in the 
presence of high light [68,69]. In addition to TFs, some miRNAs also 
have been identified as responding miRNAs to sodium acetate and high 
light stress [70]. A total of 83 and 46 miRNAs were considered as light 
and sodium acetate stress responsive miRNAs, respectively, and 14 
miRNAs responded to both stresses. The identified miRNAs were tar-
geting several genes involved in signal transduction, heavy metal stress 
response, and secondary metabolism. Moreover, four miRNAs 
(miR482d, PC-3p-859521_20, miR167, and PC-5p-411755_80) involved 
in regulating astaxanthin synthesis by directly targeting the astaxanthin 
biosynthetic genes, lcy-B, GGPS, PDS [70]. 

Many studies have been focused on the genetic control of caroteno-
genesis in the red yeast X. dendrorhous, however the regulations of these 
processes are not well understood yet [71]. The MVA and sterols 
biosynthetic pathways are important for astaxanthin biosynthesis as 
precursors supply and storage medium, respectively. The transcription 
factor Sre1 has been identified as a regulator that regulates these 
pathways by directly regulating the ERG10, HMGS, and HMGR genes 
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whose upregulations is beneficial for astaxanthin synthesis [72,73]. 
Similar to H. pluvialis, the medium components can influence astax-
anthin production in this yeast. Catabolic repression by glucose has been 
reported in X. dendrorhous and has been proved to affect astaxanthin 
production [74,75]. Such repression is mediated by a metabolic sup-
pressor encoded by MIG1 gene along with the co-repressor complex 
Cyc8-Tup1. The deletion of MIG1 upregulated crtI, crtYB and crtS tran-
scripts in presence of glucose [74]. Likewise, deletion of CYC8 and 
TUP1, upregulated the genes involved in the synthesis of carotenoids 
precursors including HMGR, IDI and FPS genes [75]. Exogenous sup-
plementation with the phytohormone 6-benzylaminopurine (6-BAP) can 
induce the astaxanthin synthesis by upregulating the transcription levels 
of related genes HMGR, IDI and crtYB [76]. 

2.2.2. Crosstalk between lipid and astaxanthin biosynthesis 
The astaxanthin biosynthetic pathway is interfering with that of 

lipids including fatty acids, TAG and sterols (Fig. 2). On the other hand, 
due to their hydrophobic nature, carotenoids including astaxanthin are 
incorporated in the lipid rich cellular compartments including plasma 
membranes and lipid bodies (LBs), which will be discussed in details in 
section 2.3.2 [77,78]. Thus, the relation between lipid and astaxanthin 
biosynthesis is complex and seems to be dependent on the organism and 
the astaxanthin biosynthetic pathway itself. For instance, in the red 
yeast X. dendrorhous, astaxanthin biosynthesis is competing on the 
substrate acetyl-CoA which is also the precursor for fatty acids and 
ergosterol biosynthesis [79]. Miao et al. reported an astaxanthin over-
producing mutant where fatty acids production was reduced compared 
to the wild type, suggesting the inverse correlation between the two 
pathways in this yeast [80]. Furthermore, the inhibition of the fatty 
acids biosynthetic pathway in the wild-type strain using triclosan 
resulted in 2 fold and 1000 fold increase in astaxanthin and ergosterol 

content, respectively, which might be attributed to increased acetyl-CoA 
availability and re-directing the flux toward the mevalonate pathway 
[81]. 

Nevertheless, the most popular astaxanthin producing algae, 
H. pluvialis and C. zofingiensis, showed different patterns in astaxanthin 
accumulation in response to fatty acids inhibition [36,51]. These two 
algae have been reported to accumulate significant amount of TAG and 
astaxanthin simultaneously in response to stress conditions [82,83]. 
Additionally, astaxanthin is predominantly accumulated in esterified 
form in these two algae and stored in TAG filled LBs which acts as a 
solvent for the synthesized astaxanthin. Because astaxanthin biosyn-
thesis in algae is derived from MEP pathway, and it competes with fatty 
acid and TAG biosynthesis on pyruvate, there might be a potential 
regulatory mechanism between both pathways [84,85]. A previous 
report suggested the presence of a minimal TAG that might be needed to 
induce the biosynthesis of esterified astaxanthin and accumulation in 
LBs in H. pluvialis [86]. The chemical inhibition of fatty acids biosyn-
thesis using norflurazon and cerulenin in this alga resulted in significant 
reduction in TAG content, the major fatty acids in astaxanthin esters, 
such as oleic acid (C18:1) and linolic acid (C18:2), and total astaxanthin 
[51,87]. Additionally, the cerulenin treated cells showed higher free 
astaxanthin content in spite of the decrease in the total astaxanthin level 
suggesting a possible feedback inhibition of the free astaxanthin on its 
biosynthesis, which is believed to be relieved through esterification. In 
consistent with this hypothesis, the total astaxanthin level has been 
restored upon fatty acids supplementation to the cerulenin treated algal 
cells. On the other hand, cerulenin treated C. zofingiensis showed 
enhanced total astaxanthin level upon the inhibition of fatty acids 
biosynthesis which is opposite to H. pluvialis [36,84,85,88]. Some 
Studies tried to find explanations for this behavior. For instance, Liu 
et al. showed that the increase in astaxanthin might be due to enhanced 

Fig. 2. The crosstalk between lipid and astaxanthin biosynthesis and the hypothetical distribution of astaxanthin in microorganisms. The Solid arrows indicate a 
single step reaction. The dashed arrows indicate multistep reactions. The gold arrows represent the lipid biosynthesis pathways. The blue arrows represent the MVA 
pathway. The green arrows represent the MEP pathway. The red arrows represent the astaxanthin biosynthesis pathway. G3P, glyceraldehyde-3-phosphate; DAG, 
diacylglycerol; TAG, triacylglycerol; DMAPP, dimethylallyl pyrophosphate; IPP, isopentenyl pyrophosphate; FPP, farnesyl pyrophosphate; PA, phosphatidic acid; LB, 
lipid body; PM, plasma membrane. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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conversion of other carotenoids into astaxanthin inside the cell, sup-
ported by decrease of β-carotene and canthaxanthin in alignment with 
the increase of astaxanthin and cerulenin concentration [85]. Addi-
tionally, cerulenin might induce ROS which might serve as inducer for 
astaxanthin biosynthesis [36,88]. Another explanation is that, the con-
tent of astaxanthin in C. zofingiensis is much lower than H. pluvialis, 
however they have almost the same content of total fatty acids. There-
fore, in contrast to H. pluvialis, the level of TAG might not be a limiting 
factor for astaxanthin accumulation in C. zofingiensis and the fatty acid 
inhibition might result in enhanced precursor and energy supply for 
carotenogenesis [88]. 

