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Abstract

Ceratopteris thalictroides, a model fern, has two kinds of gametophytes with different sex

expression: male and hermaphrodite. Hermaphroditic gametophytes have one or several

archegonia beneath the growing point and a few antheridia at the base or margin. Male

gametophytes show a spoon-like shape with much longer than the width and produce many

antheridia at the margin and surface. The results of chlorophyll fluorescence detection

showed that the photochemical efficiency of hermaphrodites was higher than that of males.

By using two-dimensional electrophoresis and mass spectrometry, the differentially abun-

dant proteins in hermaphroditic and male gametophytes were identified. A total of 1136 ± 55

protein spots were detected in Coomassie-stained gels of proteins from hermaphroditic

gametophytes, and 1130 ± 65 spots were detected in gels of proteins from male gameto-

phytes. After annotation, 33 spots representing differentially abundant proteins were identi-

fied. Among these, proteins involved in photosynthesis and chaperone proteins were over-

represented in hermaphrodites, whereas several proteins involved in metabolism were

increased in male gametophytes in order to maintain their development under relatively

nutritionally deficient conditions. Furthermore, the differentially abundant cytoskeletal pro-

teins detected in this study, such as centrin and actin, may be involved in the formation of

sexual organs and are directly related to sex expression. These differentially abundant pro-

teins are important for maintaining the development of gametophytes of different sexes in C.

thalictroides.

Introduction

Sex expression is an important stage in the development of plants. In angiosperms and gymno-

sperms, the gametophytic phase is very short, and male and female gametophytes are formed

in differentiated sporophyte structures [1]. In dioecious species, the sex expression of plants

exhibits plasticity that is induced by environmental factors [1, 2]. Environmental resource lim-

itation is considered to be an important reason that dioecious plants develop into male-biased

populations [3–5].
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In ferns and lycophytes, which have independent living gametophytes sex expression occurs

in gametophytes. The gametophytes of homosporous ferns differentiate in response to envi-

ronmental cues perceived soon after spore germination [2]. This phenomenon is known as

environmental sex determination (ESD), and it generally causes individuals in favourable con-

ditions (high light, water and nutrient availability) to develop into females. Whereas individu-

als in unfavourable conditions (due to limited growth resources, parasites, physical injuries,

dry soils and high temperatures) tend to develop into males [6]. For example, high levels of

light can modify the sex ratio of Equisetum gametophytes to favour females, whereas the pres-

ence of excess sugar in culture media can favour males [7, 8]. Limited nutrients supply induced

maleness in Woodwardia, and a high culture density increased the percentage of males or asex-

uals in Osmunda [9, 10].

Ceratopteris thalictroides is a homosporous fern whose spores can develop into male or her-

maphroditic gametophytes under the influence of ESD. Studies in a plant from same genus, C.

richardii, have been widely reported. Previous studies have shown that the default sexual devel-

opment pathway in C. richardii results in hermaphrodites; subsequently, hermaphrodites

secrete antheridiogen, a male-inducing pheromone, into the environment, which causes later

germinated spores to develop into males due to the influence of antheridiogen [11–13]. When

antheridiogen is removed from the environment, males may transform into hermaphrodites

[14]. The sex determination pathway in C. richardii has been explored, and it has been found

that there are two antagonistic major regulators of sex identification, FEM1 and TRA, in the

sex-determining pathway [15, 16]. A transcriptome analysis of C. richardii gametophytes

showed that genes involved in epigenetic reprogramming, hormone responses and develop-

mental genes were decreased in male gametophytes induced with antheridiogen [17]. In

addition to hormones, nutritional deficiency can also cause spores to grow into male gameto-

phytes. We found that when grown on Knop’s medium, a medium free of sucrose and hor-

mones, most C. thalictroides spores grow into male gametophytes in culture. However, on

Murashige and Skoog medium (MS medium), C. thalictroides spores always grow into her-

maphroditic gametophytes. The proteomic approach seems to be the most suitable way to

reveal the direct physiological processes involved in plant development [18]. The mechanisms

involved in fern development and stress responses have been studied with proteomics

approaches [19–21]. Previous studies on Blechnum spicant have found that female and male

gametophytes have enrichment differences in proteins related to stress or defense, protein

biosynthesis, and photosynthesis [22]. However, relatively few studies have been conducted

on the differences in growth in male and hermaphroditic gametophytes in C. thalictroides.
Therefore, in the present paper, proteomics was used to analyse differences in morphology,

photochemical efficiency, and protein abundance analysis in male and hermaphroditic game-

tophytes to understand the effects of sex expression on growth and development in C. thalic-
troides gametophytes.

