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Abstract: Nine bromotyrosine-derived compounds were isolated from the Caribbean marine 

sponge Verongula rigida. Two of them, aeroplysinin-1 (1) and dihydroxyaerothionin (2), are 

known compounds for this species, and the other seven are unknown compounds for  

this species, namely: 3,5-dibromo-N,N,N-trimethyltyraminium (3), 3,5-dibromo-N,N,N, 

O-tetramethyltyraminium (4), purealidin R (5), 19-deoxyfistularin 3 (6), purealidin B (7),  

11-hydroxyaerothionin (8) and fistularin-3 (9). Structural determination of the isolated 

compounds was performed using one- and two-dimensional NMR, MS and other 

spectroscopy data. All isolated compounds were screened for their in vitro activity  

against three parasitic protozoa: Leishmania panamensis, Plasmodium falciparum and 

Trypanosoma cruzi. Compounds 7 and 8 showed selective antiparasitic activity at 10 and 

5 µM against Leishmania and Plasmodium parasites, respectively. Cytotoxicity of these 

compounds on a human promonocytic cell line was also assessed. 

Keywords: bromotyrosines; Verongula rigida; antiplasmodial activity; leishmanicidal 

activity; trypanocidal activity 
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1. Introduction  

Tropical diseases caused by single-celled parasites, like malaria, leishmaniasis and Chagas disease, 

are of particular importance in tropical regions of the world. They represent the three most important 

diseases caused by parasitic protozoa. It is estimated that these diseases are responsible for more than 

900,000 deaths every year [1–3]. In the absence of a long-term protective vaccine, the control of these 

parasitic infections is based on a few chemotherapeutic agents. Most of these agents are now facing 

parasitic resistance, severe adverse effects and variable efficiency according to the phase of the disease. 

For these reasons, the search for new, safe, and effective antiprotozoal agents is urgent [4]. 

In this context, we evaluated the potential of Colombian sponges as sources of antiparasitic 

compounds. Urabá Gulf is located in the Southwestern Caribbean Sea, on the border with Panama. The 

sponge biodiversity of this Colombian region has been poorly studied so far. We have already 

investigated the antimicrobial, antiparasitic and antitumoral activity of the extracts of some sponges of 

this area, and Verongula rigida (Esper 1794, Verongida, Aplysinidae) appeared of high interest for its 

chemical composition [5–7]. This species, like other Verongida marine sponges, are of much biological 

and chemical interest. This group of sponges is known to produce brominated metabolites that are 

biogenetically derived from tyrosine [8]. For this reason, bromotyrosine metabolites have been 

considered as potential chemotaxonomic markers of Verongida sponges [9,10]. A wide range of 

biological activities has been reported for some of these secondary metabolites, including 

antimicrobial, anti-enzymatic, cytotoxic and antiparasitic activities [11–13]. Previous studies on the 

sponge V. rigida led to the discovery of antimicrobial and enzymatic activity of its extracts [14,15] and 

the isolation and structure identification of bromotyrosine-derived compounds [8,16,17]. 

In the present work, nine isolated compounds were evaluated against the most important tropical 

parasitic diseases: malaria, leishmania and Chagas. The selectivity indices were measured by dividing 

the antiparasitic activity of the compounds by their cytotoxicity against the promonocytic macrophage 

cell line U937. 

2. Results and Discussion  

Chemical purification of a methanol-dichloromethane (1:1, v/v) extract of V. rigida afforded  

nine compounds (Figure 1), two of them known compounds for the species: aeroplysinin-1 (1), which 

was first isolated from Ianthella ardis (Laubenfels, 1950), is known today as Aiolochroia crassa 

(Hyatt, 1875) in 1970 [18]. This compound shows antimicrobial and cytotoxic activities and also inhibits 

the growth of endothelial cells in culture in the micromolar range (antiangiogenic activity) [19,20]. 

Dihydroxyaerothionin (2) was first isolated from V. rigida in 1989 [17], but no biological activity has 

been reported so far. 

Seven unknown compounds for this species, but known in other species, were isolated.  

