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Abstract

Mixed lineage kinase domain-like protein (MLKL) is the terminal
effector of necroptosis, a form of regulated necrosis. Optimal acti-
vation of necroptosis, which eliminates infected cells, is critical for
antiviral host defense. MicroRNAs (miRNAs) regulate the expres-
sion of genes involved in various biological and pathological
processes. However, the roles of miRNAs in necroptosis-associated
host defense remain largely unknown. We screened a library of
miRNAs and identified miR-324-5p as the most effective suppressor
of necroptosis. MiR-324-5p downregulates human MLKL expression
by specifically targeting the 30UTR in a seed region-independent
manner. In response to interferons (IFNs), miR-324-5p is downreg-
ulated via the JAK/STAT signaling pathway, which removes the
posttranscriptional suppression of MLKL mRNA and facilitates the
activation of necroptosis. In influenza A virus (IAV)-infected human
primary macrophages, IFNs are induced, leading to the downregu-
lation of miR-324-5p. MiR-324-5p overexpression attenuates IAV-
associated necroptosis and enhances viral replication, whereas
deletion of miR-324-5p potentiates necroptosis and suppresses
viral replication. Hence, miR-324-5p negatively regulates necropto-
sis by manipulating MLKL expression, and its downregulation by
IFNs orchestrates optimal activation of necroptosis in host antivi-
ral defense.
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Introduction

Cell death of pathogen-infected cells plays a critical role in the defense

of multicellular organisms against infection by eliminating pathogens

(Guo et al, 2015a; Man et al, 2017; Nailwal & Chan, 2019; He &

Han, 2020). Apoptosis is a form of programmed cell death controlled

by a group of cysteine proteases called caspases (Kerr et al, 1972).

Inhibition of caspase activity in some cells can switch cell fate from

TNF-induced apoptosis to necroptosis, a form of regulated necrosis

(Degterev et al, 2005; He & Wang, 2018; Mifflin et al, 2020). Necrop-

tosis is regulated by receptor-interacting kinase 1 (RIP1 or RIPK1),

RIPK3 (or RIP3), and pseudokinase mixed lineage kinase domain-like

protein (MLKL) (Degterev et al, 2005; He & Wang, 2018; Mifflin

et al, 2020). Previous studies have shown that necroptosis mediates

the premature death of infected cells leading to the restriction of viral

replication; it is involved in the host defense against viruses including

the vaccinia virus (Cho et al, 2009), murine cytomegalovirus (Upton

et al, 2010), human herpes simplex viruses (Wang et al, 2014; Huang

et al, 2015; Guo et al, 2015b), and influenza A viruses (IAVs) (Kuri-

akose et al, 2016; Nogusa et al, 2016; Thapa et al, 2016). Thus,

necroptosis plays a crucial role in host defense by eliminating

pathogen-infected cells.

Necroptosis can be induced by the activation of tumor necrosis

factor (TNF) family death receptors (Laster et al, 1988; Holler

et al, 2000), interferon (IFN) receptors (Robinson et al, 2012), and

Toll-like receptors (TLRs) (He et al, 2011; Kaiser et al, 2013) and

by pathogen infection (Nailwal & Chan, 2019) and endogenous

retroviruses (Jiao et al, 2020; Wang et al, 2020). In TNF-induced

necroptosis, RIPK3 is activated by forming a protein complex

(necrosome) with RIPK1 via their RIP homotypic interaction motif

(RHIM) domains (Cho et al, 2009; He et al, 2009; Zhang

et al, 2009). In IFN-induced necroptosis, RIPK3 can be activated by
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the RHIM-containing protein ZBP1 without RIPK1 (Kaiser

et al, 2008; Ingram et al, 2019; Upton et al, 2019). The activated

RIPK3 recruits and phosphorylates the substrate MLKL, resulting in

MLKL oligomerization and translocation to the plasma membrane

where it mediates necroptosis (Sun et al, 2012; He & Wang, 2018).

As MLKL is a key effector molecule in the execution of necroptosis,

its full activation is important for necroptosis-mediated protective

host defense.

Interferons are crucial for host defense against a broad range of

pathogens (Karki et al, 2021; Shannon et al, 2021). The type I (IFN-

a/b) and type II (IFN-c) IFNs are secreted from pathogen-infected cells

and enhance immune responses by activating the Janus kinase (JAK)-

signal transducer and activator of transcription (STAT) signaling path-

way, which triggers the expression of various interferon-stimulated

genes (ISGs) including pro-inflammatory cytokines and chemokines

and anti-microbial and antigen-presenting molecules (Barrat

et al, 2019; Xu et al, 2019; Yang & Li, 2020; Wang et al, 2021). Previ-

ous studies have shown that MLKL and ZBP1 can be transcriptionally

induced by IFN stimulation, leading to increased sensitivity of cells

to necroptosis (Ingram et al, 2019; Knuth et al, 2019; Sarhan

et al, 2019; Chen et al, 2019a). Therefore, IFN signaling can coordi-

nate the death of pathogen-infected cells by regulating the expression

of pro-necroptosis ISGs. In addition to the induction of ISGs, IFNs

repress the transcription of numerous genes, termed IFN-repressed

genes (IRepGs) (Trilling et al, 2013; Megger et al, 2017). In contrast

to ISGs, the functions of IRepGs remain poorly understood, and their

role in necroptosis has not been documented.

MicroRNAs (miRNAs) are a class of endogenous small noncoding

RNAs of 19–22 nucleotides that negatively regulate target genes by

binding to complementary sequences of the 30 untranslated region

(30UTR) of target mRNAs, thereby leading to mRNA degradation or

translation suppression (Lewis et al, 2005; Agarwal et al, 2015). In

general, nucleotides 2–8 at the 50 end of the miRNA (called the seed

region) are considered to be critical for canonical target mRNA recog-

nition and binding (Bartel, 2018). MiRNAs are involved in cellular

processes including cell proliferation, cell differentiation, and cell

death (Roy et al, 2017; Farina et al, 2020; Zhang et al, 2020). Studies

have shown that some miRNAs are involved in the modulation of

necroptosis. For example, miR-874 targets caspase-8 to promote

necroptosis (Wang et al, 2013). MiR-21 deficiency attenuates necrop-

tosis in mouse models of acute pancreatitis injury and liver injury (Ma

et al, 2015; Afonso et al, 2018). MiR-155 targets RIPK1 to inhibit

necroptosis in human cardiomyocyte progenitor cells and osteosar-

coma (Liu et al, 2011). MiR-325-3p suppresses cardiomyocyte necrop-

tosis by targeting RIPK3 (Zhang et al, 2019). However, the roles of

miRNAs in regulating necroptosis remain largely unknown. In particu-

lar, it is unclear whether miRNAs mediating necroptosis specifically

regulate MLKL expression.

In the present study, we demonstrate that miR-324-5p negatively

regulates necroptosis by directly downregulating the expression of

human MLKL. We also identified miR-324-5p as being repressed by

IFN through the JAK/STAT1 signaling pathway. Expression of miR-

324-5p was downregulated in IAV-infected human peripheral blood

mononuclear cell (PBMC)-derived macrophages. Overexpression of

miR-324-5p significantly inhibited necroptosis of infected cells and

promoted IAV replication, whereas deletion of miR-324-5p enhanced

necroptosis and thus contributed to the control of viral infection.

These results indicate that miR-324-5p is a cellular suppressor of

MLKL-mediated necroptosis and highlight the role of IFN-mediated

repression of miR-324-5p in host defense against infection.

