

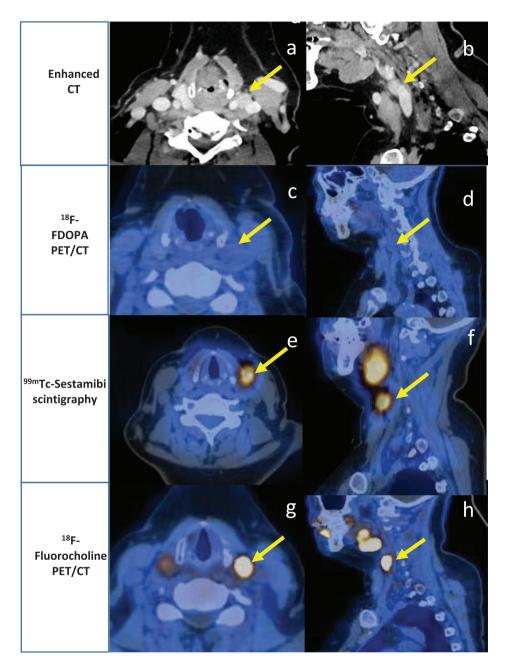
Image

An Ectopic Parathyroid Adenoma Mimicking a **Carotid Body Paraganglioma**

Rossella Libé,^{1,2} Julien Calvani,³ Anne-Ségolène Cottereau,^{2,5} Tatiana Lecot Connan,^{1,2} Sebastien Gaujoux,^{2,4} Lionel Groussin,^{1,2} and Cottereau,^{2,5} Myriam Wartski^{2,5}

¹Department of Endocrinology, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 75014 Paris, France; ²Université de Paris, Sorbonne Paris Cité, 75014 Paris, France; ³Department of Pathology, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 75014 Paris, France; ⁴Department of Endocrine Surgery, Cochin Hospital, Assistance Publique Hôpitaux de 75014 Paris, Paris, France; and ⁵Department of Nuclear Medicine, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 75014 Paris, France.

ORCiD number: 0000-0002-6325-1451 (M. Wartski).


Received: 17 June 2020; EditorialDecision: 21 September 2020; First Published Online: 20 November 2020; Corrected and Typeset: 20 November 2020.

Key Words: ectopic parathyroid adenoma, carotid body paraganglioma, ¹⁸F-Choline PET/CT, ¹⁸F-FDOPA

A 56-year-old woman was investigated for a multinodular thyroid goiter. A neck ultrasound identified, in addition to the goiter, a highly vascularized hypoechoic solid lesion located between the carotid artery and the jugular vein $(27 \times 12 \times 8 \text{ mm})$. A computed tomography (CT) scan confirmed a lesion medial to the carotid bifurcation with high postcontrast enhancement (Fig. 1A, 1B). A fine needle aspiration cytology showed clusters of cells with round to spindle nuclei and fine granular chromatin in a hemorrhagic background. These cytological characteristics suggest an epithelial tumor with neuroendocrine features, evocating a carotid body paraganglioma. Hormonal evaluation showed normal urine catecholamines level and ¹⁸F-dihydroxyphenylalanine (18F-FDOPA) positron emission tomography (PET)/ CT showed no significant uptake by carotid body lesion (Fig. 1C, 1D). Additional diagnostic workup revealed primary hyperparathyroidism with mild hypercalcemia at 2.70 mmol/L (normal 2.25-2.6), high ionized serum calcium at 1.44 mmol/L (normal 1.17-1.30), 24-hour hypercalciuria at 8.5 mmol/24 h and increased parathyroid hormone concentration at 7.03 pmol/L (normal 0.48-4.20). The

hyperparathyroidism was asymptomatic and patient had no kidney stones at renal echography or osteoporosis at bone densitometry. 99mTc-sestamibi scintigraphy showed high uptake by carotid body lesion (Fig. 1E, 1F), confirmed on ¹⁸F-fluorocholine PET/CT (maximum standardized uptake value at 15) (Fig. 1G, 1H), suggesting a parathyroid origin. Following the recent guidelines of the American Association of Endocrine Surgeons, hypercalciuria led us to perform parathyroidectomy [1]. The carotid body lesion was resected and pathological analysis confirmed a parathyroid adenoma.

Ectopic parathyroid adenoma is exceptionally considered in the differential diagnosis of masses arising from the carotid body [2, 3]. This case illustrates the need for a systematic parathyroid hormone evaluation in front of any cervical lesion, to reserve fine needle aspiration cytology only in the presence of a tumor that remains undetermined. Carotid body tumors represent about 65% of head-and-neck paragangliomas and show high avidity for ¹⁸F-FDOPA or gallium 68-labelledsomatostatin receptor analogues on PET/CT [4]. An ectopic parathyroid adenoma may mimic a carotid body tumor. ¹⁸F-fluorocholine PET/CT had a high diagnostic accuracy in

Figure 1. Radiologic and nuclear medicine imaging of the ectopic parathyroid adenoma. (A) Axial, (B) sagittal enhanced CT scan showing a 27 × 12 × 8 mm lesion located between the carotid artery and the jugular vein. (C) Axial, (D) sagittal ¹⁸F-FDOPA PET/CT showing no uptake in the carotid body lesion. (E) Axial, (F) sagittal ¹⁹m-Tc-sestamibi scintigraphy showing uptake in the carotid body lesion. (G) Axial, (H) sagittal ¹⁸F-fluorocholine PET/CT showing high uptake (maximum standardized uptake value at 15) in the carotid body lesion. CT, computed tomography; PET, positron emission tomography.

detection of ectopic parathyroid adenoma [5]. High uptake on ¹⁸F-fluorocholine PET/CT contrasting with no uptake on ¹⁸F-FDOPA PET/CT suggested the diagnosis of parathyroid adenoma, confirmed at pathological analysis.

Additional Information

Correspondence: Myriam Wartski, Department of Nuclear Medicine, Cochin Hospital, 123 Boulevard Port Royal, 75014 Paris, France. E-mail: myriam.wartski@aphp.fr.

Disclosure Summary: The authors have nothing to disclose. *Data Availability:* All data generated or analyzed during this study are included in this published article or in the data repositories listed in References.

References and Notes

 Wilhelm SM, Wang TS, Ruan DT, et al. The American Association of Endocrine Surgeons guidelines for definitive management of primary hyperparathyroidism. *JAMA Surg.* 2016;151(10):959-968.

- 2. Sanders CD, Kirkland JD, Wolin EA. Ectopic parathyroid adenoma in the carotid sheath. *J Nucl Med Technol*. 2016;44(3):201-202.
- 3. Ahmad W, Kanatas AN, Mitchell DA. Parathyroid carcinoma radiographically mimicking a carotid body tumour. *Int J Oral Maxillofac Surg.* 2010;39(6):620-622.
- 4. Taïeb D, Hicks RJ, Hindié E, et al. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine
- and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2019;46(10):2112-2137.
- Boccalatte LA, Higuera F, Gómez NL, et al. Usefulness of ¹⁸F-fluorocholine positron emission tomography-computed tomography in locating lesions in hyperparathyroidism: a systematic review. *JAMA Otolaryngol Head Neck Surg.* 2019;145(8):743-750.