3,5-dibromo-N,N,N-trimethyltyraminium (3) was reported from Aplysina fistularis (Pallas, 1766) as a 

dual adrenergic agent [21]. 3,5-dibromo-N,N,N,O-tetramethyltyraminium (4) was isolated from 

Verongula sp. in 1994 [22], without any reference to biological activity. Purealidin R (5) was first 

reported from Psammaplysilla purpurea (Carter, 1880); known as Pseudoceratina purpurea  

(Carter, 1880) [23], without any bibliography report of biological activity. 19-deoxyfistularin 3 (6) was 
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isolated from the sponge Verongia sp. [24] without any report of biological activity. Purealidin B (7) 

was isolated from Psammaplysilla purpurea and showed no cytotoxicity, but it exhibited antimicrobial 

activity against Candida albicans, Cryptococcus neoformans, Paecilomyces variotii, Staphylococcus 

aureus, Sarcina lutea and Bacillus subtilis [25]. This molecule also has been isolated from the sponges 

Pseudoceratina verrucosa and Pseudoceratina crassa [26]. 11-hydroxyaerothionin (8) was isolated 

from the sponge Pseudoceratina durissima (Carter, 1885) and it showed antimicrobial activity against 

Staphylococcus aureus, Bacillus subtilis, Candida albicans [27] and anti-tuberculosis activity against 

Mycobacterium tuberculosis with wake cytotoxicity reported [28]. Other evaluated activities were 

cytotoxicity on human tumor cells [29] and as an adenosine A1 receptor inhibitor [30]. Fistularin-3 (9) 

was isolated in 1979 from the sponge Aplysina fulva (Pallas, 1766) [31]. It has been evaluated against 

Mycobacterium tuberculosis H37Rv, cytotoxicity activity against J744 macrophages [32], human 

breast carcinoma cell line MCF-7 activity [33] and feline leukemia virus activity [34]. The structures 

were determined by NMR (1D and 2D), MS data analysis and literature comparisons.  

Figure 1. Bromotyrosine-derivatives isolated from the marine sponge Verongula rigida. 

 

All compounds were assayed using the same biological activity protocol. Antimalarial, 

leishmanicidal, anti-chagas disease and cytotoxic activities were analyzed in triplicate (Table 1). 

Compounds with high cytotoxicity and weak activity over axenic amastigotes of Leishmania 

panamensis were not analyzed over intracellular amastigotes of Leishmania, instead they were 

considered as compounds without potential leishmanicidal activity due to their low selectivity. 

Compound 8 showed 12.6% inhibition of intracellular amastigotes of Leishmania at 10 µM and it did 
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not exhibit cytotoxicity at 20 µM. A similar case of selectivity occurs with compound 7. It showed 

23.2% inhibition in vitro over P. falciparum at 5 µM, and it did not exhibit cytotoxic activity at 20 µM. 

Currently, these two molecules are underdoing further studies on this biological selectivity. Compound 1 

showed 29.1% of parasite growth inhibition in vitro over T. cruzi at 10 µM, but it exhibits a high 

cytotoxicity (94.8%) at 20 µM. These high bioactivities can be explained by the presence of a very 

reactive cyanide group in its structure, which has been reported to be an inhibitor of the enzyme 

cytochrome C oxidase, preventing transport of electrons to produce ATP, causing cell apoptosis [35]. 

Compounds 2 and 4 did not exhibit antiprotozoal activity in vitro and they have moderate cytotoxicity 

at 20 µM. Compounds 5 and 9 are weak antiparasitic compounds (inhibiting less than 11% at 10 µM) 

and they produce the 45.3% and 58.2% growth inhibition over U-937 cells at 20 µM, showing weak 

selectivity. Compound 1 is considered to be the most cytotoxic agent evaluated. Compounds 3 and 6 

showed no cytotoxic or antiparasitic activity. In general, Plasmodium parasite was more sensitive to 

bromotyrosines compounds than the Leishmania and Trypanosoma parasites evaluated. 

Table 1. In vitro antiparasitic and cytotoxic activities of sponge-isolated compounds 1–9. 