Results

Identification of miR-324-5p as a suppressor of necroptosis

To identify miRNAs involved in the necroptosis pathway, we

screened a library of ~1,000 miRNAs for candidate miRNAs regulat-

ing TNF-induced necroptosis, a classical necroptotic pathway

induced by stimulation of TNF-a, Smac mimetic, and the pan-

caspase inhibitor z-VAD (He et al, 2009). We performed this screen

using human colon cancer HT-29 cells, which were transfected with

individual miRNAs and subsequently treated with the control

(DMSO) or TNF-a, Smac mimetic, and z-VAD, then analyzed for cell

viability (Fig 1A). A small interfering RNA (siRNA) oligo targeting

RIPK3 was used as the positive control (Fig 1A). We found that 22

miRNAs could block TNF-induced necroptosis. Cells transfected

with these miRNAs showed a significantly higher survival rate

▸Figure 1. Identification of miR-324-5p as a suppressor of necroptosis.

A Schematic description of a screening for miRNAs blocking necroptosis. Human miRNA mimics, nontarget miRNA (the negative control, NC), and the positive control
RIPK3 siRNA oligos (siRIPK3) were transferred into HT-29. After 48 h, cells were treated with 40 ng/ml TNF-a (T), 100 nM Smac mimetic (S), and 20 lM z-VAD (Z) for
24 h, and then cell viability was determined by measuring ATP levels. Identical concentrations were used in later experiments unless otherwise stated. T + S + Z:
TNF-a, Smac mimetic and z-VAD.

B Graphical representation of the screen results with each miRNA identified from the library (842 miRNAs). Arrowheads point to siRIPK3, miR-324-5p, and the negative
control (NC).

C The RNA sequences of miR-324-5p and miR-324-3p were aligned by DNAman. HT-29 cells were transfected with NC, siRIPK3, miR-324-5p, or miR-324-3p. After 48 h,
cells were treated with T + S + Z for 24 h. Cell viability was determined by measuring ATP levels.

D Human gastric carcinoma MKN45 cells were transfected with NC, siRIPK1, or miR-324-5p. After 48 h, cells were treated with T + S + Z for 24 h. Cell viability was
determined by measuring ATP levels.

E Human colon cancer 174T cells were transfected with NC or miR-324-5p. After 48 h, cells were treated with T + S + Z for 24 h. Cell viability was determined by mea-
suring ATP levels.

F Human glioblastoma T98G cells were transfected with NC, siRIPK1, or miR-324-5p. After 48 h, cells were treated with T + S for 24 h. Cell viability was determined by
measuring ATP levels.

G Human monocytic leukemia U937 cells were transfected with NC, siRIPK3, or miR-324-5p. At 48 h, cells were treated with 100 ng/ml LPS (L) and 20 lM z-VAD (Z) for
an additional 24 h. Cell viability was determined by measuring ATP levels.

Data information: In (C–G), data are represented as the means � SD of three biological replicates. Statistical analyses were performed using unpaired Student’s t-test. All
experiments were performed at least three times, and representative data are shown.
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compared with control miRNA-transfected cells (Figs 1B and

EV1A). Among these miRNAs, miR-324-5p has the greatest inhibi-

tory effect on necroptosis (Figs 1C and EV1B). MiR-324-5p and miR-

324-3p are transcribed from the same hairpin RNA structure. Unlike

miR-324-5p, miR-324-3p had no effect on TNF-induced necroptosis

(Fig 1C), indicating that miR-324-5p and miR-324-3p have diverse

effects on necroptosis. We further confirmed that miR-324-5p signif-

icantly inhibited necroptosis in multiple cell lines, including gastric

carcinoma MKN45 cells and human colon cancer 174T cells (Fig 1D

and E).

Since TNF-induced necroptosis and apoptosis share some

common components such as TNFR and RIPK1, we examined the

effect of miR-324-5p on TNF-induced apoptosis, which is known to

be induced by treatment with TNF-a plus Smac mimetic (Wang

et al, 2008). We observed that miR-324-5p had no obvious effect on

TNF-induced apoptosis in human glioblastoma T98G cells (Fig 1F),

suggesting that miR-324-5p interferes with TNF-induced necropto-

sis, but not with TNF-induced apoptosis. TLR activation has been

shown to activate necroptosis as well (He et al, 2011). We further

evaluated the effect of miR-324-5p on TLR4-mediated necroptosis
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induced by lipopolysaccharide (LPS), a specific ligand of TLR4, in

the presence of z-VAD in human monocytic leukemia U937 cells.

Similar to TNF-induced necroptosis, TLR4-mediated necroptosis of

U937 cells was blocked by miR-324-5p (Fig 1G). Collectively, these

results demonstrate that miR-324-5p acts as a suppressor of

necroptosis.

MiR-324-5p negatively regulates MLKL expression

To investigate how miR-324-5p regulates necroptosis, we examined

the effect of miR-324-5p on the activation of RIPK1, RIPK3, and

MLKL during necroptosis by measuring the levels of phosphorylated

RIPK1, RIPK3, and MLKL. Upon application of necroptotic stimuli,

phosphorylation of RIPK1, RIPK3, and MLKL was detected in HT-29

cells transfected with the control miRNA (Fig 2A). We observed that

phosphorylation of MLKL was reduced in HT-29 cells transfected

with miR-324-5p, while phosphorylation of RIPK1 and RIPK3 was

not affected under the same conditions (Fig 2A). We also detected a

decrease of MLKL protein level in the cells transfected with miR-

324-5p, while the expression levels of RIPK1 and RIPK3 were not

affected in these cells (Fig 2B). Moreover, transfection of miR-324-

5p led to a significant reduction in Mlkl mRNA expression (Fig 2C)

but had no effect on either Ripk1 or Ripk3 mRNA levels (Fig EV2A

and B). Like HT-29 cells, MKN45 and 174T cells showed a decreased

level of MLKL after transfection of miR-324-5p (Fig 2D and E),

suggesting that miR-324-5p is capable of selectively downregulating

MLKL expression. Furthermore, transfection of cells with anti-miR-

324-5p, an antisense inhibitor of endogenous miR-324-5p, induced

the expression of MLKL and enhanced the sensitivity of cells to

TNF-induced necroptosis (Fig 2F and G). These results demonstrate

that miR-324-5p is a negative regulator of MLKL expression during

necroptosis.

MiRNA-324-5p targets the 30UTR of MLKL mRNA in a seed region-
independent manner

To investigate whether miR-324-5p directly binds to the 30UTR of

MLKL mRNA, we constructed a recombinant plasmid (pmirGLO-

MLKL-30UTR reporter) containing the 30UTR of MLKL fused to a fire-

fly luciferase reporter gene (Fig 3A). HEK293T cells were transfected

with pmirGLO-MLKL-30UTR reporter combined with the control

miRNA or miR-324-5p. The transfection efficiency was normalized

by co-transfection with a Renilla luciferase reporter. As shown in

Fig 3B, miR-324-5p transfection significantly decreased the luci-

ferase activity of MLKL-30UTR compared with control miRNA trans-

fection, suggesting that miR-324-5p can bind to the 30UTR of MLKL

mRNA. We observed that miR-324-5p did not bind to the 30UTR of

Ripk1 or Ripk3 mRNA (Fig EV3A and B).

We next predicted the potential miR-324-5p binding site in the

30UTR of MLKL using the RNAhybrid program, which showed that

the 79–81 bp (CCU) region of MLKL-30UTR could be the putative

binding site for miR-324-5p. To validate the predicted miR-324-5p

binding site in MLKL-30UTR, we generated two luciferase fusion

constructs containing mutant forms of MLKL-30UTR: (i) mutant#1

in which CCU in the predicted binding site was replaced by AAA;

(ii) mutant#2 in which the predicted binding site was removed by

deleting the 1–84 bp region of MLKL-30UTR. Notably, disruption

or deletion of the predicted miR-324-5p binding site in MLKL-

30UTR completely abolished the inhibitory effect of miR-324-5p on

MLKL-30UTR (Fig 3A and B), indicating that the 79–81 bp (CCU)

region in the 30UTR of MLKL is crucial for its binding to miR-324-

5p at nucleotides 11–13. Moreover, we synthesized a mutant form

of miR-324-5p in which AGG in the predicted binding site was

replaced by UCC. This mutant form of miR-324-5p failed to inhibit

the luciferase activity of human MLKL-30UTR, supporting that

AGG at nucleotides 11–13 of miR-324-5p is required for its regula-

tion of human MLKL (Fig 3C). Taken together, these results

suggest that miR-324-5p targets MLKL in a seed region-

independent manner.

