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ABSTRACT: Progress toward the design and synthesis of
ambiphilic aryl thiol−iminium-based small molecules for organo-
catalyzed thioacyl aminolysis is reported. Here we describe the
synthesis of a novel tetrahydroisoquinoline-derived scaffold, bearing
both thiol and iminium functionalities, capable of promoting the
transthioesterification and subsequent amine capture reactions
necessary to achieve organocatalyzed thioacyl aminolysis. Model
studies demonstrate the ability of this designed organocatalyst to
deliver critical intermediates capable of undergoing these individual
reactions necessary for the proposed process. Future design
improvements and directions toward cysteine-independent organocatalyzed native chemical ligation are discussed.

1. INTRODUCTION
Over the past several decades, advances in chemical protein
synthesis (CPS) have enabled the evaluation of uniquely
synthetic proteins among those accessible by traditional
biochemical and recombinant technologies.1 As the applic-
ability of CPS methods broadens, especially due to growing
interest in mirror-image and site-specifically modified proteins
that are exclusive to chemical synthesis, there is an aligned
need for the discovery and development of orthogonal peptide
ligation strategies.2 These advances should be chemoselective,
providing alternative retrosynthetic ligation disconnects aimed
at improving the overall efficiency of CPS.3 The ubiquity of
native chemical ligation (NCL)4 and Ala-ligation methods5

used in CPS endeavors has proven their robustness, yet
residue-specific limitations (i.e., the need for Cys or Ala
residues) have motivated innovative developments.3b,6,7 A few
recent NCL-inspired technologies that have enabled Cys-
independent access to proteins with total atomic control
include the Staudinger,8 α-keto acid−hydroxylamine
(KAHA),9 and Ser/Thr ligations.10 Auxiliary-based strategies,6

including aldehyde-capture ligation (ACL)11 and related
methods,12,13 as well as N-terminal auxiliary ligations14,15

have significantly extended the scope of NCL. Although
enabling, such strategies can be limited to residue-specific
ligation junctions, may rely on the synthesis of reactive C- and
N-terminal auxiliaries, and furthermore can involve postligation
modification steps, restricting their overall generality to skilled
practitioners.
To streamline protein retrosynthesis and develop tools to

improve CPS user access, we hypothesized that a rationally
designed ambiphilic organocatalyst combining nucleophilic
(e.g., thiol)4,14,15 and electrophilic (e.g., aldehyde, imi-
nium)11−13,16−18 functionalities could catalyze an aqueous

thioester aminolysis reaction between solid-phase peptide
synthesis accessible peptide partners (Figure 1a).19 Inspired
by the mechanisms of NCL and auxiliary-based ligation
reactions,4,6,20 we envisioned an organocatalytic process to
achieve Cys-independent thioacyl aminolysis between any C-
terminal thioester peptide-1 and N-terminal peptide-2. Overall,
the ambiphilic organocatalyst could enable transthioesterifica-
tion, amine capture, and S-to-N acyl transfer events to form a
ligated peptide.
In a recent report, we demonstrated the dynamic properties

of a series of electronically perturbed cyclic N,S-acetals (Figure
1b).20 Under acidic conditions 1 undergoes C1−S bond
ionization to form a ring-opened zwitterionic intermediate
bearing aryl thiol(ate) and benzylic iminium functionalities
that satisfied our ambiphilic organocatalyst design features.
Due to the efficient synthetic access to these cyclic N,S-acetals
and promising early observations that suggested trans-
thioesterification and amine capture events could occur in a
dynamic process, we explored their competency in model
organocatalyzed thioacyl aminolysis reactions (Figure 1).
Unfortunately, despite extensive efforts with 1, we were unable
to achieve organocatalyzed thioacyl aminolysis reactions. We
hypothesized that the process inefficiency may be due in part
to the poor water solubility of 1. Furthermore, the proposed
catalytic cycle may be hindered by the requirement for an eight-
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membered tetrahedral intermediate, which may be unfavorable
for efficient S-to-N acyl transfer events.6b,21 Preliminary
observations from the evaluation of cyclic N,S-acetals informed
key features to include in a revised organocatalyst design
(Figure 1c). Ongoing efforts have focused on an organocatalyst
design that might exhibit improved aqueous solubility due to
greater ionic character while preferentially enabling S-to-N acyl
transfer events via a more favorable six-membered tetrahedral
intermediate. We therefore envisioned the design and synthesis
of aryl thiol−iminium-based organocatalyst 2a (Figure 1c). We
find that 2a exists in dynamic equilibrium with its dimeric form
(2b). Guided by our knowledge of the dynamic reactivity of
N,S-acetals, we herein describe our design logic, synthesis, and
evaluation efforts toward the development of an aryl thiol−
iminium-based ambiphile for organocatalyzed thioacyl ami-
nolysis.