Compound 

% of inhibition of the growth a 

U-937 cells 
(20 µM) 

L. panamensis 
P. falciparum 
Total forms 

(5 µM) 

T. cruzi 
Intracellular 
amastigotes 

(10 µM) 

Axenic 
amastigotes

(20 µM) 

Intracellular
amastigotes 

(10 µM) 

1 94.8 ± 3.6 0 NE 35.3 ± 3.5 29.1 ± 0.4 
2 8.2 ± 1.7 0.3 ± 0.06 2.1 ± 0.4 7.9 ± 1.2 0 
3 0 0 NE 0 0 
4 5.3 ± 1.1 0 NE 0 0 
5 45.3 ± 13.5 0 NE 7.1 ± 1.2 1.6 ± 0.3 
6 0 0 NE 0 0.2 ± 0.03 
7 0 1.6 ± 0.4 0 23.2 ± 1.0 0 
8 0 0.0 12.6 ± 0.9 8.0 ± 0.5 0 
9 58.2 ± 12.0 7.7 ± 1.6 NE 10.8 ± 1.5 6.3 ± 1.3 

Amphotericin B b 53.2 60.4 ± 5.7 44.9 ± 7.1  NA NA 
Chloroquine c NA NA NA 66.8 ± 1.3 NA 
Benznidazole d NA NA NA NA 44.5 ± 2.7 
a Percentage of inhibition corresponds to the inhibition of the U-937 cells or parasites growth determined by 

colorimetric MTT method (for U-937 cells and axenic amastigotes of L. panamensis), flow cytometry  

(for intracellular amastigotes of L. panamensis), fluorometry (for P. falciparum total forms) and colorimetric 

β-galactosidase method (for T. cruzi intracellular amastigotes). Data are expressed as the average from at 

least two independent experiments, each done in triplicate; b Lethal Concentration 50 (LC50) for U-937 cells 

(previously determined in our lab) = 33.2 µM; Effective Concentration 50 (EC50) for axenic and intracellular 

amastigotes of L. panamensis (previously determined in our lab) = 0.05 µM and 0.04 µM, respectively;  
c EC50 for total forms of P. falciparum (previously determined in our lab) = 42.6 µM; d EC50 for intracellular 

amastigotes of T. cruzi (previously determined in our lab) = 9.3 µM. NE: Not evaluated due to the high 

toxicity level; NA: Not applicable because these drugs are not used for these parasites. 
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3. Experimental Section 

3.1. General Experimental Procedures 

Optical rotations were measured on a BTI-162 polarimeter, while UV measurements were 

performed on a Varian Cary 300 Scan UV–visible spectrophotometer. Infrared spectra were acquired 

on a PerkinElmer Paragon 1000 FT-IR spectrophotometer. NMR data were collected on a Bruker 

Avance 500 MHz spectrometer using deuterated NMR solvents supplied by Sigma-Aldrich. Spectra 

were referenced to residual 1H and 13C in the deuterated solvents. Low resolution electrospray 

ionisation (ESI) mass spectra were obtained with a Bruker Esquire 3000 Plus spectrometer in the 

positive or negative mode by direct injection method. The solvents used (MeOH, MeCN and H2O) 

were HPLC grade and obtained from Merck. Trifluoroacetic acid (TFA) used was HPLC grade and 

supplied by Sigma-Aldrich. HPLC purifications were carried out on a Waters 600 system equipped 

with a Waters 717 plus autosampler, a Waters 996 photodiode array detector and a Sedex 55 

evaporative light scattering detector (Sedere, France). 

3.2. Sponge Material 

A specimen of the marine sponge V. rigida was collected at a depth of about 10 m from Urabá Gulf, 

Caribbean Sea, Colombia (8°40′14″N, 77°21′28″W) in October 2008 and identified by Sandra Ospina. 

A voucher sample (INV-POR 0065) has been deposited in the sponge collection of Museo de Historia 

Natural Marina de Colombia, Invemar. The sponge was kept frozen at −20 °C from collection until the 

extraction process. 

3.3. Extraction and Isolation 

A portion of V. rigida (280 g wet) was freeze-dried and ground to obtain a dry powder (50 g), 

which was extracted three times with a mixture of MeOH/CH2Cl2 (1:1) at room temperature for 15 min 

in an ultrasonic bath to give 15.9 g of a crude extract after concentration under reduced pressure. The 

crude extract was fractionated by RP-C18 vacuum liquid chromatography (elution with 500 mL of 

each solvent in a decreasing polarity gradient of H2O 100% (F1, 8.7 g), H2O–MeOH 1:1 (F2, 1.1 g), 