We next evaluated whether MLKL is the functional target of miR-

324-5p responsible for its inhibitory effect on necroptosis. To this

end, we generated two HeLa cell lines: (i) HeLa cells stably express-

ing human RIPK3 (HeLa-endogenous MLKL), and (ii) Mlkl�/� HeLa

cells stably expressing human RIPK3 and the coding sequence

(CDS) of MLKL (HeLa-exogenous MLKL). As shown in Fig 3D and

E, and EV3C, the level of endogenous MLKL in HeLa-endogenous

MLKL cells was reduced by transfection of miR-324-5p or an siRNA

oligo targeting either the MLKL CDS or 30UTR. In HeLa-exogenous

MLKL cells, the level of exogenous MLKL was knocked down by

transfection of an siRNA oligo targeting the CDS of MLKL (siMLKL-

CDS), but it was not affected by transfection of miR-324-5p or an

siRNA oligo targeting the 30UTR of MLKL (siMLKL-30UTR). Notably,
miR-324-5p and siMLKL-30UTR significantly blocked TNF-induced

necroptosis in HeLa-endogenous MLKL cells (Fig 3F), but they failed

to affect TNF-induced necroptosis in HeLa-exogenous MLKL cells

(Fig 3G). As expected, siMLKL-CDS inhibited TNF-induced

▸Figure 2. MiR-324-5p negatively regulates MLKL expression.

A HT-29 cells were transfected with NC, siRIPK1 or miR-324-5p. After 48 h, cells were treated with TNF-a (T) or T + S + Z for an additional 6 h. Western blotting
analysis of p-RIPK1, RIPK1, p-RIPK3, RIPK3, p-MLKL, MLKL, and b-actin.

B Western blotting analysis of RIPK1, RIPK3, MLKL, and b-actin levels in HT-29 cells that were transfected with NC, siRIPK1, siRIPK3, MLKL siRNA oliogs (siMLKL), and
miR-324-5p.

C HT-29 cells were harvested 48 h after transfection with NC, siMLKL, and miR-324-5p. MLKL expression was analyzed by qPCR (upper) or RT-PCR (lower).
D, E MKN45 (D) and 174T (E) cells were harvested 48 h after transfection with NC, siMLKL, and miR-324-5p. qPCR analysis for the expression of MLKL (upper) and west-

ern blotting analysis of MLKL and b-actin (lower).
F HT-29 cells were transfected with NC, siMLKL, miR-324-5p, or anti-miR-324-5p. After 48 h, cells were treated with DMSO or T + S + Z for an additional 24 h. Cell

survival was determined by measuring ATP levels.
G Western blotting analysis of MLKL and b-actin in HT-29 cells that were harvested 48 h after transfection with NC, siMLKL, miR-324-5p, or an anti-miR-324-5p.

Data information: Data are represented as the means � SD of three biological replicates. Statistical analyses were performed using unpaired Student’s t-test. All experi-
ments were performed at least three times, and representative data are shown.
Source data are available online for this figure.
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necroptosis in both HeLa-endogenous MLKL cells and HeLa-

exogenous MLKL cells (Fig 3F and G). It has been shown that HeLa

cells expressing MLKL (1–190 aa) fused to DmrB undergo MLKL

polymerization-induced necroptosis in the presence of the dimeriza-

tion agent AP20187. Consistent with this, neither miR-324-5p nor

siMLKL-30UTR blocked necroptosis induced by MLKL polymeriza-

tion in HeLa cells expressing MLKL (1–190 aa), while this necrop-

totic phenotype was greatly inhibited by siMLKL-CDS (Fig 3H).

Taken together, these results demonstrate that miR-324-5p-mediated

suppression of necroptosis completely depends on its regulation of

MLKL.

MiR-324-5p-mediated regulation of MLKL is species specific

Having shown that the 79–81 bp of CCU (CCT) in the 30UTR region

of MLKL is critical for binding to miR-324-5p, we next examined
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whether these nucleotides are conserved among mammalian

species. As shown in Fig 4A, these nucleotides are conserved in the

30UTR of MLKL genes from monkey (Cercocebus atys), cow (Bos

taurus), horse (Equus caballus), and sheep (Ovis aries). However,

this CCT region is not conserved in the 30UTR of MLKL genes from

pig (Sus scrofa) and rodent species including mouse (Mus musculus)

and rat (Rattus norvegicus). Furthermore, we found that the CCT

region of MLKL-30UTR is highly conserved among primates includ-

ing chimpanzee (Pan troglodytes) and green monkey (Chlorocebus

sabaeus) (Fig 4B).

We next used African green monkey kidney epithelial (Vero)

cells to examine the effect of miR-324-5p on MLKL expression. As

expected, transfection of miR-324-5p resulted in the downregulation

of MLKL in Vero cells (Fig 4C). In contrast, transfection of miR-324-

5p did not affect the expression of MLKL in mouse embryonic

fibroblasts (MEFs), in which MLKL does not have the miR-324-5p

binding region (Fig 4D). Consistent with this finding, miR-324-5p

could not block TNF-a induced necroptosis in MEFs (Fig 4E).

Further, we generated a mutant form of murine MLKL-30UTR by

introducing the miR-324-5p binding region of human MLKL-30UTR
into the start site of mouse MLKL-30UTR. We observed that miR-

324-5p transfection significantly reduced the luciferase activity of

this mutant form of mouse MLKL-30UTR, suggesting that introduc-

tion of the miR-324-5p binding region is sufficient to potentiate the

regulation of mouse MLKL by miR324-5p (Fig 4F). These results

suggest that the CCU region is responsible for species-dependent

recognition of MLKL by miR-324-5p. Thus, it is likely that manipula-

tion of MLKL-mediated necroptosis by miR-324-5p has evolved in

higher mammals.

The IFN-JAK-STAT1 signaling pathway negatively
regulates miR-324-5p

Previous studies have shown that IFN treatment upregulates MLKL

(Thapa et al, 2013; Stutz et al, 2018; Knuth et al, 2019; Chen

et al, 2019a). Consistent with this, we observed induced expression

of MLKL at both the mRNA and protein levels in response to IFN-a,

IFN-b, and IFN-c in U937 cells, while MLKL expression was not

affected by treatment with LPS, or poly(I:C) (Fig 5A and B). Interest-

ingly, we found that IFN-a, IFN-b, and IFN-c could significantly

downregulate the level of miR-324-5p (Fig 5C). Moreover, overex-

pression of miR-324-5p reduced both IFN-b- and IFN-c-induced
expression of MLKL (Figs 5D and E, and EV4A and B).

Interferons are known to signal through the JAK/STAT pathway

(Krause et al, 2006). To further investigate the role of the JAK/

STAT pathway in miR-324-5p transcription, we pretreated U937

cells with the JAK1/JAK2 inhibitor ruxolitinib prior to treatment

with IFN-b or IFN-c. The addition of ruxolitinib blocked both IFN-b-
and IFN-c-induced downregulation of miR-324-5p as well as both

IFN-b- and IFN-c-induced upregulation of MLKL (Fig 5F and G).

STAT1 is an important mediator of type I and type II IFN signaling.

We performed knockdown of STAT1 in U937 cells prior to treatment

with IFN-c or IFN-b. STAT1 levels were significantly reduced by

transfection of STAT1 siRNA oligos (Fig 5H and I). Knocking down

STAT1 abolished IFNs-induced downregulation of miR-324-5p as

well as IFNs-induced upregulation of MLKL (Fig 5H and I). More-

over, a chromatin immunoprecipitation (ChIP) assay showed

reduced interaction between STAT1 and the promoter of miR-324-

5p in response to IFN-c stimulation (Fig 5J), indicating that the IFN-

JAK-STAT1 signaling pathway negatively regulates miR-324-5p

expression.