Materials and methods

Material cultures and morphological observations

Ceratopteris thalictroides (L.) Brongn spores were collected from the Botanical Garden of

Shanghai Normal University. The spores were grown on MS and modified Knop’s solid media

in an artificial climate incubator. The incubator conditions consisted of a day period at 25

±1˚C under normal illumination (approximately 43 μmol m -2. s -1) with a photoperiod of 18

hours and a night period at 22±1˚C. Every seven days, the gametophytes were observed with a

Nikon E800 microscope, and the ratio of male to hermaphroditic gametophytes in each dish

was recorded.
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Different gametophytes were selected under a dissection microscope, fixed in 3% glutaral-

dehyde for 6 hours, and then incubated in 2% osmium tetroxide solution at room temperature

for 2 hours. The samples were dehydrated with an acetone series (30%, 50%, 70%, 90%, and

100%) and finally embedded in Spurr’s resin. The embedding block was cut into slices (1 to

2 μm) with a glass cutter and stained with toluidine blue. Observation and micrography were

performed with a light microscope.

Variation of chlorophyll fluorescence in male and hermaphroditic

gametophytes

The chlorophyll fluorescence parameters of gametophytes were determined using a Dual2-

PAM2100 chlorophyll fluorescence analyzer (Walz). Male and hermaphroditic gametophytes

were individually wrapped with preservative film. After 2 hours incubation in the dark, the

electron transfer quantum efficiency (ФPSⅡ) and the photochemical efficiency (Fv / Fm) were

measured under room light. The experiment was repeated 3 times and averaged. Single-factor

analysis of variance and multiple comparisons were performed using SPSS 17.0 software.

Protein extraction

Male and hermaphroditic gametophytes were observed by microscopy to ensure that the har-

vested gametophytes had greater than 95% purity. After harvesting, the samples were frozen

immediately in liquid nitrogen and stored at -80˚C until use. Total protein was extracted using

a phenol extraction method. Protein powder (3 g) was solubilized in 10 ml of protein extract

buffer (0.9 M sucrose, 0.1 M Tris-HCl, pH 8.8, 10 mM EDTA, and 0.4% β-mercaptoethanol)

and 10 ml of Tris-saturated phenol. Then, the suspension was shaken for 30 min to completely

dissolve the proteins. After centrifugation at 15 000 × g for 10 min at 4˚C, the phenolic phase

was collected into a new tube. Five millilitres of protein extract buffer and 5 ml of phenol were

added to the lower phase, which was again shaken for 30 min and centrifuged as described

above. The phenolic phase was consolidated, and 5 volumes of 100 mM ammonium acetate/

methanol solution was added. The proteins were precipitated overnight at -20˚C. After centri-

fugation at 20 000 × g for 15 min at 4˚C, the supernatant was removed, and the precipitate was

rinsed three times in 10 ml of 100 mM ammonium acetate/methanol solution and then twice

in 10 ml of 80% acetone. The final precipitate was air-dried and solubilized in protein lysate

buffer (7 M urea, 2 M thiourea, 4% CHAPS, 40 mM DTT, and 0.5% IPG buffer, pH 4–7). The

sample was shaken twice for 1 hour at 4˚C and sonicated for 15 min to lyse the proteins. The

insoluble material was removed by centrifugation at 40 000 × g for 1 hour at 4˚C, and the pro-

tein concentration was determined using an RC DC Protein Assay Kit I (Bio-Rad). The protein

samples were stored at −80˚C.

Two-dimensional electrophoresis

The first dimension was performed using IPG strips (Immobiline DryStrip pH 4–7 NL, 24 cm;

GE Healthcare Bio-Sciences). The strips were rehydrated for 16 hours in 450 μl of rehydration

solution (7 M urea, 2 M thiourea, 2% CHAPS, 18 mM DTT, 0.5% IPG Buffer 4–7, 0.002% bro-

mophenol blue, and lysate solution containing 600 μg of protein). The IEF was performed in

the Ettan IPGphor System (GE Healthcare Bio-Sciences) following the manufacturer’s

protocol.