H2O–MeOH 1:3 (F3, 0.6 g), MeOH 100% (F4, 1.2 g), MeOH–CH2Cl2 3:1 (F5, 0.8 g) and CH2Cl2 

100% (F6, 0.08 g)). Samples were further purified by phenyl-hexyl semi-preparative HPLC column 

chromatography (Phenomenex Gemini, 10 mm × 250 mm, 5 µm, 3.0 mL/min) using gradient elution 

from 20% MeCN + 0.1% TFA to 100% over 30 min. From F2 were isolated: 1 (2.6 mg, 2.2% w/w),  

2 (0.8 mg, 0.7%), 3 (3.4 mg, 3.3%), 4 (3.8 mg, 2.9%), 5 (1.9 mg, 1.6%), 6 (1.4 mg, 1.2%), 7 (1.7 mg, 

1.4%), 8 (1.1 mg, 0.9%) and 9 (4.2 mg, 3.5%). 

Aeroplysinin-1 (1): Yellow solid; ESI-MS m/z 335.6 (49%), 337.6 (100%), 349.6 (51%), 

C9H9Br2NO3 338.98. Spectroscopic data matched those previously published [36]. 

Dihydroxyaerothionin (2): Light yellow solid; ESI-MS m/z 868.9 (9%), 870.9 (38%), 873.0 (76%), 

875.0 (28%), 876.8 (8%), C24H26Br4N4O10Na+ 873.10. Spectroscopic data matched those previously 

published [17]. 
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3,5-dibromo-N,N,N-trimethyltyraminium (3): Light brown solid; UV (MeOH) λmax (log ε) 220.5 

(4.30), 288.5 (3.00); IR (neat) 3422, 2955, 1630 (arom), 1543, 1425, 1262, 1032 and 650 cm−1;  
1H NMR data (500 MHz, DMSO-d6) δ 7.51 s (2H, H-2, H-6), 6.81 s (OH), 2.94 t (2H, H-7), 3.46 m 

(2H, H-8), 3.09 s (9H, N-Me3); 13C and (125 MHz, DMSO-d6) δ 120.5 (C-1, s), 132.6 (C-2, C-6, d), 

112.1 (C-3, C-5, s), 142.7 (C-4, s), 26.7 (C-7, t), 65.63 (C-8, t) and 52.32 (N-Me3); ESI-MS m/z 336.0 

(48%), 338.0 (100%), 340.0 (50%), 341.0 (5%), C11H16Br2NO+ 338.06. Spectroscopic data matched 

those previously published [37]. 

3,5-dibromo-N,N,N,O-tetramethyltyraminium (4): Brown solid; UV (MeOH) λmax (log ε) 218.2 

(4.21), 277.1 (3.18), 282.2 (3.16); IR (neat) 2570, 1635 (arom), 1440 and 622 cm−1; 1H NMR data 

(500 MHz, DMSO-d6) δ 7.69 s (2H, H-2, H-6), 3.03 m (2H, H-7, J = 5.2, 12.1, 17.2 Hz), 3.50 m (2H,  

H-8, J = 4.9, 12.0, 17.3 Hz), 3.78 s (3H, OMe), 3.10 s (9H, N-Me3); 13C and (125 MHz, DMSO-d6) 

δ 133.4 (C-1, s), 135.7 (C-2, d), 117.4 (C-3, C-5, s), 152.3 (C-4, s), 135.9 (C-6, d), 26.9 (C-7, t),  

65.3 (C-8, t), 60.4 (OMe), 52.42 (N-Me), 52.39 (N-Me) , 52.36 (N-Me); ESI-MS m/z 350.1 (61%), 

352.0 (100%), 354.0 (56%), C12H18Br2NO+ 352.08. Spectroscopic data matched those previously 

published [22]. 