IFN-mediated repression of miR-324-5p enhances necroptosis

Since miR-324-5p is an IFN-repressed gene, we examined the effect

of miR-324-5p on necroptosis upon stimulation with IFN-c. IFN-c
induced cell death in U937 cells in the presence of z-VAD, and cell

death was inhibited by knockdown of MLKL (Fig 6A), indicating

that IFN-c/z-VAD activates MLKL-mediated necroptosis in U937

cells. Transfection of U937 cells with miR-324-5p significantly

blocked IFN-c-induced necroptosis (Fig 6A). We next stimulated

cultured human PBMC-derived macrophages with IFN-c. IFN-c
significantly reduced miR-324-5p expression and upregulated MLKL

expression in human primary monocytes (Fig 6B). MiR-324-5p

◀ Figure 3. MiRNA-324-5p targets the 30UTR of MLKL mRNA in a seed region-independent manner.

A Schematic representation of the miR-324-5p target binding site in the 30UTR of MLKL. Two mutated forms (mutant#1 and mutant#2) of MLKL-30UTR were gener-
ated.

B HEK293T cells were transfected with NC, MLKL siRNA oligos targeting the 30UTR of MLKL (siMLKL-30UTR), or miR-324-5p, together with pmirGLO-MLKL-30UTR or the
mutated form of MLKL-30UTR shown in A. Relative luciferase activity analysis of MLKL-30UTR. Data are presented as firefly luciferase activity/renilla luciferase activ-
ity � SD.

C HEK293T cells were transfected with NC, miR-324-5p, or the mutated form of miR-324-5p together with pmirGLO-MLKL-30UTR. Relative luciferase activity analysis
of MLKL-30UTR. Data are presented as firefly luciferase activity/renilla luciferase activity � SD (n = 5, biological replicates).

D Western blotting analysis of MLKL and b-actin in HeLa-endogenous MLKL cells (HeLa cells stably expressing human RIPK3) and HeLa-exogenous MLKL cells (Mlkl�/�

HeLa cells stably expressing human RIPK3 and the coding sequence (CDS) of MLKL) that were harvested 48 h after transfection with NC, miR-324-5p, or MLKL siRNA
oligos targeting the CDS region of MLKL (siMLKL-CDS).

E qPCR analysis for the expression of MLKL in HeLa-exogenous MLKL cells that were harvested 48 h after transfection with NC, miR-324-5p, siMLKL-30UTR, or siMLKL-
CDS.

F, G HeLa-endogenous MLKL cells (F) and HeLa-exogenous MLKL (G) were transfected with NC, miR-324-5p, siMLKL-30UTR, or siMLKL-CDS. After 48 h, cells were treated
with T + S + Z for 24 h. Cell survival was determined by measuring ATP levels.

H HeLa cells expressing MLKL(1–190 aa) fused to DmrB (HeLa-MLKL(1–190)-Dmir cells) were transfected with NC, miR-324-5p, siMLKL-30UTR, or siMLKL-CDS. After
48 h, cells were treated with DMSO or the dimerization agent AP20187 (60 nM) for 24 h. Cell survival was determined by measuring ATP levels.

Data information: The number of surviving cells was normalized to the number of surviving control cells, which were treated with DMSO. In (B), and (E–H), data are
represented as the means � SD of three biological replicates. Statistical analyses were performed using unpaired Student’s t-test. All experiments were performed at
least three times, and representative data are shown.
Source data are available online for this figure.
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Figure 4. MiR-324-5p-mediated regulation of MLKL is species specific.

A, B Evolutionary conservation of the CCT(CCU) region in MLKL-30UTR. The DNA sequences of MLKL flanking the CCT(CCU) region from various species were aligned by
DNAman.

C African green monkey kidney epithelial (Vero) cells were transfected with NC, siMLKL, or miR-324-5p for 48 h. qPCR analysis for the expression of MLKL.
D MEFs were transfected with NC, siMLKL, or miR-324-5p for 48 h. qPCR analysis for the expression of MLKL and western blotting analysis of MLKL and b-actin.
E MEFs were transfected with NC, siMLKL, or miR-324-5p. After 48 h, cells were treated with DMSO or T + S + Z for 24 h. Cell viability was determined by measuring

ATP levels.
F HEK293T cells were transfected with NC or miR-324-5p, together with pmirGLO-mouse MLKL-30UTR or the mutated form of mouse MLKL-30UTR. Relative luciferase

activity analysis of MLKL-30UTR. Data are presented as firefly luciferase activity/renilla luciferase activity � SD (n = 5, biological replicates).

Data information: In (C–E), data are represented as the means � SD of three biological replicates. Statistical analyses were performed using unpaired Student’s t-test. All
experiments were performed at least three times, and representative data are shown. b-Actin serves as an internal control (D).
Source data are available online for this figure.
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overexpression significantly inhibited necroptosis in both PBMC-

derived macrophages and HT-29 cells in the presence of IFN-c
(Fig 6C and D). Next, we generated miR-324-5p knockout HT-29 cell

lines using the CRISPR/Cas9 system to assess the role of cellular

miR-324-5p in necroptosis. Two clones showed obvious deletion of

endogenous miR-324-5p (Fig 6E). Deletion of miR-324-5p in HT-29

cells increased the sensitivity of cells to TNF-induced necroptosis

(Fig 6F). HT-29 miR-324-5p�/� cells also showed increased sensitiv-

ity to the treatment of IFN-b or IFN-c in the presence of z-VAD

compared to HT-29 miR-324-5p+/+ cells (Fig 6G and H). Deletion of

miR-324-5p led to increased expression of MLKL upon stimulation

of IFN-b or IFN-c (Fig EV4C). Taken together, these results indicate

that IFN-induced repression of miR-324-5p promotes the activation

of necroptosis.

MiR-324-5p inhibition sensitizes IAV-infected cells to necroptosis
and reduces viral replication

Necroptosis has an important role in host defense against IAV infec-

tion (Kuriakose et al, 2016; Nogusa et al, 2016; Thapa et al, 2016).

We therefore examined the effect of miR-324-5p in IAV (H1N1 strain

PR8)-infected human PBMC-derived macrophages. IFN-b and IFN-c
were induced in human macrophages infected with IAV (Fig 7A).

We observed that miR-324-5p expression was decreased post-IAV

infection, while MLKL was upregulated in IAV-infected cells

(Fig 7B). It has been shown that IAV-induced IFN-b plays an impor-

tant role in host defense against IAV (Koerner et al, 2007). IFNs

secreted by infected cells trigger signal transduction through the

JAK/STAT cascade (Schoggins et al, 2014). We found that upregula-

tion of MLKL and downregulation of miR-324-5p in IAV-infected

macrophages were largely reversed by treatment with ruxolitinib

(Fig 7B). IAV infection enhances necroptosis induced by the treat-

ment of Smac mimetic plus z-VAD in macrophages, and the

phenomenon of necroptosis was significantly inhibited by miR-324-

5p overexpression (Fig 7C). Overexpression of miR-324-5p signifi-

cantly promoted IAV replication (Fig 7D). It is known that IAV can

induce apoptosis as well as necroptosis (Nogusa et al, 2016). Trans-

fection of either miR-324-5p or siMLKL oligos did not affect the level

of cleavage of caspase-3 (Fig EV5A). It has been shown that HT-29

cells are susceptible to IAV subtypes such as H9N2 and H1N1(Qu

et al, 2012). We observed that IFN-b was also upregulated in HT-29

cells infected with H1N1 strain PR8 (Fig 7E). IAV infection led to

increased levels of MLKL and phosphorylated MLKL (Fig EV5B).