After IEF, the strips were equilibrated in equilibration buffer (50 mM Tris-HCl pH 8.8, 6 M

urea, 30% glycerol, 2% SDS, 0.002% bromophenol blue, 1% DTT and 2.5% iodoacetamide) for

15 min each. Then, the strips were placed on 12.5% ExcelGel SDS gel and blocked with block-

ing buffer (0.5% agarose, 0.002% bromophenol blue in SDS electrophoresis buffer). For the
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second dimension, the proteins were separated using Ethan DALTsix System (GE Healthcare

Bio-Sciences). Electrophoresis was performed at 20˚C with 3.5 W/gel for 30 min, followed by

15 W/gel until completion.

Staining and image analysis

The gels were stained with Coomassie Brilliant Blue G-250. Images were immediately acquired

using a Uniscan M1600 (Unisplendour Corporation Limited) to avoid fading. Spot detection

and quantification were performed using Image Master 2D Platinum version 6.0 software (GE

Healthcare Bio-Sciences). The relative volume (RV) represents the relative abundance of the

abundant proteins. The RV was estimated from the actual volume of each protein spot on the

gels via homogenization. The relatively stable spots used for determining RV were those pres-

ent in three gels of each sample. Differentially abundant proteins were the spots with signifi-

cant differences according to a t-test (P <0.05) by analysing the variance of each spot’s RV.

Enzyme digestion and protein identification

The enzymatic reaction was performed before MS analysis. The protein spots were cut from

the gels with modified pipette tips. To decolorize the spots, 100 μl of 25 mM ammonium bicar-

bonate/50% acetonitrile was added, and the spots were incubated for 30 min, followed by 50%

acetonitrile dehydration for 15 min and 100% acetonitrile dehydration. The spots were

digested by trypsin overnight at 37˚C, and the digested solution was used directly for MS anal-

ysis. For protein spots with low concentrations, 80 μl of 5% trifluoroacetic acid (TFA) was

added to the enzymatic solution, which was incubated for 1 hour at 40˚C. The supernatant was

collected into a new tube. Then, 80 μl 2.5% TFA/50% acetonitrile was added to the old tube for

1 hour at 30˚C. The combined extracts were dried by using a vacuum centrifugal evaporator.

Peptide mass fingerprinting (PMF) analysis was performed using m/z MoverZ software.

The parameters were set as follows. Mode, m + H; S/N, 4–6 (according to the mass spectrum

quality); centroid value, 5; resolution, 4000–6000. Trypsin self-cutting peptides (906.51 Da and

2273.16 Da) were used as internal standards for 2-point calibration. The data from the samples

were filtered by Peak Erazor v1.45 software to remove interference from the trypsin self-cut-

ting and keratin peptide peaks. Then, the PMF information was retrieved from the Matrix Sci-

ence website (http://www.matrixscience.com). The parameters were set as follows. Database,

NCBI protein database; peptide mass property, single charge and [M + H] +; classification,

Viridiplantae (green plants); mass error range, ± 100 ppm; error cut points, 1.

The amino acid sequences of the protein spots were identified by position-specific iterated

and pattern-hit initiated BLAST (PSI-BLAST and PHI-BLAST, respectively) by using the

NCBI database (http://www.ncbi.nlm.nih.gov/BLAST/) to obtain the functional domains and

functional annotations. To identify the gene ontology (GO) terms, the annotations for each

protein were imported into Blast2GO.

Results

Culture of male and hermaphroditic gametophytes

Our results suggest that changes in culture media can have a dramatic impact on sex expres-

sion (Fig 1). Normally, gametophytes cultured on MS medium begin to differentiate sexually

on the 14th day after sowing, and complete sex expression, with the significant development of

sexual organs, occurs after approximately 21 days. On MS medium, the spores mainly grew

into hermaphroditic gametophytes, which have a heart-like or eccentric shape with a width

greater than the length (Fig 2). Hermaphroditic gametophytes have one or several archegonia
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below the growing point and a few antheridia at the base or margin. However, the sexual dif-

ferentiation of gametophytes cultured on Knop’s medium occurred later, and the gameto-

phytes could be differentiated at approximately 28 days. Unlike the spores grown on MS

medium, most of the spores grown on Knop’s medium grew into male gametophytes. Male

gametophytes show a spoon-like shape with a length that is greater than the width and produce

many antheridia at the margin and surface. Male and hermaphroditic gametophytes are differ-

ent not only in their shape but also in their size (S1 Table). As was the case for the antheridio-

gen-induced gametophytes, the males were significantly smaller than the hermaphroditic

gametophytes [17]. It was obvious that there were more antheridia on the male gametophytes.