Purealidin R (5): Yellow solid; UV (MeOH) λmax (log ε) 283.4 (3.25); IR (neat) 3440, 2960, 2260, 

1655, 1150, 1120 and 710 cm−1; 1H NMR data (500 MHz, DMSO-d6) δ 7.84 br s (1H, N-H), 7.59 bs s 

(1H, N-H), 6.57 s (1H, H-5), 6.36 d (1H, C1-OH, J = 8.2), 3.91 d (1H, H-1, J = 7.7), 3.01 d (1H, H-7a, 

J = 17.4), 2.89 d (1H, H-7b, J = 17.4), 3.65 s (3H, OMe); 13C and (125 MHz, DMSO-d6) δ 74.9 (C-1, s), 

114.2 (C-2, s), 153.2 (C-3, s), 116.5 (C-4, s), 134.5 (C-5, d), 90.2 (C-6, s), 41.1 (C-7, t), 159.6 (C-8, s), 

162.6 (C-9, s), 59.81 (OMe); ESI-MS m/z 380.7 (50%), 382.7 (100%), 384.7 (8%), C10H10Br2N2O4 

382.01. Spectroscopic data matched those previously published [23]. 

19-deoxyfistularin 3 (6): Red-brown solid; UV (MeOH) λmax (log ε) 228.4 (4.10) and 284.2 (3.78); 

IR (neat) 3440, 1655, 1610, 1535, 1420, 1040 and 720 cm−1; 1H NMR data (500 MHz, DMSO-d6) 

δ 7.72 s (2H, H-15, H-17), 6.52 s (1H, H-5), 6.53 s (1H, H-5′), 4.26 m (1H, H-11), 4.18 s (1H, H-1), 

4.19 s (1H, H1′), 4.07 m (2H, H-12), 2.88 (2H, H-19, und. solvent.), 3.84 (2H, H-7b, H-7b′, J = 18.3), 

3.76 m (1H, H-10a), 3.72 s (6H, OMe), 3.56 td (2H, H-20, J = 6.9, 3.4), 3.52 m (1H, H-10b), 3.18 (2H, 

H-7a, H-7a′, J =18.3); ESI-MS m/z 1091.6 (0.9%), 1092.7 (15%), 1094.6 (67%), 1095.6 (16%), 

1096.7 (100%), 1097.7 (23%), 1098.6 (75%), 1099.5 (18%), 1100.6 (21%), C31H30Br6N4O10 1098.01. 

Spectroscopic data matched those previously published [24]. 

Purealidin B (7): Colorless solid; UV (MeOH) λmax (log ε) 219.8 (3.69) and 283.4 (2.69); IR (neat) 

3440, 2975, 2870, 1680, 1465, 1360, 1200, 1150 and 680 cm−1; 1H NMR data (500 MHz, Acetone-d6) 

δ 7.68 s (2H, H-15, H-17), 6.53 s (1H, H-5), 4.22 s (1H, H-1), 4.10 t (2H, H-12), 3.84 d (1H, H-7a,  

J = 18.1), 3.83 s (3H, OMe), 3.73 s (9H, N-Me3), 3.61 t (2H, H-10 J = 6.91), 3.56 m (2H, H-20),  

3.22 d (1H, H-7b J = 18.2), 3.18 m (2H, H-19), 2.02 m (2H, H-11); ESI-MS m/z 758.0 (11%), 760.0 

(54%), 762.0 (68%), 764.0 (46%), 765.9 (10%), C24H30Br4N3O5
+ 760.13. Spectroscopic data matched 

those previously published [25]. 

11-hydroxyaerothionin (8): Colorless solid; UV (MeOH) λmax (log ε) 227.6 (3.97) and 282.2 (3.74); 

IR (neat) 3440, 3330, 1650, 1200, 1150 and 690 cm−1; 1H NMR data (500 MHz, Acetone-d6) δ 7.79 br t 

(1H, N-H J = 5.2), 7.55 br t (1H, N-H J = 5.4), 6.54 s (2H, H-5, H-5′), 5.44 br s (1H, OH), 4.20 s (1H, 
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H-1′), 4.19 s (1H, H-1), 3.86 d (1H, H-7a, J = 18.3), 3.85 d (1H, H-7′a, J = 18.0), 3.85 m (1H, H-11), 

3.74 s (6H, OMe), 3.55 m (2H, H-13a), 3.47 m (1H, H-10a), 3.42 m (1H, H-13b), 3.30 dd (1H, H-10b, 

J =13.5), 3.19 d (1H, H-7b, J = 18.3), 3.20 d (1H, H-7′b, J = 18.3), 1.79 m (1H, H-12a), 1.63 m  

(1H, H-12b); ESI-MS m/z 852.0 (14%), 854.0 (72%), 856.0 (100%), 858.0 (55%), 860.2 (8%), 

C24H26Br4N4O9Na+ 783,13. Spectroscopic data matched those previously published [27]. 