Sterols represent a class of lipid that have been found in eukaryotic 
cells with a great importance in maintaining the membrane integrity and 
fluidity [89]. Ergosterol is a major lipid component of the fungal cell 
membranes and helps to maintain the membrane integrity in a manner 
similar to cholesterol in mammalian cells [90]. In the astaxanthin 
overproducing X. dendrorhous mutant mentioned above, besides the 
reduced fatty acid content, Miao et al. also reported reduction in the 
ergosterol content [80]. Similarly, chemical inhibition of ergosterol 
biosynthesis using fluconazol resulted in 5 fold increase in astaxanthin 
[81]. Astaxanthin and ergosterol biosynthetic pathways are sharing the 
substrate FPP, so the flux reduction of the competitive pathway in the 
mutant is conducive to astaxanthin synthesis, which provides a possible 
route for metabolic engineering in X. dendrorhous [79]. Additionally, the 
key enzyme HMGR in the MVA pathway have been reported to be 
negatively regulated by sterols in some fungal species and mammalian 
cells [89]. The deletion of CYP61 (ERG5), encoding C22-sterol desa-
turase, which is involved in the late steps of ergosterol biosynthesis, 
resulted in enhanced HMGR transcription level and 2 fold increase in 
astaxanthin and carotenoids production in X. dendrorhous [91]. Further 
investigations on this mutant revealed that ergosterol depletion acti-
vates the sterol regulatory element-binding protein (SREBP) pathway by 
the activation of Sre1 protein which is involved in the activation of 
several genes involved in MVA pathway, sterol biosynthesis and car-
otenogenesis [72]. However, the deletion of the genes ERG3 and ERG4 
which are involved in the preceding and the following step to the Erg5 
mediated reaction, respectively, had no effect on carotenogenesis, 
despite the inability to accumulate ergosterol, suggesting the inactiva-
tion of SREBP in these mutants [92]. Thus, the activation of SREBP in the 
Δerg5 mutant might be dependent on the sterol composition, ergosta-5, 
7,24(28)-trienol in particular, rather than ergosterol itself. It worth 
noting that, along with TAG and astaxanthin, an increase in sterols 
occurred in response to high light stress in H. pluvialis [93]. Additionally, 
sterols biosynthesis is derived from the IPP synthesized in the chloro-
plast of H. pluvialis through MEP pathway which competes with carot-
enoids biosynthesis [93]. However, the effect of sterol biosynthesis on 
astaxanthin or carotenoids have not been studied yet in this algae. 

2.3. Astaxanthin biosynthesis and storage distribution 

The study of the subcellular location of the biosynthesis and storage 
of astaxanthin is of great importance for engineering astaxanthin over-
producers, however only limited studies have been conducted to reveal 
this mystery in the native astaxanthin producers. 

2.3.1. Astaxanthin biosynthesis localization 
Given that the biosynthesis of astaxanthin is a multistep reaction 

with several enzymes, it is possible that the biosynthesis localization 
involves several subcellular locations. For instance, astaxanthin 
biosynthesis in H. pluvialis is believed to be divided between the chlo-
roplast and the endoplasmic reticulum (ER), where β-carotene is pro-
duced in the chloroplast and then transported to the ER by unknown 
mechanism to be converted to astaxanthin followed by esterification 
step [1,51,94]. This is consistent with the fact that, carotenogensis in 
algae is derived from MEP pathway which is originated in the chloro-
plast. Additionally, several enzymes involved in β-carotene biosynthesis 

were reported to be in the chloroplast [95,96]. At last, in vitro assay 
using several fractions of H. pluvialis cell lysates showed that β-carotene 
conversion to astaxanthin is associated with ER containing fractions 
[51]. It should be noted that, β-carotene hydroxylase has been detected 
in LBs and chloroplast membranes [52]. However, ketolase activity was 
only associated with LBs [52]. LBs are known to be generated from ER in 
eukaryotes, which might be a possible reason for the detection of 
astaxanthin biosynthetic activity in the ER containing fractions [51,97]. 

In contrary to the extensively studied H. pluvialis, limited informa-
tion about the biosynthesis and storage localization are available for the 
yeast X. dendrorhous. Verdoes et al. hypothesized a membrane bound 
cartoenogenic complex for astaxanthin production in this yeast [98]. 
Additionally, astaxanthin biosynthesis from β-carotene is mediated by a 
bi-functional p450 monooxygenase (CrtS) which is believed to be 
localized to the ER [54,99]. Thus, it is possible that carotenogenesis is 
localized to the ER, which needs further experiments to be confirmed. 

2.3.2. Astaxanthin storage localization 
As mentioned previously, carotenoids are hydrophobic and they tend 

to be stored in membranes and LBs due to their high lipid content, 
however astaxanthin distribution in the cells appears to be influenced by 
the type of the astaxanthin produced whether it is esterified or in a free 
form (Fig. 2). In H. pluvialis, 95% of astaxanthin is in esterified form and 
it is believed to be accumulated in the LBs [51]. However, analysis of 
extracts from thylakoid membranes of H. pluvialis showed accumulation 
of free and esterified astaxanthin in the membranes [100]. Furthermore, 
at the late stages of the growth period, the ratio of the thylakoid mem-
branes/whole cell free astaxanthin content were much higher than that 
of the astaxanthin ester and was around 50% of the whole free astax-
anthin content, suggesting higher affinity of the free form to the mem-
branes [100]. However, the possibility of contamination of these 
membranes with LBs during the cell lysates preparation cannot be ruled 
out [101]. 

Contrarily, X. dendrorhous produces astaxanthin in its free form. 
Electron paramagnetic resonance spectroscopy experiment on 
X. dendrorhous membranes proved the incorporation of astaxanthin in 
plasma membrane [102]. In another study, laser confocal fluoresce 
microscopy analysis (LCFM) for the yeast X. dendrorhous, suggested the 
accumulation of the carotenoids in LBs [103,104]. LBs are composed of a 
core filled with TAG and sterol esters enclosed in a monolayer of 
phospholipids [97]. A previous study showed that polar carotenoids 
(zeaxanthin) are mainly localized to the phospholipid layer of artificial 
LBs, while apolar carotenoids (β-carotene) were in the core of the LBs 
[105]. Given the polarity of astaxanthin, due to the two hydroxyl and 
two keto groups, it is possible that free astaxanthin might be incorpo-
rated in the LBs membranes which needs further confirmation. How-
ever, the incorporation of carotenoids in membranes is believed to be 
toxic to the cells, and resulted in several responses included cell mem-
brane destruction, oxidative stress, induction of drug stress responses, in 
addition to decreasing in the plasma membrane fluidity [106–109]. 
Carotenoids are embedded in membranes in different orientations 
dependent on their polarity (Fig. 2), where the apolar carotenoids are 
perpendicular to the membrane lipid chains and the polar carotenoids 
are in a parallel orientation [102]. Therefore, the effect of the polar 
carotenoid on the membranes fluidity is stronger. 