The proportion of vegetative cells in males was less than that in hermaphrodites. This may be

related to the low nutritional requirements of male gametophytes, which will die after sperm

release.

Fig 1. The sex expression of C. thalictroides gametophytes. (A) Cultures grown on Knop’s medium; (B) Cultures

grown on MS medium. Three replicates were used for each sample. The bars represent the mean±SD.

https://doi.org/10.1371/journal.pone.0221470.g001

Fig 2. Morphological features of C. thalictroides gametophytes. (A) Male gametophytes, (B, C) with antheridium

(An) and sperm (Sp), observed by microscopy. (D, E) Hermaphroditic gametophytes and (F) archegonium (Ar)

observed by microscopy.

https://doi.org/10.1371/journal.pone.0221470.g002

Proteomic analysis of gametophytic sex expression in Ceratopteris thalictroides

PLOS ONE | https://doi.org/10.1371/journal.pone.0221470 August 19, 2019 5 / 14

https://doi.org/10.1371/journal.pone.0221470.g001
https://doi.org/10.1371/journal.pone.0221470.g002
https://doi.org/10.1371/journal.pone.0221470


Photochemical efficiency of male and hermaphroditic gametophytes

The chlorophyll fluorescence in gametophytes was determined for male and hermaphroditic

gametophytes (Fig 3). The results showed that the actual photochemical efficiency (ФPSⅡ and

ФPSⅠ) and the potential photochemical efficiency (Fv/Fm) of males were lower than those of

hermaphrodites. In the moss Ceratodon purpureus, females showed greater values during leaf

photochemistry measurements than males [23]. The sexual dimorphism was female-biased,

which is consistent with our results. Higher photochemical efficiency could provide more

energy for the development of archegonia, fertilization, and the growth of sporophytes.

Protein abundance analysis

The protein samples were prepared using pH 4–7 IPG strips, separated by 12.5% SDS-PAGE,

and stained with Coomassie Brilliant Blue. Then, the gel images were scanned to acquire the

protein abundance profiles of the hermaphroditic and male gametophytes (Fig 4). Image anal-

ysis revealed the quantitative and qualitative differences in spot intensity in the two types of

gametophytes. There were 1136 ± 55 spots observed in hermaphrodites and 1130 ± 65 spots

observed in males. Among them, abundance changes of more than 1.5-fold and significant dif-

ferences according to t-tests were used to identify the differentially abundant protein spots.

Quantitatively, there were 57 differentially abundant protein spots, among which 18 protein

spots showed higher abundance in male gametophytes and 24 showed higher abundance in

hermaphrodites. Seven protein spots were unique to male gametophytes and 8 were unique to

hermaphroditic gametophytes.

Protein identification and functional classification

All 57 protein spots were checked by mass spectrometry, and 33 proteins were identified

(Table 1). A good correlation between theoretical and experimental pI was shown, but some

differences in MW were observed. For some spots, a higher MW than that reported in the

database was observed, possibly due to the absence of mature forms of the proteins or the pres-

ence of sequences corresponding to only a fragment of a protein. The identified proteins were

mainly involved in protein folding and refolding (33%), photosynthesis and chloroplasts

(24%), metabolism (24%), protein synthesis (6%) and cell structure (13%).

Discussion

Photosynthesis plays an important role in plant growth and development, and our results

show that hermaphroditic gametophytes have higher photochemical efficiency than males.

Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), oxygen-evolving enhancer pro-

tein 1 (OEE), and magnesium-chelatase are considered to be directly involved in photosynthe-

sis. Their abundance is positively correlated with photosynthesis [24, 25]. Most forms of

rubisco have been previously described as accumulating in females of the fern Blechnum spi-
cant [22]. Our results also indicate that rubisco, OEE, and magnesium-chelatase were enriched

in hermaphrodites in C. thalictroides (Table 1). Chaperones and proteases ensure correct pro-

tein folding and prevent the formation of toxic aggregates. Numerous studies have shown that

some chaperones and proteases are essential for maintaining photosynthesis stability [26–28].