Fistularin-3 (9): Colorless solid; UV (MeOH) λmax (log ε) 220.6 (4.17) and 284.6 (3.77); IR (neat) 

3640, 3350, 1650, 1520 and 690 cm−1; 1H NMR data (500 MHz, Acetone-d6) δ 7.66 s (2H, H-15, H-17), 

6.53 s (1H, H-5), 6.52 s (1H, H-5′), 4.90 dd (1H, H-19 J = 4.5, 7.2), 4.24 td (1H, H-11 J = 5.6, 10.2, 

10.2), 4.19 s (1H, H-1), 4.17 s (1H, H-1′), 4.05 ddd (2H, H-12 J = 6.0, 9.3, 19.3), 3.82 d (1H, H-7b,  

J = 18.2), 3.81 d (1H, H-7′b J = 18.2), 3.78 dd (1H, H-10a J = 4.5, 13.7), 3.73 s (6H, OMe), 3.61 m 

(1H, H-20a), 3.56 m (1H, H-10b), 3.50 m (1H, H-20b), 3.20 d (1H, H-7a, J = 18.1), 3.16 d (1H, H-7′a, 

J = 17.5); ESI-MS m/z 1131.1 (1%), 1132.2 (2%), 1133.1 (1%), 1134.3 (8%), 1135.4 (2%), 1136.3 

(4%), 1138.2 (5%), 1139.5 (2%), 1140.2 (2%), C31H30Br6N4O11Na+ 1137.01. Spectroscopic data 

matched those previously published [38]. 

3.4. Bioassays 

3.4.1. In Vitro Leishmanicidal Activity on Axenic and Intracellular Amastigotes 

Axenic and intracellular amastigotes of GFP-transfected L. (V.) panamensis strain (MHOM/CO/ 

87/UA140epir GFP) were used for the in vitro testing of leishmanicidal activity.  

3.4.1.1. Activity against Axenic Amastigotes 

The ability of compounds to kill axenic amastigotes of L. (V.) panamensis was determined based on 

the viability of the parasites evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) method as previously described [39]. In brief, parasites were cultivated in Schneider’s medium 

at pH 5.4 supplemented with 20% heat-inactivated FBS (incubated for 3 days at 32 °C). Afterwards 

they were harvested, washed and resuspended at 2 × 106 axenic amastigotes/mL in fresh medium. Each 

well of a 96-well plate was seeded with 100 µL of each parasite suspension and 100 µL of the test 

compound at 20 µM as final concentration, was evaluated. Plates were incubated at 32 °C. After 72 h 

of incubation the effect of the drugs was determined by adding 10 µL/well of MTT and incubating at 

32 °C for 3 h. The reaction was stopped and the quantity of formazan produced was measured with a 

Bio-Rad ELISA reader set at 570 nm. Parasites cultivated in the absence of the compound but 

maintained under the same conditions were used as controls for growth and viability. Parasites 

cultivated in the presence of anphotericin B were used as positive controls for leishmanicidal activity.  

3.4.1.2. Activity against Intracellular Amastigotes 

The effect of the compounds against intracellular amastigotes of L. (V.) panamensis was evaluated 

by flow cytometry. Briefly, U937 cells were dispensed in 24-well plates at a concentration of  

300,000 cells/well, which were treated with 1 μM of phorbol myristate acetate (PMA) for 48 h at 

37 °C, after which they were infected with promastigotes of L. (V.) panamensis in stationary growth 
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phase (day 5) in modified NNN medium, at a 1:25 cell/parasite. After 3 h of incubation at 34 °C in 

5% CO2, non-internalized parasites were washed and incubated again at 34 °C and 5% CO2 to allow 

differentiation to amastigote’s form. After 24 h of incubation, the compound at 10 µM was added. 

Infected and treated cells were maintained at 34 °C and 5% CO2 for 72 h. The leishmanicidal effect 

was measured in a flow cytometer at 488 nm of excitation and 525 nm of emission [40]. Infected cells 

exposed to amphotericin B were used as a positive control for leishmanicidal activity. 

3.4.2. Antimalarial Activity against Plasmodium Falciparum 

Antimalarial activity was evaluated against P. falciparum NF54 strain in asynchronous cultures. 