Overexpression of miR-324-5p inhibited necroptosis induced by

Smac mimetic plus z-VAD or in combination with IAV infection in

HT-29 cells (Fig 7F). Knockout of miR-324-5p in HT-29 cells signifi-

cantly increased sensitivity of cells to IAV infection (Fig 7G). Impor-

tantly, deficiency of miR-324-5p resulted in a significant reduction

in viral replication in IAV-infected cells with or without z-VAD treat-

ment (Fig 7H). These results suggest that IFN-mediated reduction of

miR-324-5p promotes the necroptosis of IAV-infected cells and limits

viral replication.

Discussion

Eliminating pathogen-infected cells by necroptosis is a critical mech-

anism of host defense against pathogen infection (Wang

et al, 2014). MiRNAs play important roles in controlling the

response to pathogen infection by regulating the expression of target

genes (Othumpangat et al, 2021; Zhang et al, 2021). Our study

revealed that miR-324-5p functions as a suppressor of necroptosis

by directly inhibiting MLKL expression and that induction of IFNs

by pathogens such as IAV downregulates the expression of miR-324-

5p through the JAK/STAT1 signaling pathway (Fig 8). Downregula-

tion of miR-324-5p by IFNs promotes optimal activation of MLKL-

mediated necroptosis, eliminating IAV-infected cells (Fig 8).

MiR-324-5p has been reported to regulate cell proliferation and

apoptosis under diverse conditions by targeting different mRNAs

(Wang et al, 2015; Lin et al, 2018; Chen et al, 2019b; Wan

et al, 2020; Zheng et al, 2021). For example, miR-324-5p inhibits

mitochondrial fusion and apoptosis in cardiomyocytes and endothe-

lial progenitor cells by downregulating Mtfr1 (Wang et al, 2015;

Chen et al, 2019b; Huang et al, 2020). MiR-324-5p promotes cell

proliferation and suppresses apoptosis in pancreatic cancer cells by

targeting KLF3 (Wan et al, 2020). Conversely, miR-324-5p promotes

apoptosis in gastric cancer cells by modulating the expression of

TSPAN8 (Lin et al, 2018). Recently, miR-324-5p has been shown to

boost apoptosis and promote the development of glioblastomas by

regulating Bcl2 (Li et al, 2021). However, the role of miR-324-5p in

◀ Figure 5. The IFN-JAK-STAT1 signaling pathway negatively regulates miR-324-5p.

A U937 cells were treated with 100 ng/ml IFN-a, 100 ng/ml IFN-b, 100 ng/ml IFN-c, 100 ng/ml LPS, or 25 lg/ml poly(I:C) for 24 h. Identical concentrations were used
in later experiments unless otherwise stated. qPCR analysis for the expression of MLKL.

B U937 cells were treated with IFN-a, IFN-b, IFN-c, LPS, or poly(I:C) for 24 h. and western blotting analysis of MLKL and b-actin (left). Quantification of MLKL normal-
ized to b-actin levels (right).

C U937 cells were treated with PBS, IFN-a, IFN-b, IFN-c, LPS, or poly(I:C) for 24 h. qPCR analysis for the expression of miR-324-5p.
D, E U937 cells were transfected with NC, siMLKL, or miR-324-5p. After 48 h, cells were treated with IFN-b (D) or IFN-c (E) for 24 h. Western blotting analysis of MLKL

and b-actin.
F, G U937 cells were incubated with 300 nM ruxolitinib for 2 h prior to IFN-b (F) or IFN-c (G) treatment. After 24 h, qPCR analysis for the expression of miR-324-5p. After

48 h, western blotting analysis of p-STAT1, STAT1, MLKL, and b-actin.
H, I U937 cells were transfected with NC, or STAT1 siRNA oliogs (siSTAT1). After 48 h, cells were treated with IFN-b (Η) or IFN-c (Ι). qPCR analysis for the expression of

miR-324-5p. Western blotting analysis of STAT1, MLKL and b-actin.
J HT-29 cells were treated with IFN-c for 24 h. The cell lysate was collected for ChIP analysis. STAT1 binding to miR-324-5p promoter DNA region was determined by

Chip-qPCR. The amount of precipitated DNA was calculated as percent input.

Data information: Data are represented as the means � SD of three biological replicates. Statistical analyses were performed using unpaired Student’s t-test. All experi-
ments were performed at least three times, and representative data are shown.
Source data are available online for this figure.
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Figure 6. IFN-mediated repression of miR-324-5p enhances necroptosis.

A U937 cells were transfected with NC, siMLKL-30UTR, or miR-324-5p. After 48 h, cells were exposed to 100 ng/ml IFN-c plus 20 lM z-VAD for 24 h. Identical concen-
trations were used in later experiments unless otherwise stated. Cell viability was determined by measuring ATP levels.

B qPCR analysis for the expression of MLKL (left) and miR-324-5p (middle) in PBMC-derived macrophages that were treated with PBS or IFN-c for 24 h. The corre-
sponding western blotting analysis of MLKL and b-actin (right).

C, D PBMC-derived macrophages (C) and HT-29 cells (D) were transfected with NC, siMLKL, or miR-324-5p. After 48 h, cells were exposed to S + Z or IFN-c + S + Z for
24 h. Cell viability was determined by measuring ATP levels (left). The corresponding western blotting analysis of MLKL and b-actin (right).

E qPCR analysis for the expression of miR-324-5p in miR-324-5p knockout HT-29 cells (miR-324-5p�/� cells). Altered miR-324-5p DNA sequences were shown in miR-
324-5p�/� clone 19# and 36#.

F MiR-324-5p+/+ HT-29, miR-324-5p�/� �19#, and miR-324-5p�/� �36# cells were treated with T + S + Z for the indicated times. Cell viability was determined by
measuring ATP levels.

G, H MiR-324-5p+/+ HT-29, and miR-324-5p�/� HT-29 cells were treated with IFN-b (G) or IFN-c (H) plus 20 lM z-VAD for 24 h. Cell viability was determined by measur-
ing ATP levels.

Data information: Data are represented as the means � SD of three biological replicates. Statistical analyses were performed using unpaired Student’s t-test. All experi-
ments were performed at least three times, and representative data are shown.
Source data are available online for this figure.
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Figure 7. MiR-324-5p inhibition sensitizes IAV-infected cells to necroptosis and reduces viral replication.

A qPCR analysis for the expression of IFN-b (left) and IFN-c (right) in PBMC-derived macrophages that were infected with IAV (H1N1 strain PR8) at an multiplicity of
infection (MOI) of 0.2 for 24 h.

B qPCR analysis for the expression of MLKL (left) and miR-324-5p (right) in PBMC-derived macrophages that were treated with the 300 nM ruxolitinib for 2 h prior to
the infection with IAV (MOI = 0.2) for 24 h.

C PBMC-derived macrophages were transfected with NC, siMLKL, or miR-324-5p. After 48 h, cells were treated with S + Z in the presence or absence of IAV (MOI = 0.2)
for 24 h. Cell viability was determined by measuring ATP levels.

D qPCR analysis for the expression of M gene of IAV in PBMC-derived macrophages that were transfected with NC, siMLKL or miR-324-5p for 48 h, followed by the
infection with IAV (MOI = 0.2) for 24 h.

E HT-29 cells were infected with IAV (MOI = 0.2) for 24 h. qPCR analysis for the expression of IFN-b.
F HT-29 cells were transfected with NC, siMLKL, or miR-324-5p. After 48 h, cells were treated with DMSO, S + Z in the presence or absence of IAV (MOI = 0.2) for an

additional 24 h. Cell survival was determined by measuring ATP levels.
G MiR-324-5p+/+ and miR-324-5p�/� HT-29 cells were infected with IAV (MOI = 0.2) for 24 h. Cell viability was determined by measuring ATP levels.
H MiR-324-5p+/+ and miR-324-5p�/� HT-29 cells were infected with IAV (MOI = 0.2) with or without z-VAD for 48 h (n = 4, biological replicates). IAV TCID50 analysis for

the virus titer in the cell culture supernatant.