3. Strategies for microbial cell factories optimization 

There is a growing demand for the sustainable production of astax-
anthin in microbial cell factories via metabolic engineering. Several 
efforts have been taken to enhance the production of astaxanthin in the 
native producers, however the lack of genetic manipulation tools for 
these organisms limited their development. Thus, the development of 
non-native producers for astaxanthin using other microorganisms such 
as Escherichia coli, Saccharomyces cerevisiae, Yarrowia lipolytica has 
attracted a great attention (Table 1) [18]. In the past decade, the 
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biosynthesis of astaxanthin in these non-native microbes has achieved 
high yields [3]. Compared to the native organisms, these microbes are 
rapidly growing on low cost substrates and can easily reach high cell 
density within few days, in addition to the availability of mature genetic 
manipulation tools for their metabolic engineering. However, the use of 
E. coli in food grade products biosynthesis has several health concerns 
due to its ability to produce endotoxins. Alternatively, S. cerevisiae is a 
GRAS organism and was proven to be suitable for the production of 
carotenoids and terpenoid [27]. Additionally, the non-conventional 
yeast Y. lipolytica has attracted a great attention for the production of 
several hydrophobic compounds, due to its ability to accumulate lipids 
up to 60% of its dry weight in its LBs [110]. This oleaginous yeast has 
been successfully engineered for production of lycopene and β-carotene 
with significant high yields up to 21 mg/g DCW and 90 mg/g DCW, 
respectively [111–114]. Although, carotenoids biosynthesis in 
non-native microbes have achieved high yield in several hosts but the 
transformation from β-carotene to astaxanthin is still low [18,56, 
115–117]. The possible limitations might include enzymes expression 
levels and their substrates preferences, the accessibility of enzyme to 
substrates, precursors and cofactors supply, products and intermediates 
feedback inhibition, the interference with other biosynthetic pathways, 
and physiological stress due to the accumulation of astaxanthin or its 
intermediates. In this section we will review the recent strategies that 
have been applied to overcome these limitations in the above mentioned 
microbial cell factories to achieve high yields of astaxanthin. 

3.1. Directing the flux toward astaxanthin production 

Several strategies have been adopted for directing the flux toward 
astaxanthin through metabolic engineering by enhancing the precursors 
supply and optimization of astaxanthin biosynthetic enzymes. 

3.1.1. Enhancing precursors and cofactors supply 
β-Carotene is the common building block for the biosynthesis of 

astaxanthin in all the reported pathways. The pathway to produce 
β-carotene starting from MEP/MVA precursors contains several rate 
limiting steps that influence its accumulation. Accordingly, and in order 
to achieve high levels of astaxanthin, an optimization to the β-Carotene 
biosynthesis is needed. 

IPP and DMAPP are essential for isoprenoid production including 
carotenoids. Therefore, adequate supply of these substrates plays a 
critical role in enhanced isoprenoid production. MVA or MEP pathways 
are the main source for the native supply of these key precursors. Thus, 
upregulation of these two pathways is believed to enhance the IPP and 
DMAPP supply and isoprenoid production, which can be achieved by 
optimizing the rate limiting steps or the heterologous expression/over-
expression of the whole pathway. In the MVA pathway, HMGR (3-hy-
droxy-3-methylglutaryl coenzyme A reductase) is a major rate-limiting 
enzyme which is regulated at translational and post-translational levels 
by a feedback inhibition system [118]. HMGR is regulated at the 
translation level through feedback inhibition that is believed to be 
mediated by mevalonate [119]. Additionally, the enzyme degradation is 
modulated through a feedback inhibition mediated by sterols, which can 
be relieved by the deletion of its N-terminus transmembrane domain 
[37]. The overexpression of this enzyme or its truncated form showed 
enhancement in the production of isoprenoids including astaxanthin in 
S. cerevisiae and Y. lipolytica [116,120–122]. Similar to HMGR, the rate 
limiting enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS) in the 
MEP pathway is feedback inhibited by IPP and DMAPP [123]. The 
overexpression of DXS resulted in significant enhancement in β-carotene 
which was optimized for astaxanthin production in E. coli [124,125]. 
The overexpression of the MEP pathway enzymes IspD (MCT) and IspF 
(MDS) led to 71% increase in astaxanthin [126]. Although, the over-
expression of genes involved in MEP or/and MVA pathways is beneficial 
for isoprenoid production, the toxicity of the intermediates limits the 
enhancement of the IPP supply and the subsequent increase in 

isoprenoid [40]. For instance, the introduction of MVA pathway in 
addition to the native MEP pathway in E. coli has been found to be toxic 
due to the accumulation of HMG-CoA [127]. Thus, balancing the 
expression level of the genes involved in the MVA pathway was needed 
for enhanced isoprenoid production including astaxanthin [127–129]. 
Additionally, the overexpression of IspG (HDS) enzyme from the MEP 
pathway results in accumulation of HMBPP and reduced growth, which 
requires the co-oexpression of IspH (HDR) enzyme to alleviate its 
toxicity and enhance astaxanthin production [124,130]. Some toxic ef-
fects have been detected upon the accumulation of IPP in the cells, thus 
the overexpression of idi to convert IPP to DMAPP is always adopted to 
reduce its toxicity [124,125,131]. 

Another important intermediate in β-carotene biosynthetic pathway 
is FPP. As mentioned previously, carotenoids biosynthesis is competing 
with sterol biosynthesis on FPP [79]. However, the complete 
in-activation of sterol biosynthesis is not possible due to its deleterious 
effects on the cells, fungal hosts in particular. Thus the downregulation 
of the sterol biosynthetic pathway might be more feasible. In this 
context, the downregulation of squalene synthase encoded by SQS1 from 
Y. lipolytica by promoter truncation resulted in enhanced β-carotene 
which further promoted astaxanthin production [116,117]. Alterna-
tively, similar effect can be achieved by directing the flux toward GGPP 
formation by overexpressing highly active GGPPS like CrtE03 M mutant 
[122], GGPPs7 from Synechococcus sp. [117], or GGPP synthase from 
Archaeoglobus fulgidus [131]. Direct synthesis of GGPP from IPP was 
achieved through in vivo enzyme assembly of GGPP synthase (CrtE) and 
Idi by fusing a pair of short peptide RIDD and RIAD to their C-termini, 
respectively, which guided the construction of multienzyme complex to 
prevent intermediate diffusion and resulted in 2.7 fold increase in 
astaxanthin level in E. coli [128]. 