The rubisco large subunit-binding protein is abundant in plastids, which are essential in pho-

tosystem II [29]. All three rubisco large subunit-binding proteins identified in the present

investigation showed higher abundance in hermaphrodites. Peptidyl-prolyl cis-trans isomerase

(PPIase) is considered to participate in the photosynthetic electron transport chain in the thy-

lakoid membrane [30, 31]. Valledor et al. found that the PPIase level was relatively high in
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female gametophytes in B. spicant [22]. In line with these results, we found that the abundance

level of PPIase in hermaphroditic gametophytes of C. thalictroides was approximately twice

that found in males. We propose that a high level of PPIase activity is necessary for female or

hermaphroditic development in ferns. Members of the HSP70 family are highly represented in

hermaphroditic gametophytes. In Chlamydomonas reinhardtii, HSP70 has been shown to play

a role in the protection of photosystem II against damage in photoinhibitory conditions [32,

33]. This implies that HSP70 may be involved in protecting against damage caused by photo-

synthesis in hermaphrodites of C. thalictroides.
Microscopic observations showed that there were more chloroplasts in the hermaphroditic

gametophytes, so some of the proteins localized to chloroplasts were abundant more highly in

the hermaphroditic gametophytes. These proteins are involved in maintaining the stability of

the chloroplast and allowing higher photosynthetic utilization in the hermaphroditic gameto-

phyte. It was found that lactoylglutathione lyase regulates plant adaptation to various abiotic

and biotic stresses by improving methylglyoxal detoxification and reducing oxidative damage,

thereby measuring the improved protection of chloroplast and mitochondrial ultrastructure

and the maintenance of photosynthetic efficiency under stress conditions [34]. The ATP-

dependent Clp protease maintains protein homeostasis in plastids. Tobacco lines with knock-

down of Clp protease showed pigment deficiency, alterations in leaf development, leaf variega-

tions, and impaired photosynthesis [35]. LL-diaminopimelate aminotransferase (LL-DAPAT)

is a key gene involved in the synthesis of lysine. Mutations in the LL-DAPAT gene lead to

reduced photosynthesis and impaired plant growth [36].

Male gametophytes grow under relatively poor conditions, so some proteins with defence

characteristics are relatively highly abundant in them. For example, dehydroascorbate reduc-

tase (DHAR), malate dehydrogenase, and arginase 1 were abundant in male gametophytes.

DHAR, a type of glutathione S-transferase, can catalyse the synthesis of ascorbic acid by dehy-

droascorbate, which is a cofactor in the xanthophyll cycle and a highly effective antioxidant

that helps plants excrete reactive oxygen [37]. Malate dehydrogenase might provide building

material and energy for the biosynthesis of defence compounds [38]. Arginase 1 has been

shown to mobilize nitrogen storage as well as fine-tune development and defence mechanisms

against stress [39]. HSP90 is necessary for proper defence signal transduction via the stabiliza-

tion of resistance proteins [40, 41]. In Arabidopsis, the abundance of HSP90 increased signifi-

cantly in conditions with high heat, low temperatures, high salt, or heavy metals [42–44]. As

has been observed in B. spicant [22], HSP90 may be associated with male development.

Fig 3. Photosynthetic efficiency of C. thalictroides gametophytes. (A) The activity of the chlorophyll fluorescence

parameter (Fv / Fm); (B) the activity of photosystem Ⅱ (ФPSⅡ); (C) the activity of photosystem Ⅰ (ФPSⅠ). Error bars

indicate standard errors of three biological replicates.

https://doi.org/10.1371/journal.pone.0221470.g003
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In addition, we observed during culture that male gametophytes would gradually die after

their antheridia matured. According to our results, some proteins involved in leaf senescence,

such as 3-ketoacyl-CoA thiolase 2 (KAT2), appear to be distributed in male gametophytes.

KAT2 has been reported to be responsible for the majority of jasmonic acid biosynthesis [45,

46]. In Arabidopsis, KAT2 was confirmed as an essential component for the timely onset of

Fig 4. Representative 2-DE images of proteins from C. thalictroides gametophytes. (A) Protein gel from

hermaphroditic gametophytes; (B) protein gel from male gametophytes. Fifty-seven differentially abundant proteins

are marked with numbers on the gels. Squares refer to specific proteins. Molecular weight (MW) in kDa and pI of

proteins are indicated on the left and top of the gels, respectively. Detailed information can be found in Table 1.

https://doi.org/10.1371/journal.pone.0221470.g004
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Table 1. Differentially abundant proteins in hermaphroditic and male gametophytes from C. thalictroides.