Data information: In (A–G), data are represented as the means � SD of three biological replicates. Statistical analyses were performed using unpaired Student’s t-test. All
experiments were performed at least three times, and representative data are shown.
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necroptosis has remained unknown. We performed a cell-based

screen for miRNAs regulating necroptosis and identified miR-324-5p

as a suppressor of necroptosis in multiple human cell lines. Overex-

pression of miR-324-5p significantly blocked the phosphorylation of

MLKL, a key step in necroptosis. Moreover, miR-324-5p directly

targets the 30UTR of human MLKL leading to downregulation of

MLKL expression. Furthermore, we found that miR-324-5p inhibi-

tion of necroptosis depends on the 30UTR of human MLKL, as

evidenced by the fact that miR-324-5p does not affect necroptosis in

Mlkl�/� HeLa cells expressing the CDS region of MLKL. Therefore,

MLKL is the sole target of miR-324-5p in the inhibition of necropto-

sis. Notably, deletion of cellular miR-324-5p increased the sensitivity

of cells to necroptotic stimuli. Thus, our findings demonstrate that

miR-324-5p functions as a negative regulator of necroptosis by

manipulating MLKL expression.

Our findings establish a unique regulatory mechanism for miR-

324-5p modulation of MLKL. In general, the seed region (nu-

cleotides 2–8 of the miRNA) is required for target mRNA recognition

and binding (Bartel, 2018). Seed region-dependent miRNA binding

is known to promote the degradation and/or suppress the transla-

tion of canonical mRNA targets. As such, seed-pairing potential is

usually used for the prediction of mRNA targets. It is worth noting

that noncanonical miRNA-target recognition sites beyond the seed

region have been identified (Agarwal et al, 2015). However, some

of the identified noncanonical recognition sites do not repress the

expression of bound targets (Agarwal et al, 2015). Interestingly, we

found that the 79–81 bp (CCU) region of MLKL is essential for its

binding to miR-324-5p. The 79–81 bp (CCU) region of MLKL pairs

with nucleotides 11–13 (AGG) of miRNA-324-5p, which are located

outside the seed region. The mutant miRNA-324-5p in which AGG

was replaced by UCC failed to target the human MLKL-30UTR. Thus,
our study reveals a seed-region-independent binding mode for miR-

324-5p recognition of the target MLKL. Notably, we observed that

the 79–81 bp (CCU) region of MLKL is conserved in higher

mammals, including monkeys and horses. However, it is not

conserved in rodent species, including mice and rats. MiR-324-5p

negatively regulates MLKL expression in human and monkey cells,

but does not affect MLKL expression and necroptosis in MEFs.

Previous studies have shown that MLKL can be induced by IFNs in

mouse cells (Thapa et al, 2013; Stutz et al, 2018; Knuth et al, 2019;

Chen et al, 2019a). It has been reported that IFN-c could directly

induce the binding of STAT1 to the mouse Mlkl promoter region in

IAV

IFNs

pre-miR-324-5p

miR-324-5p

MLKL
RIPK3

Necroptosis

STAT1

Viral
replication

Nucleus

IAV
IAV

IAV

CUCUCAUAUCCUUCGGCAUUGG

GUGGUUACGGGAUCCCCUACGC

AAAAA
MLKL mRNA

Figure 8. Schematic of the IFN-miR-324-5p-MLKL axis protecting the host against IAV infection.

Upon IAV infection, IFNs are induced in host cells and activate the JAK/STAT1 pathway, resulting in a decrease in miR-324-5p expression. MiR-324-5p negatively regulates
human MLKL by directly targeting the 79–81 bp (CCU) region in the 30UTR. The reduction of miR-324-5p relieves its suppression of MLKL mRNA and thus promotes
necroptosis of IAV-infected cells, leading to restriction of viral replication.
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mouse cells (Gunther et al, 2016), suggesting that IFNs directly

regulate Mlkl gene transcription via activation of STAT1 in mouse

species. Of note, the mutant form of mouse MLKL-30UTR, which

was generated by introduction of the miR-324-5p binding region of

human MLKL-30UTR, could be negatively regulated by miR-324-5p.

Therefore, our work demonstrates that the function of miR-324-5p

in necroptosis has evolved in higher mammals, suggesting a

species-specific mechanism for the modulation of necroptosis.

Optimal activation of necroptosis is considered to be beneficial for

killing infected host cells, leading to the restriction of pathogen prolif-

eration. IFNs play pivotal roles in host defense in response to viral

infection (Chen et al, 2019a). As miR-324-5p counteracts the necrop-

tosis signaling pathway, we speculated that the IFN signaling path-

way may regulate miR-324-5p. Indeed, we found that miR-324-5p

expression was downregulated by stimulation of IFN-a, IFN-b,
or IFN-c. The JAK/STAT signaling pathway is known to be activated

by IFNs to regulate the expression of target genes (Darnell

et al, 1994). Inhibition of JAK1 activity or suppression of STAT1

abolished IFN-induced repression of miR-324-5p and IFN-induced

MLKL expression. Moreover, a ChIP assay revealed the IFN-mediated

dissociation between STAT1 and the promoter of miR-324-5p. Thus,

our findings demonstrate that miR-324-5p is an IFN-repressed gene

that is controlled by the JAK/STAT1 signaling pathway. Our study

indicates that the IFN-mediated repression of miR-324-5p promotes

the upregulation of MLKL and optimal activation of necroptosis.

Necroptosis has been demonstrated to be a mechanism for host

defense against various viruses, including murine cytomegalovirus

(Upton et al, 2010), human herpes simplex viruses (Wang

et al, 2014; Huang et al, 2015; Guo et al, 2015b), and IAV (Kuri-

akose et al, 2016; Nogusa et al, 2016; Thapa et al, 2016). Our find-

ings demonstrate the functional role of IFN-regulated miR-324-5p in

necroptosis-associated host defense. We found that IAV (H1N1

strain PR8) infection led to the induction of IFN in both human

PBMC-derived macrophages and HT-29 cells. Of note, upregulation

of miR-324-5p attenuated necroptosis of infected cells and enhanced

viral replication. Moreover, the deletion of miR-324-5p sensitized

cells to IAV-induced necroptosis and reduced viral replication.

Therefore, our findings demonstrate that IFN-mediated repression of

miR-324-5p orchestrates the activation of necroptosis in host

defense against viral infection. It has been reported that miR-324-5p

suppresses IAV (H5N1) replication by targeting the viral PB1 and

host CUED2 genes (Kumar et al, 2018). However, miR-324-5p does

not bind to the PB1 gene of H1N1 strain PR8 (Kumar et al, 2018),

suggesting that the mechanism of action of miR-324-5p in viral

infection is context-dependent. Further studies will be required to

understand the precise role of the IFN-miR-324-5p-MLKL axis in the

pathogenesis of infectious diseases.

Materials and Methods

Cell culture

Human colon cancer HT-29 cells (ATCC Number: HTB-38) were

cultured in McCoy’s 5A culture medium (Gibco). 174T (ATCC

Number: CL-188), HEK293T (ATCC Number: CRL-3216), T98G

(ATCC Number: CRL-1690), Vero (ATCC Number: CCL-81), and

L929 (ATCC Number: CCL-1) cells were obtained from ATCC and

cultured in Dulbecco’s Modified Eagle Medium (DMEM, Hyclone).

MKN-45 cells (1101HUM-PUMC000229) were obtained from the Cell

Resource Center of Institute of Basic Medical Sciences, Chinese

Academy of Medical Sciences &Peking Union Medical College, China.

