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Abstract

Background and Aims: The opioid epidemic has extended to many countries. Data

regarding the accuracy of conventional prediction models including the Simplified Acute

Physiologic Score (SAPS) II and acute physiology and chronic health evaluation

(APACHE) II are scarce in opioid overdose cases. We evaluate the efficacy of adding

quantitative electroencephalogram (qEEG) data to clinical and paraclinical data in the

prediction of opioid overdose mortality using machine learning.

Methods: In a prospective study, we collected clinical/paraclinical, and qEEG data of

32 opioid‐poisoned patients. After preprocessing and Fast Fourier Transform

analysis, absolute power was computed. Also, SAPS II was calculated. Eventually,

data analysis was performed using SAPS II as a benchmark at three levels to predict

the patient's course in comparison with SAPS II. First, the qEEG data set was used

alone, secondly, the combination of the clinical/paraclinical, SAPS II, qEEG datasets,

and the SAPS II‐based model was included in the pool of classifier models.

Results: Seven out of 32 (22%) died. SAPS II (cut‐off of 50.5) had a sensitivity/

specificity/positive/negative predictive values of 85.7%, 84.0%, 60.0%, and 95.5% in

predicting mortality, respectively. Adding majority voting on random forest with

qEEG and clinical data, improved the model sensitivity, specificity, and positive and
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negative predictive values to 71.4%, 96%, 83.3%, and 92.3% (not significant). The

model fusion level has 40% less prediction error.

Conclusion: Considering the higher specificity and negative predictive value in our

proposed model, it could predict survival much better than mortality. The model

would constitute an indicator for better care of opioid poisoned patients in low

resources settings, where intensive care unit beds are limited.
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1 | INTRODUCTION

Drug abuse, in particular, the abuse of heroin and morphine, is a

global crisis and these two have been considered the drugs with one

of the most potential adverse effects on human health.1 Data from

the Centers for Disease Control and Prevention in 2020 suggests that

Opioids were involved in 46,802 overdose deaths in 2018 (69.5% of

all drug overdose deaths).2 In particular, methadone and tramadol

have recently experienced increased exposure and therefore their

associated mortality and morbidity have significantly increased.3–9

Altered levels of consciousness are common in these poison-

ings.3,4,8,9 Intoxicated patients may be referred with unstable vital

signs, and their severity scores are generally higher than other

patients at presentation; however, they usually improve easier with

proper treatment and their prognosis may not be as severe as it

appears on presentation.10 In fact, it is not clear whether scores such

as acute physiology and chronic health evaluation II (APACHE II) can

be used in poisoned patients to the extent they are used for general

intensive care unit (ICU) patients.10

In recent years, attempts have been made to use quantitative

electroencephalogram (qEEG) recordings as a predictor. Rots et al.

used qEEG for the early detection of delayed cerebral ischemia (DCI)

in aneurysmal subarachnoid hemorrhage (aSAH) and concluded that

the implementation of qEEG for aSAH patients likely improves the

early detection of DCI.11 Crepeau et al. in a study to determine the

prognostic value of EEG in therapeutic hypothermia after cardiac

arrest, concluded that certain EEG changes correlated with the

outcome.12 In another study, Arzabou and colleagues mentioned that

EEG‐related features could be used as predictors of septic ICU

mortality and delirium.13 Hirsch (2004) reported that seizures after

intracranial hemorrhage (ICH; mainly nonconvulsive) were accompa-

nied by a remarkable increase in mass effect and a poor prognosis.14

However, there is no information on the prognostic value of EEG in

drug poisoning patients.

Based on the recent advances in machine learning, medical

researchers have tried this approach in the field of EEG.15 In a

study conducted by Fingelkurts and colleagues, they confirmed

the prognostic value of qEEG with regard to survival in vegetative

and minimally conscious state patients.16 In another study carried

out by Khodayari‐Rostamabad et al., the authors successfully

combined pretreatment EEG data and machine learning to predict

schizophrenia patients' response to clozapine therapy.17 Löfhede

and colleagues applied Fisher's linear discriminant (FLD), support

vector machine (SVM), and feed‐forward artificial neural net-

works (ANN) on burst‐suppression EEG from infants with

perinatal asphyxia where SVM demonstrated better results

compared to other methods.18 Tenev and associates showed

that SVM could be used to distinguish adults with attention

deficit hyperactivity disorder (ADHD) based on the EEG power

spectrum.19

Currently, there is no computational method to determine the

prognosis in opioid‐poisoned patients. However, the opportunity to

identify patients at high risk of death would allow for the well‐

informed direction of resources, and so may help decrease mortality

in emergency departments. Moreover, EEG measurements are not

costly and can be done at the bedside, so it is a practical tool in a

clinical setting. Here, we evaluate the efficacy of qEEG data alone

and fuse it with clinical/paraclinical data and Simplified Acute

Physiology Score (SAPS) II (SAPS II scores consist of 17 variables

including 12 physiologic factors, age, type of admission, and 3

variables regarding underlying diseases) in distinct scenarios for

developing prediction models that differentiate surviving from

nonsurviving opioid‐overdosed patients using machine learning. This

approach may also help a better understanding of the underlying

origins determining survival and nonsurvival, which can give rise to

novel treatment options in the future.