Spot

No.a
Protein description Reference species Accession No.b Exp. MW/

pIc
Thr. MW/

pId
#e SCf Ratiog

Protein folding and refolding (11)

2251 Chaperonin 60 subunit

beta 2

Ricinus communis XP_002523404.1 59354/5.42 64490/5.65 11 163 2.25

±0.17

2163 Chaperonin 60–2 Physcomitrella patens XP_024366438.1 62062/5.67 61757/5.88 4 78 -

7814 Heat shock protein 70 P. patens XP_024361882.1 73140/5.44 73140/5.94 9 123 1.47

±0.22

7815 Heat shock protein 70 P. patens XP_024361882.1 64306/5.39 73140/5.94 7 183 1.68

±0.07

7827 Heat shock protein 70 Oryza sativa ACJ54890.1 76511/5.20 71945/5.30 17 423 1.58

±0.42

7829 Heat shock protein 90–1 Nicotiana benthamiana AAR12193.1 80339/5.18 80339/4.94 22 431 0.62

±0.11

7857 Peptidyl-prolyl cis-trans isomerase Spinacia oleracea XP_021866579.1 50832/4.84 50068/5.29 5 106 2.01

±0.38

7852 Rubisco large subunit-binding protein subunit alpha R. communis XP_002534347.2 62164/4.95 53280/5.25 9 94 1.45

±0.13

7853 Rubisco large subunit-binding protein subunit alpha Sorghum bicolor XP_002440887.1 60913/5.03 60913/5.07 9 121 1.77

±0.15

2227 Rubisco large subunit-binding protein subunit beta Zea mays NP_001306697.1 59583/5.89 61968/5.42 10 289 1.59

±0.21

2317 T-complex protein 1 subunit beta Vitis vinifera XP_002285912.1 58957/6.08 57628/5.60 11 112 0.63

±0.07

Photosynthesis and chloroplast (8)

1342 ATP-dependent Clp protease Vitis vinifera XP_010663794.1 102347/6.32 99169/6.09 19 239 1.63

±0.26

7424 Lactoylglutathione lyase P. patens XP_024375349.1 34416/5.49 29627/5.23 5 168 1.99

±0.09

3181 LL-diaminopimelate aminotransferase P. patens XP_024392750.1 53048/6.08 50746/8.00 3 113 1.69

±0.14

7869 Magnesium-chelatase subunit ChlI V. vinifera RVW29648.1 49864/5.39 46692/5.68 11 108 2.13

±0.21

7344 Oxygen-evolving enhancer protein 1 Populus trichocarpa XP_002307234.1 35348/5.01 35348/5.89 6 402 1.70

±0.09

7832 Ribulose bisphosphate carboxylase/oxygenase activase Populus trichocarpa XP_002312110.3 83226/4.94 40277/5.36 10 386 1.92

±0.03

2281 Ribulose-1, 5-bisphosphate carboxylase/oxygenase

large subunit

Palhinhaea pendulina CAC22277.1 59241/6.15 49006/6.49 12 73 4.28

±0.85

2449 Ribulose-1, 5-bisphosphate carboxylase/oxygenase

large subunit

Dryopteris sublacera ABF59846.1 58170/6.08 49148/6.54 14 91 0.63

±0.01

Metabolism (8)

7811 2,3-bisphosphoglycerate-independent

phosphoglycerate mutase

Mesembryanthemum
crystallinum

Q42908.1 60476/5.61 61316/5.39 4 85 1.53

±0.16

3035 3-ketoacyl-CoA thiolase 2 Prosopis alba XP_028773475.1 54155/6.30 48962/6.36 8 168 0.42

±0.02

7510 Arginase 1 P. patens XP_024376768.1 42118/5.86 37423/6.06 2 76 0.64

±0.05

7451 Cysteine synthase-like P. patens XP_024360091.1 38585/5.77 41650 /8.21 6 223 1.62

±0.43

3389 Glutamine synthetase Cryptomeria japonica BBA84049.1 50238/6.20 39732/5.96 3 208 0.53

±0.10

7531 Glutathione S-transferase V. vinifera XP_002263395.1 27676/6.47 25740/6.06 2 92 2.07

±0.29

(Continued)
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leaf senescence [47]. The increase of KAT2 in males may result in senescence in male gameto-

phytes that occurs earlier than we observed.