2. RESULTS AND DISCUSSION
2.1. Reactivity of Cyclic N,S-Acetals from Initial

Thioacyl Aminolysis Studies. To better understand the
reactivity of aryl thiol−iminium-based ambiphiles as designed

organocatalysts for NCL, we directed our efforts to evaluate
the reactions of 1 with model peptide thioesters. The N,S-
acetal moiety of 1 provides the latent nucleophilic thiol and
electrophilic iminium18 functionalities required for respective
transthioesterification and amine capture events (Figure 1a).
Ideally, once both peptide fragments are captured, an S-to-N
acyl transfer would occur to complete the peptide ligation
process. Interestingly, we discovered that 1 incorporated
several dynamic properties that allowed us to develop and
evaluate its ability to undergo transthioesterification (Figure
2). The dynamic reactivity observed in our first-generation
N,S-acetals includes ring-opening and ring-closing behavior.20

The treatment of 1 in excess CF3CO2D resulted in rapid and
quantitative C1−S bond ionization, enabling interchangeable
ring-opened and ring-closed forms under equilibrium control
by titration with triethylamine (Figure 2a). With an opera-
tionally reversible system in hand, we proposed that in situ
formed ring-opened species (e.g., 3) could participate in
transthioesterification reactions with model peptide thioesters
(4), followed by a subsequent amine capture and S-to-N acyl
transfer event to achieve an overall organocatalyzed thioacyl
aminolysis process (Figure 2b). Despite the observed
production of transthioesterification intermediates such as
adduct-1 (5), these intermediates do not appear to undergo
efficient amine capture events. Therefore, informed by
shortcomings with 1, we set out to prepare revised organo-
catalyst 2a (Scheme 1).

2.2. Synthesis of Organocatalyst 2a and Its Corre-
sponding N,S-Acetal Dimer 2b. In the design stage, we
reasoned that improving the likelihood of the amine capture
step would be integral to balance the relative rates of
transthioesterification, amine capture, and S-to-N acyl transfer
events. In NCL reactions the transthioesterification step is rate-
limiting, whereas in N-terminal auxiliary-based NCLs, the rate-
limiting step is the S-to-N acyl transfer event.22 We presume
that the tethered nature of the thiol in 1, which predominately
exists in the ring-closed state, precludes amine capture events.
Building from this evaluation, we revised our synthetic efforts
to design a system that would avoid trapping by an
intramolecular thiol and improve the likelihood of S-to-N
acyl transfer events via a hypothesized six-membered tetrahedral
intermediate. These informed observations resulted in the
design of the second-generation organocatalyst 2a and its
corresponding N,S-acetal dimer 2b.
We developed an efficient route to prepare organocatalyst 2a

in six steps from commercially available 8-bromoisoquinoline
(Scheme 1). We found that the proposed monomeric form 2a
exists in equilibrium with the functional N,S-acetal dimer 2b.
The synthesis begins with the chemoselective reduction of 8-
bromoisoquinoline 6 upon treatment with sodium cyanobor-
ohydride in the presence of boron trifluoride diethyl etherate
to yield 8-bromo-1,2,3,4-tetrahydroisoquinoline 7.23 The
resultant amine 7 is arylated with phenylboronic acid using
Chan−Lam coupling conditions to provide 8-bromo-2-phenyl-
1,2,3,4-tetrahydroisoquinoline 8 in 39% yield over two steps.24

Initial observations suggest the N-phenyl tertiary amine 8 is
susceptible to aerobic benzylic oxidation under ambient
conditions. Therefore, a careful two-step procedure to convert
aryl bromide 8 into dithiocarbamate 10 was developed. Using
Buchwald’s copper-catalyzed halogen exchange chemistry,25

the aryl bromide 8 can be efficiently converted into the
requisite aryl iodide 9 in 92% isolated yield. This aryl iodide
(9) provides a handle to examine conditions for the installation