The optimization of the two rate limiting steps of phytoene synthesis 
and lycopene cyclization catalyzed by phytoene synthase (PSY or CrtB) 
and lycopene cyclase (CrtY), respectively, is critical for enhanced ca-
rotenoids production [132]. Thus for effective β-carotene and astax-
anthin production, the bifunctional phytoene synthase and lycopene 
cyclase CrtYB enzyme from X. dendrorhous has been overexpressed in 
several host for pathway optimization [116,117,122]. 

Aside from substrates, the cofactors NADPH and ATP are essential for 
carotenoids biosynthesis. Hence, in order to boost astaxanthin produc-
tion, it is necessary to balance the supply of the cofactors. The central 
carbon metabolism plays a vital role in supplying these cofactors, 
NADPH is mainly generated through the pentose phosphate pathway 
(PPP) and malic enzyme reaction, while ATP is mainly generated 
through electron transport chain starting from NADH formed in the TCA 
cycle [133]. Based on this and in order to optimize the β-carotene 
biosynthesis in astaxanthin producing E. coli, combined upregulation of 
TCA cycle and PPP was adopted by overexpressing sucAB, sdh and talB 
[37,38,41,124]. 

3.1.2. Optimization of astaxanthin biosynthetic enzymes 

3.1.2.1. Balancing the levels and activities of β-carotene hydroxylases and 
ketolases. One of the bottlenecks of astaxanthin biosynthesis in engi-
neered microorganisms, is the accumulation of several intermediates 
during the conversion of β-carotene into astaxanthin (Fig. 1). The 
astaxanthin biosynthetic enzymes from different sources have different 
substrate preferences. For example, the CrtW from Paracoccus sp. 
N81106 shows a strong substrate preference for carotenoids with non 
hydroxylated β-ionone rings [53]. On the other hand, zeaxanthin (hy-
droxylated) is used as main substrate by CrtW from Brevundimonas sp. 
strain SD212 [134]. The CrtZ from Erwinia uredovora showed substrate 
preference for β-carotene, while the CrtZ from Alcaligenes sp. PC-1 
showed higher activity toward canthaxanthin [135]. Accordingly, to 
efficiently convert β-carotene into astaxanthin, selecting the appropriate 
combination of enzymes with desired substrate preference is necessary. 
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A screening of nine CrtZ and eight CrtW from different organisms was 
conducted to efficiently produce astaxanthin in S. cerevisiae [136]. As a 
result of the screening, a CrtW from B. vesicularis DC263 and CrtZ from 
Alcaligenes sp. strain PC-1 were verified to be the best combination for 
highest astaxanthin yield (3.1 mg/g DCW) with less intermediates 
accumulation. 

In addition to the substrate preferences, the expression level of CrtZ 
and CrtW is critical for intermediates accumulation control, which can 
be adjusted through optimization of the copy number of each gene, 
promoter strength or ribosome binding site engineering [18,27]. For 
instance, replacement of the CrtZ gene promoter with a stronger one 
increased the enzyme level ratio of CrtZ to CrtW and yielded 30.4% 
increase in astaxanthin [136]. In order to finely optimize the ratio the 
two enzymes, screening of several RBS libraries obtained through 
introducing six random nucleotides to the RBS region of these genes 
resulted in optimized cassette with a titer of 3.46 mg/g DCW and 99% 
astaxanthin [137]. Further increase by 67.6% was obtained by multiple 
integration of the optimized cassette. In addition, since the expression 
level of a the heterogeneous gene is generally proportional to its copy 
number, adjustment of the copy number of CrtZ and CrtW have been 
successfully applied to enhance astaxanthin biosynthesis in several hosts 
[116,117,122,138]. For example, introducing additional copy of CrtZ 
from P. ananatis resulted in 68.5% increase in the ratio of astaxanthin to 
total carotenoid in E. coli [138]. 

Besides the above mentioned strategies to balance the activity of the 
two enzymes, ensuring the proper folding of the enzymes is critical for 
obtaining their maximum activity. Thus, to optimize the folding of CrtZ 
and CrtW, the GroES-GroEL molecular chaperone were overexpressed in 
E. coli which resulted in 1.45 fold increase in astaxanthin with a yield of 
1.18 g/L [124]. 

3.1.2.2. Enzyme engineering of β-carotene hydroxylases and ketolases. As 
stated previously, astaxanthin biosynthesis from β-carotene is mediated 
by the activity of CrtW and CrtZ in algae and bacterial cells. The two 
enzymes are iron (Fe2+) and oxygen dependent oxygenases, which was 
supported by several in vitro assays [53,135,139]. Additionally, the 
conserved iron binding motifs exist among all sequences of different 
CrtZ and CrtW strongly supports that the Fe2+ is essential for the reac-
tion [135]. The lack of information about the structure of these enzymes 
up to now is limiting their rational engineering. Thus, the majority of the 
studies on characterizing and enhancing the properties of these enzymes 
are mainly focused on alanine-scanning mutagenesis, directed evolu-
tion, fusion proteins constructs through artificial linkers, and directed 
localization of the enzymes through signal peptides. 

In order to characterize the amino acid residues which are critical for 
the enzymes activity, site directed mutagenesis in the conserved amino 
acid residues among the protein families is of a great help. Similar to 
other oxygen-dependent and iron-containing integral membrane en-
zymes, CrtZ and CrtW contain putative iron-binding His motifs and have 
multiple transmembrane domains with several conserved amino acid 
residues [18,140]. Therefore, alanine-scanning mutagenesis of these 
residues at the His motifs and the transmembrane domains was per-
formed to further study the CrtW from Paracoccus sp. strain N81106 
[140]. Among the conserved amino acids at the three His motifs of CrtW, 
six His residues (H69, H103, H106, H107, H221 and H222) were 
essential for its activity, while partial activity was retained upon on the 
alanine substitution of the three His residues (H65A, H218A, and 
H219A). Additionally, alanine substitution of the Y134A, F176A, 
F118A, P116A, W126A, W229A and L232A residues in the trans-
membrane domains resulted in decreased activity. Site directed muta-
genesis to the sumoylation site (K90R) of a β-carotene hydroxylase from 
H. pluvialis resulted in 1.34 fold enhancement in astaxanthin production, 
which is believed to be due to enhancement on the protein stability 
[141]. 