The obvious difference in sexual organs is the main feature that allows for distinguishing

between male and female gametophytes. The differential abundance of cytoskeletal proteins

detected in this study may be involved in the formation of sexual organs. Centrin, a member of

a family of calcium-binding phosphoproteins, is distributed in the centrosomes or surround-

ing matrix in eukaryotes [48, 49]. In green algae, it was identified as a major component of the

basal body associated with contractile striated flagellar roots [50]. In ferns, centrin is present in

or near the blepharoplast and the multilayered structure of spermatids, which are necessary for

the formation of the motile apparatus in spermatids of Marsilea [51]. In this study, the abun-

dance of centrin in male gametophytes was found to be very high, approximately four times

greater than that found in hermaphrodites. This result indicates that centrin is primarily

involved in male gametophyte development and may be involved in the sperm formation pro-

cess. In our study, three actin proteins were abundant specifically in hermaphroditic gameto-

phytes. Actin is a family of globular multifunctional proteins that form microfilaments.

Eukaryotic actin is required for numerous cellular processes, including the maintenance of cell

shape, cell development and movement, gene expression, signal transduction, and responses

to biotic and abiotic stress [52]. A large amount of actin has been found to be synthesized dur-

ing spore germination of Equisetum arvense [19]. We speculate that the actin proteins detected

in hermaphrodites are related to the structure of the archegonia. The differences in the abun-

dance levels of cell structure proteins revealed the presence of large differences in cytoskeletal

dynamics in sex expression in gametophytes.

Table 1. (Continued)

Spot

No.a
Protein description Reference species Accession No.b Exp. MW/

pIc
Thr. MW/

pId
#e SCf Ratiog

7487 Glutathione S-transferase DHAR1 P. patens XP_024357492.1 74303/5.96 25502/7.99 4 92 0.53

±0.01

8037 Malate dehydrogenase Beta vulgaris NP_001290006.1 45437/5.90 35810/5.89 7 97 0.55

±0.06

Protein synthesis (2)

3194 Elongation factor tub N. sylvestris XP_009772722.1 52769/6.15 52769/5.95 6 152 1.72

±0.07

7245 Translation initiation factor 5A Dendrocalamus sinicus ABW78939.1 15509/5.89 17752/7.08 5 187 0.63

±0.02

Cell structure (4)

2861 Actin 2 Anemia phyllitidis AAC64127.1 53023/5.33 41827/5.31 15 340 +

6415 Actin P. patens XP_024374057.1 36460/5.25 41810/5.3 6 76 +

1816 Actin Mesostigma viride O65316.1 69752/5.97 41790/5.3 6 84 +

7199 Centrin Pterosperma cristatum CAA58719.1 17020/4.94 15320/4.38 3 179 0.25

±0.06

a: the numbering corresponds to the matched IDs in the 2D gels
b: the database accession number from the NCBI protein database
c, d: the experimental and theoretical molecular weight (Da) and pI of the identified proteins
e: number of peptides identified by MS/MS
f: mascot score resulting from the LC-MS/MS search
g: the relative fold change in abundance levels when compared with the abundance in male gametophytes (p� 0.01); (+) denotes a unique spot in hermaphroditic

gametophytes, (-) denotes a unique spot in male gametophytes. The average and standard deviation are presented.

https://doi.org/10.1371/journal.pone.0221470.t001
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Conclusions

Overall, we generated two forms of gametophytes with sex expression differences using differ-

ent culture methods. The photochemical efficiency in male gametophytes was lower than that

in hermaphroditic gametophytes, and the levels of proteins involved in photosynthesis were

also decreased. In addition, some metabolic proteins had higher activity in male gametophytes,

which allowed them to maintain their development under relatively poor nutritional condi-

tions. In addition, we detected several proteins that may be involved in sexual organ formation,

such as centrin and actin, and these cytoskeletal proteins may be directly involved in sex

expression. These differentially abundant proteins are important for maintaining the different

developmental characteristics of hermaphroditic and male gametophytes in C. thalictroides.
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