Human U937 myelomonocytic cells (ATCC Number: CRL-1593.2)

were grown in RPMI-1640 medium (Hyclone). MEFs were generated

as previously reported (He et al, 2009). PBMCs were isolated from

whole blood from five healthy adult donors. We isolated the PBMCs

using Ficoll according to the manufacturer’s instructions. Briefly, we

diluted the blood with PBS containing 2% FBS and layered the

diluted cells on Ficoll reagent in a tube. Then, the tube was centri-

fuged at 400 g for 30 min. The mononuclear cells at the interface

would be harvested and cultured in RPMI-1640 medium containing

10% FBS and 50 ng/ml MGSF. After 7 days, the macrophages were

stimulated as indicated for further analysis. The use of PBMCs

conforms to the guidelines of Zhejiang University (No. IRB-2021-

028). HeLa-MLKL knockout cells were a gift from Dr. Xiaodong Wang

(National Institute of Biological Sciences, Beijing, China). The HeLa-

MLKL (1–190)-Dmir cell line, which was kindly provided by Dr.

Zhigao Wang (University of Texas Southwestern Medical Center at

Dallas), was cultured in complete medium containing 10 lg/ml Blas-

ticidin plus 1 lg/ml puromycin. All culture media were supple-

mented with 10% fetal bovine serum (Gibco), 1% penicillin/

streptomycin (Invitrogen), and 2 mM L-glutamine (Gibco). All cells

were cultured in a 5% CO2 incubation chamber at 37°C.

Reagents, antibodies, and RNA oligos

The TNF-a recombinant protein and Smac mimetic compound were

synthesized as previously described (Wang et al, 2008). z-VAD was

purchased from Bachem. IFN-a and IFN-c were bought from Novo-

protein. IFN-b was purchased from Peprotech. LPS and Poly(I:C)

were purchased from Sigma and InvivoGen, respectively. Ruxoli-

tinib was purchased from Selleck. The dimerization agent AP20187

was purchased from Sigma. The following antibodies were used for

western blot analysis: RIPK1 (BD Biosciences, 610458, 1:8,000),

RIPK3 (Prosci, 2283, 1:8,000), human MLKL (Huabio, ET1601,

1:1,000), mouse MLKL (Abgent, 142726, 1:2,000), p-STAT1 (CST,

7649, 1:1,000), STAT1 (CST, 9175, 1:1,000), phospho-human MLKL

(Abcam, 187091, 1:1,000), Flag (Sigma, A8592, 1:10,000), ZBP1

(SantaCruz, 67258, 1:2,000), caspase 3 (CST, 9662, 1:1,000),

cleaved caspase 3 (CST, 9664, 1:1,000), and b-actin (Sigma, A2066,

1:20,000). The following RNA sequences were used for in vitro

transfection assay: MiRNA-324-5p (50-cgcauccccuagggcauuggugu-
30), miRNA-324-3p (50-acugccccaggugcugcugg-30), negative control

(50-uucuccgaacgugucacgutt-30), miRNA-324-5p inhibitor (50-acacca
augcccuaggggaugcg-30), miRNA-324-5p-mutant (50-cgcauccccuuccgc
auuggugu-30), siRIPK3 (50-cccgacgaugucuucugucaa-30), siMLKL (50-g
agauccaguucaacgaua-30), siRIPK1(50-ccacuagucugacugauga-30), siRIPK1-
30-UTR (50-gggcugauaacaguguugu-30), siRIPK3-30-UTR (50-caggaguc
aauaaacauga-30), siMLKL-30-UTR (50-gcuccucccuuccauaaau-30), siSTAT1
(50-cagaaagagcuugacaguaaa-30), and control siRNA (50-aacguacgcgg
aauacuucga-30).

miRNA screening procedure

MicroRNA mimics are analogs of endogenous miRNAs that are

synthesized by chemical synthesis and can enhance the function of
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endogenous miRNA. The miRNA mimics were synthesized by the

Shanghai GenePharma Company. The control nontarget miRNA

(negative control) and RIPK3 siRNA were used as the negative

control and positive control, respectively. Human miRNAs (50 nM)

were transferred into 96-well plates containing Lipofectamine 2000

(0.2 ll per well). After 20 min of incubation, human colon cancer

HT-29 cells were added to the plates at a density of 3,000 cells per

well. At 48 h post-transfection, the cells were treated with 40 ng/ml

TNF-a, 100 nM Smac mimetic, and 20 lM z-VAD for an additional

24 h and then cell viability was determined using the Cell Titer-Glo

Luminescent Cell Viability Assay Kit (Promega). Luminescence was

calculated using SpectraMax i3x (Molecular Devices).

Generation of stable cell lines

All stable cell lines were generated via lentiviral infection. The plas-

mids (pCDH-CMV-MCS-EF1-copGFP) expressing MLKL, DR, VSVG,
and Rev were co-transfected into HEK293T using calcium phos-

phate. The medium was changed after 8 h, and cells were cultured

for another 72 h. Conditioned medium was then collected daily for

three more days. HeLa cells were infected with supernatant contain-

ing lentiviral particles expressing mCherry and RIPK3 (Genechem)

to generate HeLa cells stably expressing RIPK3 (HeLa-endogenous

MLKL cells). HeLa-MLKL knockout cells were infected with 1 ml of

supernatant containing lentiviral particles expressing RIPK3 and

MLKL (a DNA plasmid containing a HA and 3 × Flag tags at the C-

terminal of MLKL) to generate HeLa cells stably expressing RIPK3

and MLKL (HeLa-exogenous MLKL cells). Three days postinfection,

the infected cells were sorted by FACS according to GFP and

mCherry fluorescence and then used as stable lines.

Electroporation

U937 cells (1 × 106) were centrifuged at 800 rpm for 3 min, resus-

pended in 100 ll of the desired electroporation buffer, and mixed

with 4 ll of the oligo. The resuspended cells were transferred to

cuvettes and immediately electroporated using the Nucleofector�.

After electroporation, cells were incubated in a 6-well plate with

RPMI-1640 medium supplemented containing 10% FBS. The day

after electroporation, cells were centrifuged, and the medium was

replaced with RPMI-1640 medium containing 10% FBS.

RNA isolation and quantitative PCR

Total RNA was extracted from cell lines with TRNzol reagent

(TIANGEN). For gene quantification, cDNA was synthesized from

1 lg of RNA using SuperScript III Reverse Transcriptase (Vazyme

Biotech). For the detection of mature miR-324-5p, RNA was reverse-

transcribed using a specific reverse-transcription primer (Applied

Biosystems, CA). Quantitative PCR (qPCR) was performed using the

Fast SYBR Green PCR Kit (Applied Biosystems, Carlsbad, CA, USA)

and run on a real-time PCR System (ABI 7500). qPCR was

performed in triplicate for human RIPK1, human RIPK3, human

MLKL, GAPDH, miRNA-324-5p, and U6. Gene and miRNA levels

were normalized to the endogenous control, and the relative expres-

sion was calculated using the 2�DDCT method. Differential miRNA

expression was determined using a two-sided Student’s t-test on a

single miRNA basis. The following primers were used: for STAT1,

50-agggtcctctcatcgttac-30(forward) and 50-gaaagctgagcccatcgtg-30(re-
verse); for GAPDH, 50-gcaccaccaactgcttag-30(forward) and 50-
ggccatgccagtgagctt-30(reverse); for MLKL, 50-ggccaggtcatccacaaac-30

(forward) and 50-tatctccccattagcctcctc-30(reverse); for RIPK1, 50-
ctcaccagccaacctcaag-30(forward) and 50-ggcatggtgggtgtatttc-30(re-
verse); for RIPK3, 50-cgggcgcaacataggaag-30(forward) and 50-
tgcagcagccccgacaag-30(reverse); for IFN-b, 50- tgtggcaattgaatgggagg-
30(forward) and 50- cttccaggactgtcttcaga-30(reverse); for IFN-c, 50-
gaagaattggaaagaggag-30(forward) and 50-gtattgctttgcgttggaca-30(re-
verse); for U6, 50-gcttcggcagcacatatactaa-30(forward) and 50-
aacgcttcacgaatttgcgt-30(reverse); for miR-324-5p reverse transcrip-

tion primer, 50-ctcaactggtgtcgtggagtcggcaattcagttgagacaccaat-30; for

miR-324-5p qPCR primer, 50-acactccagctgggcgcatcccctagggc-30(for-
ward) and 50-tggtgtcgtggagtcg-30(reverse); for the M gene of

influenza A, 50-atgagccttctaaccgaggtcgaaacg-30(forward) and 50-
tggacaaaacgtctacgctgcag-30(reverse).