Directed evolution via error-prone PCR has been successfully 

employed for enhancing the activity of CrtW from different sources. Six 
mutations (H96L,R203W, A205V, A208V, F213L and A215T) in the 
CrtW from Sphingomonas sp. DC18 showed improved activity toward 
hydroxylated carotenoids which resulted in enhanced astaxanthin pro-
duction in E. coli [142]. Enhancement of astaxanthin levels was achieved 
upon three mutations in L175 M, M99V, and M99I residues of the CrtW 
from Paracoccus sp. N81106 [140]. The mutations increased the affinity 
of CrtW toward adonixanthin without any significant effect on β-caro-
tene conversion rate. A triple mutant (H165R/V264D/F298Y) of 
β-carotene ketolase from H. pluvialis showed enhanced β-carotene con-
version rate which resulted in 2.4 fold increase in canthaxanthin level 
and subsequent increase in astaxanthin level by 93% in S. cerevisiae 
[143]. Additional mutation at the (M1T/N188D/L271R) residues 
further enhanced increased the canthaxanthin yield by 51% and 
decreased the β-carotene accumulation by 44% [144]. In the same study, 
H. pluvialis β-carotene hydroxylase mutatnt at L288R residue showed 
33% enhanced astaxanthin production compared to the wild type. 
Furthermore, the co-expression of the these two mutants resulted in 39% 
astaxanthin increase [144]. Another triple mutant (A6T, T105A and 
L239 M) of CrtW from Brevundimonas sp. SD212 enhanced astaxanthin 
level by 5.35 fold in E. coli [137]. The mutant showed enhanced con-
version of the intermediates and astaxanthin reached 92% of the total 
carotenoids produced by this strain. 

Creating artificial scaffolds of the key enzymes of a synthetic 
pathway has been proved as effective strategy for enhancing the effi-
ciency of the pathway by reducing the undesirable intermediates 
diffusion [145]. In this context, a fusion construct of CrtZ from plant and 
CrtW from Brevundimonas sp. strain SD212 using flexible linker resulted 
in 1.4 fold increase in astaxanthin level when expressed in E.coli [146]. 
β-carotene has been reported to accumulate in the plasma membrane of 
engineered E.coli, thus bringing the enzymes to close proximity to their 
substrate might be beneficial to enhance the productivity [147]. 
Accordingly, and regardless of their predicted transmembrane domains, 
the directed localization of a fusion protein of CrtW and CrtZ from 
Brevundimonas sp. strain SD212 and Pantoea agglomerans, respectively, 
by linking them to the membrane protein GlpF led to 215.4% improved 
astaxanthin levels [148]. Likewise, the N-terminus fusion of a signal 
peptide of the outer membrane protein ompF to truncated BKT from 
Chlamydomonas reinhardtii led to 31% increase in astaxanthin in E. coli 
[126]. Further increase by 34% was obtained upon enhancing the sta-
bility of the protein by C-terminus fusion with E. coli thioredoxin (trxA) 
as molecular chaperone. In a recent study on astaxanthin production 
using Y. lipolytica, directed localization of a fusion construct of CrtZ from 
H. pluvialis and CrtW from Paracoccus sp to the ER, β-carotene biosyn-
thesis location; LBs and peroxisomes, hypothetical β-carotene storage 
location; resulted in 4.8 fold (139.4 mg/L) increase in astaxanthin level 
[149]. Further optimization of the culture using fed-batch shake flask 
fermentation led to a yield of 858 mg/L which is the highest reported in 
yeast. 

3.2. Membrane stress management strategies 

The accumulation of astaxanthin and carotenoids in membranes in-
duces toxic effect to the cells, which subsequently limits their yield. 
Directing the storage to the LBs has been an effective strategy to increase 
carotenoids production and relieve their toxicity in S. cerevisiae and 
Y. lipolytica [114,150,151]. Therefore, directing the storage of astax-
anthin to the LBs is promising for optimizing astaxanthin accumulation 
in engineered microorganisms. However, free astaxanthin is highly 
probable to be stored in membranes due to its structure and polarity. 
Astaxanthin in H. pluvialis and C. zofingiensis is mainly in esterified form 
and accumulates in LBs, yet the mechanism and the enzymes involved in 
esterification are not clearly identified [51,84,152]. Astaxanthin ester-
ification in H. pluvialis and C. zofingiensis is speculated to be mediated by 
diacylglycerol acyltransferases (DGATs) and the long-chain-alcohol 
O-fatty-acyltransferase (AAT), respectively, [51,152]. However, in 
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vitro assay using microsomal fraction of S. cerevisiae expressing the 
C. zofinginesis AAT did not show esterification activity toward astax-
anthin [153]. Another approach can be adopted by enhancing the water 
solubility of astaxanthin. Carotenoids glycosylation is known to enhance 
their solubility [154,155]. For instance, zeaxanthin di-glycosylation 
mediated by zeaxanthin glycosyltransferase from Erwinia herbicola 
enhanced its water solubility from 12.6 ppm to 800 ppm [154]. Glyco-
sylated astaxanthin has been reported in some microorganisms such as 
Paracoccus sp. N81106 (Agrobacterium aurantiacum) and Sphingomonas 
astaxanthinifaciens and showed higher solubility in water based solvents 
compared to free astaxanthin [11,13]. Few attempts have been made to 
produce glycosylated astaxanthin in E.coli through the heterologous 
expression of zeaxanthin glycosyltransferase (CrtX) from E. uredovora 
[12,155]. However, several glycosylated intermediates have been 
detected which might be due to the non-specificity of the enzyme toward 
astaxanthin [155]. Furthermore, the total carotenoids level has been 
decreased accompanied with increase in the accumulation of 
un-converted β-carotene suggesting an interruption of the astaxanthin 
biosynthetic pathway upon the expression of CrtX. It should be noted 
that, optimization of the glycosyl donor supply should be considered for 
efficient production of glycosylated astaxanthin. 

Alternatively, enhancing the capacity of the membranes for storage 
via membrane engineering strategies can be an effective tool for 
enhanced astaxanthin production. The knock-out of the membrane 
morphology genes, lpp, bamB, and rodZ, in E. coli resulted in increase in 
the astaxanthin content by 40% [156]. Upon the knock-out, the E. coli 
cells exhibited elongated morphology which in turn increased the 
membrane surface area for the storage of astaxanthin. Another strategy 
has been adopted to increase the membrane surface area by introducing 
inner and outer membrane vesicles in E. coli [157]. Inner membrane 
vesicles were induced by the heterologous expression of the caveolin 
protein (Cav1) which is involved in the formation of the cell membranes 
invaginations (caveolae), while the outer membrane vesicles were 
formed by the repression of rffD and rfaD genes which are involved in 
the outer membrane integrity, and an increase in astaxanthin titer by 
50% and 62% was achieved, respectively [157]. 

The orientation of astaxanthin in the plasma membrane enables its 
diffusion through the membrane [129]. Therefore, the secretion of 
astaxanthin to the medium can reduce the membrane stress, the po-
tential astaxanthin mediated feedback inhibition, and the extraction 
costs. However due to its hydrophobicity, the amount of secreted 
astaxanthin in the culture medium is very limited. Accordingly, the use 
of biocompatible organic solvents can facilitate the secretion of astax-
anthin in the medium [115]. 