Figure 1. Organocatalyzed peptide ligation: will ambiphilic molecules
promote thioacyl aminolysis reactions?
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of a sulfur-containing functionality at the 8-position. We found
that 9 can be successfully converted into dithiocarbamate 10 in
49% yield using tetramethylthiuram disulfide and zinc in the
presence of catalytic copper(II) chloride.26 Notably, these
reductive conditions prevent any undesired aerobic benzylic
oxidation from occurring prematurely. Controlled benzylic
oxidation (C1) using diethyl azodicarboxylate (DEAD)
converts 10 into N,O-acetal 11.27 This benzylic oxidation

may proceed via iminium ion formation followed by trapping
with methanol. Optimization efforts led to the development of
an efficient procedure to convert 10 into 11 in 69% isolated
yield. The use of DEAD to affect this oxidation is superior to
other oxidation chemistries that were specifically developed for
2-aryl-1,2,3,4-tetrahydroisoquinoline systems. The crystalliza-
tion of 11 in 2-propanol produced derivative 12, which was
suitable for structure determination using X-ray diffraction
(CCDC 2222419).28 This suggests that 11 readily engages in a
dynamic equilibrium exchange process, via the intermediate
iminium ion, to provide 12. Next, we evaluated a variety of
conditions to cleave the dithiocarbamate moiety (11) and
anticipated the isolation of aryl thiol 13. We found that it was
difficult to purify the cleavage byproducts away from presumed
product 13. We hypothesized using ethylenediamine would
facilitate purification, as the cleavage byproducts would be
acyclic or cyclic thioureas. Upon workup, we observed both the
acyclic and cyclic thiourea byproducts, and their polarity
differences allowed us to routinely isolate a stable product, first
presumed to be 13, in 22% yield by column chromatography.
A thorough characterization of the stable product revealed its
constitution to be most consistent with an N,S-acetal dimer 2b,
which we presume to be derived via the intermediacy of
reactive monomer 2a (Scheme 1b). The presumed aryl thiol
13 is not observed and likely converts into 2b via reactive
monomer 2a.

2.3. Evaluation of N,S-Acetal Dimer 2b in a
Dipeptide-Forming Model System. Intrigued by the
preference for a dimeric state, we further studied the equilibria
of N,S-acetal 2b in aqueous solution (Scheme 1b). Under
aqueous acidic conditions (3:1 CH3CN:H2O, 0.1%

Scheme 1. Synthesis of a Functional Aryl Thiol−iminium Organocatalyst: (a) Synthesis Route toward an Organocatalyst
Precursor; (b) Equilibration Enabling Access to an N,S-Acetal Dimer (2b) and an Alternative Disulfide-Based Oxidized Dimer
(14)

Figure 2. Cyclic N,S-acetals are dynamic in solution and reactive
toward thioesters: (a) C1−S bond ionization of 1; (2) addition steps.
Transthioesterification events occur, but amine capture events are not
observable.
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CF3CO2H), the monomeric 2a and dimeric 2b forms likely
exist in equilibrium and are mostly indistinguishable by
standard ESI mass spectrometry due to a similar dissociation
to their preferred iminium states. However, 1H and 13C NMR
spectroscopic data are most consistent with N,S-acetal dimer
2b. The prolonged exposure of 2b under aqueous conditions
leads to the formation of an oxidized species that we assign to
disulfide dimer 14. We reason that 14 could be used as a
precatalyst for organocatalyzed thioacyl aminolysis reactions in
the presence of a suitable disulfide reductant (e.g., tris(2-
carboxyethyl)phosphine). However, we find 2b to be a more
convenient, latent form of the designed reactive organocatalyst
2a.
To elucidate the reactivity of 2a, we combined 2b with a

single residue thioester Ac-Ala-SPh (15) (Figure 3a). An
adduct, 16 (tr = 4.2 min), consistent with transthioester-
ification is observable by UPLC-MS analysis. Encouraged by
this, we added H-Gly-OMe (4 equiv) and allowed the aqueous
mixture to react for 18 h. Analysis by UPLC-MS showed three
distinct intermediates that we tentatively assign as N,N-acetal
adducts (17a,b) (Figure 3b). These adducts are observed in
iminium ion forms with different retention times (17a, tr = 3.9
min; 17b, tr = 4.0 min; see the Supporting Information). Their
distinct elution times suggest that each adduct is a unique N,N-
acetal (17a,b), where attack of 16 by H-Gly-OMe yields
diastereoisomers 17a,b. We note that attack by water (X =
OH) or thiophenol (X = SPh) may yield other possible
adducts (17c). While the preference for ionization of 17a,b to
the common iminium ion (16) masks their structural identity,
this result is consistent with our previous studies using 1 and
supports the efficiency of the transthioesterification event.
To better understand the presumed formation of the two

amine capture products 17a,b, we considered an earlier
spectroscopic observation where N,O-acetal 11 exhibits
solvent-dependent interconversion of anti- and synperiplanar
diastereomeric forms in chloroform-d1. Interestingly, the 1H