Western blot analysis

For western blot analysis, cells were harvested and lysed in protein

lysis buffer (20 mM Tris–HCl, 10% glycerol, 1% TritonX-100,

150 mM NaCl, 1 mM Na3VO4, 25 mM b-glycerol-phosphate,
0.1 mM PMSF) supplemented with a protease inhibitor cocktail and

a phosphatase inhibitor set (Roche). Cell lysates were fractionated

on SDS-PAGE gels and electrophoretically transferred to NC

membranes. The NC membranes were blocked in 5% nonfat milk

(PBS containing 0.1% Tween-20) for 1 h at room temperature.

Membranes were incubated with indicated primary antibody for 2 h

at room temperature. After washing to remove any unbound

primary antibody, membranes were incubated with goat anti-rabbit

(LI-COR, 926–32211,1:10,000) or goat anti-mouse (LI-COR, 926–

32210,1:10,000). b-Actin was used as loading control. Blots were

usually first stained for b-actin, then the membrane was stripped

and stained for the protein of interest. As the antibodies of STAT1

and b-actin show no nonspecific bands at the location of target

bands, membranes were incubated with anti-STAT1 and anti-b-actin
antibodies together, and both proteins were detected in the same

blot. Proteins were visualized using Odyssey Imaging system (LI-

COR). Data were analyzed with ImageJ software. The band intensi-

ties of the analyzed proteins were normalized to that of b-actin.
Three independent experiments were performed, and representative

results are shown.

Construction of the MLKL-30UTR luciferase reporter and
activity analysis

According to the MLKL sequences and the predicted results from the

Target Scan software, the luciferase reporter gene vector containing

the human miR-324-5p binding site in the MLKL 30UTR sequence

was designed. The 30UTR sequences of human and mouse MLKL

were amplified by PCR and subcloned into the pmirGlo plasmid to

construct the human pmirGlo-MLKL-30UTR and murine pmirGlo-

MLKL-30UTR plasmid. The mutant form of murine MLKL-30UTR by

introducing the miR-324-5p binding region “CTCTCATATCCTTCGG-

CATTG” of human MLKL-30UTR into the start site of mouse MLKL-

30UTR. The 30UTR sequences of RIPK1 and RIPK3 were subcloned

into the pmirGlo plasmid to construct pmirGlo-RIPK1-30UTR and

pmirGlo-RIPK3-30UTR plasmids, respectively. These constructs were
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checked by DNA sequencing. The following primers were used: for

RIPK1-30UTR, 50-cgagctcccctggatgggctacggcagctgaagt-30(forward)

and 50-ccgctcgagttgtggtataaatttttattttaaaaagtg-30(reverse); for RIPK3-

30UTR, 50-cgagctcagcaccttccaagcttgcctccaag-30(forward) and 50-ccgct
cgagtgactagcattccatcatgttta-30(reverse); for MLKL-30UTR, 50-cgagctct
gtatcaaaatctaaaccaaggagtc-30(forward) and 50-ccgctcgagttagtgttaaga
caacagtaattta-30(reverse); for MLKL-30UTR (mutant#2), 50-cgag
ctcgcattgggttatctatgggtg-30(forward); and for murine MLKL-30UTR,
50-cgagctcgaggacaaagtggacatttg-30(forward) and 50-ccgctcgagtttggtg
gtctatgcctttaa-30(reverse).

Logarithmically growing HEK293T cells were seeded in 96-well

plates, and the cell count for each well was 1 × 104. After 24 h,

pmirGlo-MLKL-30UTR-wild type and pmirGlo-MLKL-30UTR-mutant

were co-transfected with miR-324-5p or nontarget miRNA using

Lipofectamine 2000 (Invitrogen, Carlsbad, CA). After 48–72 h, the

cells were lysed, and the fluorescence intensity was determined

using a dual-luciferase reporter assay system (Promega). Luciferase

activity was reported as firefly luciferase activity/renilla luciferase

activity.

Site-directed mutagenesis

Site-directed mutagenesis using Pfu Turbo DNA Polymerase was

used to modify the miR-324-5p binding sequence and to construct

the mouse pmirGlo-MLKL-30UTR mutant plasmid. The miR-324-5p

binding region of human MLKL-30UTR (ctctcatatccttcggcattgg) was

inserted before the start site of mouse MLKL-30UTR. DpnI was used

to digest the nonmutated DNA template before transforming the

mutated plasmids. The following primers were used for MLKL-

30UTR (mutant#1), 50-gacatctctctctctcatataaatcggcattgggttatctatgg-30

(forward) and 50-ccatagataacccaatgccgatttatatgagagagagagatgtc-30(re-
verse) and for murine MLKL-30UTR mutant, 50- gttgtttaaacgagctcgc-
tagcctctcatatccttcggcattgggaggacaaagtggacatttgtc �30(forward) and

50- gacaaatgtccactttgtcctcccaatgccgaaggatatgagaggctagcgagctcgtttaaa-
caac �30(reverse).

ChIP assay

ChIP analysis of STAT1 binding to the miR-324-5p promoter was

performed using an assay kit (R&D Systems, Minneapolis, MN,

USA), following the manufacturer’s instructions. In brief, after fix-

ation with 1% formaldehyde, cell lysate was collected. The

samples were then sonicated to shear chromatin and centrifuged.

The supernatant was then collected for immunoprecipitation with

an anti-STAT antibody. After three times washes, the chromatin

immunoprecipitate was subjected to PCR analysis using specific

primers.

Virus and TCID50 assay

Influenza A virus (H1N1 strain PR8), which was a kind gift from Dr.

Genhong Cheng (University of California, Los Angeles), was propa-

gated in the allantoic cavities of 11-day-old specific pathogen-free

embryonated chicken eggs at 35°C. Freshly collected allantoic fluids

were clarified by low-speed centrifugation at 72 h postinoculation

and then stored in small aliquots at �80°C. The virus titers were

determined using a plaque-forming assay in monolayers of Madin-

Darby canine kidney (MDCK) cells.

For the TCID50 assay, the IAV virus sample from infected HT-29

cells was diluted in DMEM containing 1 lg/ml N-tosyl-L-

phenylalanine chloromethyl ketone-trypsin (Sigma), 0.3% bovine

albumin (Sigma), 1% penicillin/streptomycin, and 25 mM HEPES

buffer (Gibco) across a 96-well tissue culture plate with MDCK cells.

After 48–72 h, TCID50 titer per 100 ll was determined using the

Reed-Muench method (Lei et al, 2021).

Generation of the miR-324-5p knockout cell line
using CRISPR/Cas9

The chromosome region of mir-324 (~12–30 bp) was deleted in HT-

29 cells using the CRISPR/Cas9 system. In HT-29 cells, PX458 plas-

mid expressing sgRNA was transfected into cells using Lipofec-

tamine 2000. The sequences of sgRNAs were 50-
caccctagggcattggtgtaaagc-30 and 50-aaacgctttacaccaatgccctag-30. One

day after transfection, cells were sorted by flow cytometry and

reseeded in plates to allow individual clones to grow up. Clones

were picked and verified by PCR genotyping and sequencing.

Statistical analysis

The GraphPad Prism software was used for all statistical analyses.

An unpaired two-tailed Student’s t-test was performed for two-

group comparisons. Statistical significance was set at *P < 0.05,

**P < 0.01, or ***P < 0.001. Statistical significance was accepted

for P-values <0.05, and results are represented as means � standard

deviations (SD).

Data availability

No primary datasets have been generated and deposited.

Expanded View for this article is available online.
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