3.3. Dynamic control systems: a promising strategy for astaxanthin 
production 

The manipulation of cellular metabolism through metabolic engi-
neering strategies including tuning gene expression, gene deletions, as 
well as protein engineering has enabled improvement in the production 
levels of many valuable products in microbial cell factories. However 
directing the flux toward non-native biosynthetic pathways creates 
burden to the cells due to the competition over the resources and the 
energy supplies with the native metabolic pathways, in addition to the 
possible toxicity of the products [158]. Such burden can influence the 
cell growth and the yield of the desired product. Thus, to overcome these 
restrictions, decoupling of the cell growth and the biosynthesis of the 
product of interest is needed, which can be achieved though dynamic 
control system [158]. Several studies have been conducted to control the 
production of several products via dynamic control systems, however 
few examples are available for astaxanthin [159,160]. A temperature 
dependent dynamic control system has been developed using the 
temperature-responsive Gal4M9-system in S. cerevisiae which resulted in 
235 mg/L astaxanthin through fed-batch fermentation [144]. Similarly, 
decoupling the growth and the production in E. coli using the inducible 

IPTG promoter resulted in 64% increase in astaxanthin [129]. Although 
dynamic control systems are promising in optimizing the production of 
several products, but several limitations still exist including the lack of 
known sensors for the biosynthetic/toxic intermediates and the limited 
information about native sensor-response systems in some promising 
microbial cell factories [161,162]. 

3.4. Directed evolution of microbial cell factories 

The development of ideal microbial cell factories is challenging even 
with the advances in molecular biology and biotechnology, due to the 
complexity of intracellular reaction networks in living cells and the 
limited knowledge about their regulation, which limit the appropriate 
rational design. Therefore, directed evolution of the whole cell factory is 
another effective strategy to improve its performance. The majority of 
the directed evolution research has been made on the native producers 
X. dendrorhous and H. pluvialis and little has been done on the non-native 
producers. In this section we summarize the directed evolution strate-
gies used in astaxanthin producing strains including mutagenesis and 
adaptive laboratory evolution (ALE) (Tables 2 and 3). 

3.4.1. Chemical and physical mutagenesis 
Chemical mutagenesis, physical mutagenesis (UV and Gamma irra-

diation), and atmospheric and room temperature plasma (ARTP) are the 
most commonly used mutagenesis strategies for microbial cell factories 
directed evolution [163]. Gamma rays mediated mutagenesis have been 
employed to increase the production of astaxanthin in X. dendrorhous 
and led to 1.77 fold increase in astaxanthin [164]. ARTP mutagenesis for 
astaxanthin producing S. cerevisiae promoted astaxanthin level by 83% 
[165]. Treatment of H. pluvialis cells with ethyl methane sulfonate (EMS) 
and UV increased astaxanthin by 2.38 fold and 2.17 fold, respectively 
[166]. In order to obtain a better mutagenic effect, a combination of 
physical and chemical mutagenesis is frequently used. A three-stage 
mutagenesis to H. pluvialis has been conducted using UV mutagenesis 
followed by EMS and screening based on the resistance to the inhibitor 
diphenylamine (DPA), resulted in selection of a mutant with 1.7 fold 
enhancement in astaxanthin production compared to the wild type cells 
[167]. 

3.4.2. Adaptive laboratory evolution 
Over the last few years, adaptive laboratory evolution (ALE) has 

received a significant attention for the development and optimization of 
many microbial cell factories [168]. ALE is conducted under laboratory 
conditions where the cells are subjected to controlled culture conditions 
until a desired mutant is obtained upon the exposure to several stressors. 
However, to obtain the desired mutant, a proper selection of the 
stressors is required. Due to their antioxidant activities, carotenoids 
producing organisms including astaxanthin producers are believed to be 
more fit to oxidative stress [32,169]. Accordingly, adaptive evolution of 
X. dendrorhous upon the exposure to six oxidizing agents (ionone, 
diphenylamine, NaCl, TiO2, H2O2 and NaClO) have been conducted to 
get an astaxanthin overproducing strain [170]. As a result, an evolved 
mutant with 48.2% enhancement in astaxanthin was obtained in 
response to the oxidative stress caused by TiO2. In another study, 
combined ARTP mutagenesis and ALE using H2O2 led to 4 fold increase 
in astaxanthin in S. cerevisiae [171]. 

3.4.3. Screening methods 
For an ideal directed evolution process at the enzymes or whole cell 

level, an efficient rapid screening method is needed to select the desired 
mutant. Owing to its red color, visual color screening depending on the 
change in color intensity is the most common and easiest method for the 
selection of astaxanthin overproducers [144,172]. However, the back-
ground due to interference of other intermediates (i.e. canthaxanthin) 
and the color saturation make it challenging [144]. The use of astax-
anthin biosynthesis inhibitors diphenylamine (DPA) and nicotine, or the 
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expression of astaxanthin biosynthetic genes under week promoters can 
help to overcome these limitations and facilitate the screening [144,166, 
167]. Other screening methods using flow-cytometry and near-infrared 
spectroscopy have been employed to screen astaxanthin 
hyper-producers [173–175]. A high-throughput screening using an 
Raman-Activated Droplet Sorting (RADS) showed promising results for 
screening astaxanthin hyper-producers [176]. Using astaxanthin pro-
ducing H. pluvialis variants as a model, a sorting accuracy of 98.3%, 
enrichment rate of 8 folds, and throughput of ~260 cells/min was 
achieved. 

4. Astaxanthin fermentation optimization 

Besides the improvement of the microbial cell factories performance 
through the above mentioned strategies, the appropriate optimization of 
the fermentation conditions contributes greatly to boost their produc-
tivity and reduce the production cost. Therefore, for optimum and cost 
efficient industrial scale production of astaxanthin using these organ-
isms, native producers in particular, adequate knowledge of their 
fermentation process is crucial. As a secondary metabolite, the biosyn-
thesis of astaxanthin is not required for the growth of the cells. Addi-
tionally, several reports indicated the dependence of astaxanthin 
biosynthesis on several environmental stress conditions, which are not 
the optimum conditions for the cell growth. Thus, the fermentation 
strategy adopted for astaxanthin production is a two-stage fermentation, 
where the cell growth is promoted at the first stage, followed by astax-
anthin biosynthesis stimulation stage. In this section we will discuss the 
most significant factors that stimulate astaxanthin biosynthesis 
including stress conditions, chemical supplementation, pH, temperature 
and dissolved oxygen (DO). 