NMR spectrum of 11 in benzene-d6 shows a preference for the
one diastereomeric form. This type of structural dynamicity via
C1−O bond ionization is akin to similar observations made for
cyclic N,S-acetal 1, where interconversion occurs via C1−S
bond ionization.20 Taken together, we assign 17a,b as
diastereomeric Gly-OMe adducts and assign the third peak
to the iminium ion intermediate 16. The poor solubility of 2b
under buffered aqueous conditions limited our ability to
quantify this complex process. Further studies are needed to
understand the interconversion of 17a,b as well as the
implications of stereochemistry on the efficiency of productive
N,S-acyl transfer events. We anticipate that solvent-dependent
effects will play a critical role in tuning the reactivity of 2b, as
well as downstream reactivities of adduct-1 and adduct-2 type
intermediates.

2.4. Evaluation of N,S-Acetal Dimer 2b in a Peptide-
Forming Model System. Analytical and solubility complica-
tions with the dipeptide system led us to evaluate a more
compatible model system using 2a, peptide thioester 18, and
benzyl amine (Figure 4a). These experiments allowed us to

Figure 3. N,S-acetal dimer (2b) reacts with thioesters to form adduct-
1 (16) and adduct-2 (17a,b).

Figure 4. N,S-acetal dimer (2b) reacts with thioester peptide (18) to
form adduct-1 (19) and adduct-2 (20).
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observe transthioesterifcation and amine capture events. The
reaction of 2b and Ac-LYRAG-SPh (18) yields trans-
thioesterification product 19 in good conversion. We added
an excess of benzylamine to this reaction mixture and observed
a ternary adduct (20) that is consistent with a stepwise process
involving transthioesterification followed by amine capture.
The adduct (20) was characterized using UPLC-MS (Figure
4b). Again, TIC extraction (m/z 475) shows two peaks with
distinct elution times (20a, tr = 3.1 min; 20b, tr = 3.2 min; see
the Supporting Information), which we attribute to the two
diastereomeric benzyl amine adducts. When examining the MS
data for each unique peak, we observe four ions (Figure 4b).
Two ions correspond to the [M + 2H+]2+ and [M + H+]+ ions
of 20. Interestingly, the other ions correspond to ligated
peptide 21 ([M + H+]+) and monomer 2a ([M+]+). It is
unusual to detect the product (21) and monomer (2a) in this
region (tr ≈ 3.2 min), as they are respectively found at tr = 0.7
min (21) and tr = 4.4 min (2a). Therefore, we propose that the
ionization of ternary adduct 20 produces 21 and regenerates
monomer 2a. Despite the encouraging observation of these
adducts, organocatalyzed and organopromoted experiments
using 2b did not show an indication of improved reactivity
when compared with the background aminolysis experiments
without 2b.29 Ongoing efforts are focused on the development
of improved analytical methods to better characterize stepwise
events toward organocatalyzed NCL.

3. CONCLUSIONS
Our objective to understand the reactivity of N,S-acetals for
use in organocatalyzed thioacyl aminolysis has led to several
discoveries. These underexplored ambiphilic molecules are
dynamic in solution and exhibit the ability to reversibly
exchange adducts via C1−S bond ionization to produce
observable reactive benzylic iminium ion intermediates. With
our first-generation design (1) we characterized dynamic C1−
S bond ionization and transthioesterification reactivity.
However, amine capture and N-to-S acyl transfer events
remained elusive, leading us to prepare the dimeric N,S-acetal
system 2b that can undergo transthioesterification and amine
capture reactions via the monomeric intermediate 2a. The
transthioesterification process using 2b is more efficient than
the corresponding reactivity of 1. While amine adducts at C1
are observable and are supported by an amine capture
experiment using benzylamine, they do not appear to be the
predominate species under the evaluated conditions and are
elusive when using amino ester model systems under buffered
conditions.30,31 Although further development of conditions
and organocatalyst refinement are needed, we are encouraged
by the initial reactivity of these novel N,S-acetal-based systems
toward realizing organocatalyzed thioacyl aminolysis proce-
dures.
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