The assay was carried out with P. falciparum in 24-well suspension cultures using O positive human 

serum, 2% hematocrit in RPMI-1640 medium supplemented with Hepes, hypoxanthine, glutamine, 

dextrose and the test compound at 5 µM/well. Cultures were maintained at 37 °C for 48 h under  

a 1% O2, 4% CO2, and 95% N2 atmosphere. Chloroquine was used as a positive activity control. 

Antiplasmodial activity was determined by DNA analysis using a fluorometric method with ethidium 

bromide dye (EtBr), and fluorescence was read at emission 510 nm and excitation 590 nm [41]. 

3.4.3. Trypanocidal Activity 

The in vitro antitrypanosomal activity was evaluated against T. cruzi Tulahuen strain. U937 cells in 

wells of a 96-well plate containing RPMI medium were infected with stationary-phase epimastigotes at 

a 5:1 parasite:cell proportion. After 24 h, the test compound was added at 10 µM. Beznidazol was used 

as a positive control. The effect was analyzed colorimetrically for β-galactosidase activity [42]  

72 h later in a spectrophotometer at 570 nm. 

3.4.4. In Vitro Cytotoxic Activity in Mammalian Cells 

Cytotoxic activity of compounds was assessed based on the viability of the human promonocytic 

cell line U937 (ATCC CRL-1593.2™) evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl)-2, 

5-diphenyltetrazolium bromide) method [41]. Briefly, cells were grown in 96-wells plates at 

100,000 cells/mL in RPMI-1640 supplemented with 10% FBS and the compound at 20 µM in 

duplicate. The cells were incubated at 37 °C with 5% CO2 in air for 72 h in the presence of the 

compounds, and then the effect of the drug was determined using an MTT assay as described above by 

adding 10 μL/well of MTT solution (0.5 mg/mL) and incubating at 37 °C for 3 h. The reaction was 

stopped by adding a 50% isopropanol solution with 10% sodium dodecyl sulfate for 30 min.  

Cell viability was determined based on the quantity of formazan produced, which was measured with a 

Bio-Rad ELISA reader set at 570 nm. As a viability test, cultured cells in the absence of extracts were 

used. Amphotericin B was used as a cytotoxicity control. 

4. Conclusions 

This is the first report regarding seven of the nine bromotyrosine-derivatives from the sponge 

V. rigida (3–9) and the first biological activity reports for compounds 2, 4, 5 and 6. None of the 

isolated compounds had been previously evaluated against malaria, Leishmania and Chagas disease, 
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and for this reason, this work is the first report to consider these bromotyrosines as potential 

antiparasitic agents. The results demonstrate that some of the compounds, such as compounds 7 and 8, 

are interesting in vitro against Plasmodium and Leishmania parasites, respectively.  

Compound 7 is structurally close to psammaplysin-H, isolated from the sponge Pseudoceratina sp., 

which was found to display a potent and selective activity against Plasmodium falciparum. In this 

work we also noticed a high selective bioactivity against axenic Leishmania parasites. In the same 

manner, compound 8 displayed a high selective index against both Plasmodium and Leishmania 

parasites. Previous reports of compounds 8 as an anti-tuberculosis agent, have suggested that 

hydroxylation at position 11 is essential for the activity of this compound. In the compound 2, a dimer 

of compound 8, there are two hydroxyl groups at positions 11 and 11′. Since this compound is less 

bioactive than compound 8, it is likely that the double hydroxylation in the compound 2 forms a 

steric hindrance. 

Compounds with hydroxylation at positions 11 and the presence of a 2,6-dibromophenyl radical 

linking two units of spirocyclohexadienylisoxazolines, like compounds 6 and 9, show reductions in 

their antiparasitary activities compared with the molecules with hydroxylation at positions 11 and 

without the 2,6-dibromophenyl radical. Compounds 5 and 9 showed no cytotoxic or antiparasitic 

activity, and this proves that the existence of halogen atoms in molecules is not an indicator of 

bioactivity and/or cytotoxicity. Compounds 7 and 8 are interesting reference points for the 

development of new related antiparasitic substances. They are currently being evaluated to determine a 

higher selectivity dosage and further investigations may include the assessment of their in vivo efficacy 

in animal models, which could not be performed in the current study due to the limited amount of 

compounds available. 
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