4.1. Stress and cultivation strategies 

High light intensity, nutrients restriction and high salinity are the 
major stress conditions that trigger astaxanthin biosynthesis in 
H. pluvialis [177]. While, the use of high light intensities requires high 
amount of energy, nutrients restriction is more convenient in terms of 
cost and implementation for industrial scale production of astaxanthin. 
Nitrogen starvation is believed to induce astaxanthin production effec-
tively [178–181]. A recent study showed 25% increase in astaxanthin 

using a sequential stress strategy involved extended nitrogen starvation 
followed by moderate light intensity exposure at the late palmella stage 
[177]. Moderate sodium chloride concentration promotes astaxanthin 
production, while high concentration has an inhibitory effect [182,183]. 
In C. zofingiensis separate application of high light (HL) or salinity stress 
(SS) can moderately enhance astaxanthin accumulation, while the 
combinatorial HL and SS can significantly enhance the production [83]. 
The current large-scale cultivation of H. pluvialis for astaxanthin pro-
duction is a complex two-stage culture system, the green stage and red 
stage. While the green stage is for obtaining high biomass, and the red 
stage is characterized by the synthesis and accumulation of astaxanthin 
in response to inducers. At present, studies on the production of astax-
anthin from H. pluvialis are mainly focused on optimizing the culture and 
induction conditions [184]. Several fermentation strategies have been 
developed to save the cost and increase the productivity of astaxanthin 
using this microalgae including: sequential heterotrophic-phototrophic 
culture, one-step continuous culture, indoor artificial light culture, 
biofilm cultivation and sequential mixotrophic culture [183,185–196]. 

Light can induce carotenogenesis X. dendrorhous, however high light 
intensities are lethal to the cells [197]. Irradiation with white and ul-
traviolet light resulted in increase of astaxanthin yield in X. dendrorhous 
by 85% and 97%, respectively in a shake flask [198]. Furthermore, large 
scale fermentation using 10 L and 800 L fermenters under white light 
irradiation led to astaxanthin yield of 420 mg/L (4.7 mg/g) and 350 
mg/L (4.1 mg/g), respectively [198]. High C/N is believed to promote 
astaxanthin production in X. dendrorhous, however high glucose could 
inhibit the cell growth in. Accordingly, Yamane et al. developed a 
two-stage fed-batch culture: where the first stage was controlled at low 
C/N to promote the cell growth, followed by a production stage at high 
C/N which significantly enhanced astaxanthin production [199]. Simi-
larly, a two stage fed-batch fermentation was conducted with a 
controlled glucose concentration of 25 g/L at the lag and the early log 
phases, and 5 g/L at the late log and the stationary phases and 109% 
increase in astaxanthin was obtained [200]. Sonication has a positive 
effect on enzyme activity and microbial processes [201]. In this context, 
exposure of X. dendrorhous culture to ultrasonic stimulation led to 26% 
enhancement of astaxanthin [201]. 

Table 2 
Chemical and physical mutagenesis strategies for astaxanthin production.  

Hosts Mutagenesis methods Mutagenic conditions Fermentation scale Titer (mg/L) Yield (mg/g DCW) Fold change Ref 

H. pluvialis UV + EMS 15min 
/0.12% (w/w) 

– – – 3.2 [166] 

UV + EMS + DES 11min/2.0% (V/V) 
/0.1% (V/V) 

shake-flask 
15 days 

90 47.21 1.7 [167] 

X. dendrorhous γ-irradiation 5.0 kGy shake-flask 
8 days 

2.6 15.9 1.77 [164] 

ARTP + UV 50s/40s shake-flask 
96 h 

– – 1.2 [246] 

S. cerevisiae ARTP 30s or 40s 5-L bioreactor 
84 h 

217.9 13.8 3.26 [165]  

Table 3 
ALE strategies for astaxanthin production.  

Hosts ALE stress agents ALE conditions ALE rounds Fermentation scale Titer (mg/L) Yield (mg/g DCW) Fold change Ref 

X. dendrorhous H2O2 10 mmol/L 1 shake-flask 
120 h 

10.4 1.3 1.83 [247] 

TiO2 300 mg/L 150 shake-flask 
48 h 

1.22 – 1.48 [170] 

TiO2 500 mg/L 5 shake-flask 
72 h 

14.74 – 2 [248] 

S. cerevisiae H2O2+ARTP 10 L/min/30% 1 5-L fermenter 
210 h 

65.9 – 4 [171]  
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4.2. Chemical supplements 

In addition to light and nutrient deficiency, addition of chemical 
supplements to the culture media have a significant influence on 
astaxanthin production. Exogenous addition of acetate to the culture 
medium of H. pluvialis led to enhancement in astaxanthin by 2 fold 
compared to the control group [202]. Further increase can be obtained 
through combined oxidative stress with acetate supplementation by 
addition of ferrous ions or active oxygen species (singlet oxygen, su-
peroxide anion radical, hydrogen peroxide and peroxy radical) [203]. 
Addition of the cationic polymer polyethyleneimine led to enhanced 
oxidative stress which was accompanied with 5 fold increase in astax-
anthin [204]. Phytohomrones such as methyl jasmonate, gibberellin, 
salicylic acid have synergetic effect on astaxanthin accumulation in 
H. pluvialis [48,205]. Other studies indicated that the addition of the 
antioxidants butylated hydroxyanisole and butylated hydroxytoluene 
could significantly induce astaxanthin synthesis and led to 2.03 and 1.66 
fold increase, respectively, however the mechanism of induction is not 
clear [206,207]. Astaxanthin content in X. dendrorhous was enhanced by 
40.7% upon glutamate feeding [208]. Ethanol and acetic acid feeding 
after glucose consumption increased astaxanthin by 31% and 26%, 
respectively, in X. dendrorhous culture [209]. Other studies showed that 
plant and fungal extracts are beneficial for boosting astaxanthin pro-
duction using X. dendrorhous [210–212]. 

4.3. pH 

The pH of the fermentation broth has a significant influence on the 
metabolic activities of the microorganisms. H. pluvialis can grow on a 
wide range of pH with an optimal growth pH of 7.0–7.5, while a pH 
higher than 8.25 promotes astaxanthin biosynthesis [182,213,214]. The 
parasitic fungus Paraphysoderma sedebokerensis is one of the most serious 
contaminants of H. pluvialis cultures with a significant influence on the 
growth and subsequently the astaxanthin level [215]. An acidic culti-
vation strategy was developed to prevent infection of H. pluvialis with 
the fungus in culture for astaxanthin production [216]. The strategy 
involved cultivation at a pH 4 for the growth and astaxanthin biosyn-
thesis, while to relief the pH dependent reduction in astaxanthin, 
gradual light irradiation in addition to nitrogen deficiency were 
employed at the induction stage which resulted in 141 fold increase in 
astaxanthin levels compared to the control. 

The optimal pH for astaxanthin biosynthesis in X. dendrorhous ap-
pears to be dependent on the strain. For instance, the earliest reports 
showed that the optimal pH for X. dendrorhous growth and astaxanthin 
production was 4.5 [217]. A mutant strain showed optimal astaxanthin 
production pH of 5.0 while the optimum growth was achieved at pH 6.0 
[218]. However, the change in the pH had a great influence on growth, 
but little effect on astaxanthin production. Contrarily, culture of the 
X. dendrorhous DSMZ5626 under uncontrolled pH condition showed 
significant inhibition of astaxanthin below 5.5, while the cell growth 
was significantly inhibited when pH dropped to 4.2 [219]. These find-
ings suggest that the genetic background of the strain influences their 
response to the pH. 

4.4. Temperature 

Temperature is another critical factor that affects the growth of the 
microbial cells. The change in the temperature significantly influence 
the enzymatic activities of the metabolic pathways enzymes and sub-
sequently the cell growth and astaxanthin production. The optimal 
temperature for astaxanthin accumulation in H. pluvialis is 27–28 ◦C; 
and the growth and production rate would decrease significantly at 
temperatures lower than 15 ◦C or higher than 30 ◦C [220–222]. While, 
the optimum temperature for X. dendrorhous is 20–22 ◦C with a signif-
icant growth and production inhibition at temperatures higher than 
22 ◦C [217]. In engineered non-native carotenoid producers, lower 

temperatures were favored for carotenoids biosynthesis. For instance, In 
S. cerevisiae, low temperatures were thought to benefit the accumulation 
of crotein, zeaxanthin, and β-carotene [223,224]. Similarly, a 78.96% 
increase in astaxanthin and 2 fold increase in the total carotenoids was 
achieved upon the cultivation of a high-yield astaxanthin producing 
S. cerevisiae strain AX15 at 20 ◦C [225]. Park et al. studied the effect of 
different temperature (26, 28 and 30 ◦C) on astaxanthin accumulation in 
E. coli, and 30 ◦C was the selected as the optimum temperature for 
astaxanthin production [226]. 

4.5. Dissolved oxygen (DO) 

DO is a key parameter in astaxanthin fermentation process, due to its 
direct effect on the energy metabolism of the cells, and the astaxanthin 
biosynthetic enzymes activity. Yamane et al. found that astaxanthin 
accumulation in X. dendrorhous is directly proportional to the oxygen 
supply [199]. Further kinetic analysis showed that respiration rate was 
positively correlated with astaxanthin production and negatively 
correlated with ethanol production [199]. Wang et al. found that 
X. dendrorhous growth and astaxanthin production would be signifi-
cantly inhibited when the dissolved oxygen tension was adjusted at 20% 
saturation [227]. Another study investigated the effect of different 
agitation speeds (250, 400, and 600 rpm) on X. dendrorhous DSMZ5626 
in a 2 L bioreactor, and found that DO, biomass and astaxanthin pro-
duction reached the highest when the speed was the highest, and vice 
versa [219]. Similarly, enhancement of the oxygen level in shake flasks 
using the biocompatible organic oxygen carrier n-hexadecane resulted 
in 58% increase in the carotenoid yield of X. dendrorhous [228]. DO is 
not critical for astaxanthin biosynthesis by H. pluvialis. On the other 
hand, adequate supply of carbon dioxide is required for the photosyn-
thetic activities, and the oxygen generated through photosynthesis is 
partially consumed by the astaxanthin biosynthetic pathway [229]. 
Moderate increase in carbon dioxide supply can lead to increase in 
astaxanthin production [230]. Furthermore, the introduced CO2 can 
alter C/N ration which creates nutrients deficiency condition that act as 
astaxanthin inducer. 

5. Conclusion and outlook 

Up to date, the highest yield of astaxanthin was achieved in recom-
binant E. coli at 1.18 g/L by employment of a combination of different 
engineering strategies, which is much higher than the most popular 
native producer H. pluvialis and X. dendrorhous [124]. In contrast to this 
non-native producer, the optimization of astaxanthin in the native 
producers H. pluvialis and X. dendrorhous is mainly through directed 
evolution and fermentation optimization through chemicals supple-
mentation for the induction of astaxanthin biosynthesis. However, these 
methods have been successfully implied to increase astaxanthin levels 
but they are laborious and not cost efficient. This illuminate the power of 
synthetic biology in optimization of microbial cell factories. However, 
compared to some high terpenoid producing strains, for example, far-
nesene high-producing S. cerevisiae, there still exist huge room for 
astaxanthin producing strains for production optimization and 
enhancement [231]. In addition to the metabolic engineering strategies 
mentioned above, introduction of non-native pathways to enhance the 
precursors supply might be of great influence on increasing astaxanthin 
production. For example, IPP enhancement has been achieved in several 
organisms via introducing exogenous isoprenol utilizing pathway (IUP), 
which led to enhanced isoprenoids production [232–234]. Additionally, 
other promising membrane stress management strategies have to be 
adopted to relief the burden of astaxanthin accumulation on the cells. 
Enhancing the membrane fluidity can be achieved through increasing 
the unsaturated fatty acids content of the membranes [235]. The OLE1 
gene encodes a Δ9-fatty acid desaturase which is catalyzing the dehy-
drogenation of the 9-position in saturated fatty acids forming the cor-
responding unsaturated fatty acid [236]. The overexpression of this gene 
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has been successfully employed to increase triterpenoids and β-carotene 
production in yeast by reducing the membrane stress [237,238]. 
Furthermore, deep knowledge about gene expression and regulation is 
needed to improve these microbial cell factories, such as epigenetic 
modifications, non-coding RNAs and post-translational regulations etc., 
which are still mysterious. Additionally, highly efficient genetic 
manipulation tools and techniques are also in urgent demand for native 
microbial producers and non-conventional but promising yeast such as 
Y. lipolytica. It worth noting, the design of microbial cell factory needs to 
be closely connected to the industrial process and market needs and 
applications. For example, to increase the stability and bioavailability of 
astaxanthin, different forms of astaxanthin obtained through esterifi-
cation, covalent binding to proteins, or PEGylation need to be investi-
gated. And considering the huge differences between flask cultivation 
and bioreactor fermentation, the evaluation or screening of engineered 
strains is preferred to be based on industrially used culture mediums and 
parallel-bioreactors. 

At the end, the market application of natural astaxanthin trans-
formed by synthetic biotechnology have to face supervisory regulations 
on market access by different countries. The removal of regulatory ob-
stacles is also the key to unlocking attractive market prospects of 
astaxanthin. 
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[74] Alcaíno J, Bravo N, Córdova P, Marcoleta AE, Contreras G, Barahona S, et al. The 
involvement of Mig1 from xanthophyllomyces dendrorhous in catabolic 
repression: an Active mechanism contributing to the regulation of carotenoid 
production. PLoS One 2016;11(9). e0162838-e. 
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