2 | MATERIALS AND METHODS

2.1 | Study design and participants

This pilot prospective analytical study evaluated 32 opioid‐poisoned

(opium, tramadol, methadone) patients admitted consecutively to a

referral clinical toxicology ICU. Patients with the following conditions

in the emergency room (ER) were recruited: (a) patients with a

Glasgow coma scale (GCS) below 15 who reported a drug overdose

and signs of opioid overdose including respiratory depression and

miosis and (b) patients with unknown drug poisoning who had

positive blood or urine tests for opioids.
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Opioid overdose was suspected when signs and symptoms of

opioid toxicity were observed. Confirmation was achieved using

laboratory confirmatory testing, response to antidote (naloxone), and

patient interview.

Patients who had undergone cardiopulmonary resuscitation

(CPR), had no corneal reflex and no doll's eye in their primary

examinations, denied opioid overdose or claimed multidrug poisoning

after recovery (confirmed by negative urine test results), and those

with sepsis, meningitis, and encephalitis during EEG recording and

stroke or brain tumor in past medical history or brain computed

tomography (CT) scans as well as pediatric patients and patients

whose next of kin did not wish them to be included in the research

were excluded before EEG recording.

Survivors were interviewed before discharge and confirmed the

consumption of opioids. They also confirmed that they had no past

history of meningitis, encephalitis, thyroid, and chronic liver

dysfunction. In nonsurvivors, toxicology results during the autopsy

were used for confirmation of diagnosis.

2.2 | Clinical and laboratory variables

Clinical data including past medical history, past drug history, the

occurrence of seizure from admission to EEG recording, the

occurrence of seizure from EEG recording to discharge, vital signs,

GCS, urine output, and fever during EEG were evaluated. Laboratory

variables include arterial blood pH (pH), arterial blood CO2 pressure

(pCO2), arterial blood O2 pressure (pO2), arterial blood bicarbonate

(HCO3), serum creatinine (Cr), serum sodium (Na) and potassium (K),

blood urea nitrogen (BUN), blood sugar (BS), bilirubin, complete blood

count (CBC), as well as toxicology screening tests were recorded on

presentation, in the second, third, fourth day after admission and also

before EEG recording. These measurements were obtained in the lab

exam and the abnormalities (in terms of clinical importance) were

recorded in the first 24 h (after admission) and in the tests directly

before EEG recordings. No missing data was observed to be handled.

2.3 | Sedation

Nine (28%), two (6%), and one (3%) patient(s) had been sedated with

combined midazolam (5–10mg/h) and fentanyl (50–100mg/h),

midazolam alone (5mg/h), and fentanyl alone (50mg/h), respectively.

2.4 | Brain imaging

Brain CT scans without contrast were performed for 29 patients

based on on‐arrival clinical conditions and ER physician's decision.

Based on the CT scans, one of the subjects had generalized white

matter changes and two had generalized brain edema. These subjects

were not excluded and survived.

2.5 | EEG recording

Electroencephalograms were performed in an eye‐closed position

with at least 10 min duration and using a portable EEG device (NCC

System) placed on the scalp at the 10–20 international system

coordinates. The electrode impedances were checked online and

EEG signals were amplified and recorded with a sampling frequency

of 128 Hz.

2.6 | Data processing and analysis

Clinical and paraclinical data were compared between survivors and

nonsurvivors by applying the student t‐test, Mann–Whitney U test if

variables were normally/not normally distributed, respectively. To

evaluate the association between survivors/nonsurvivors and other

categorical variables, χ2 or Fisher's Exact tests were used. All

variables showing a significant correlation with survival/death in

univariate analysis were also tested in multivariable analysis. In the

regression model, we entered all variables with p values less than

0.05 in their univariate analysis to determine independent variables

predicting survival/death using the SPSS Enter method. Receiver

operating characteristic (ROC) curves were generated to test the

ability of SAPS II, qEEG and fusion models (see below) in predicting

survival/death with the highest simultaneous sensitivity, specificity,

positive predictive value (PPV), negative predictive value (NPV), and

accuracy using the SPSS software (version 22; SPSS Inc.).

The recorded EEG data was preprocessed including automatic

artifact removal (eye blinks, eye‐rolling, muscular, and gross artifacts)

by automatic editing with the option “very high sensitivity for Z score

artifact rejection” and a selected duration of 30min in the

Neuroguide software version 2.8.1 (without change of other default

values). Subsequently, the re‐referenced (to link ears montage),

artifact‐removed EEG data was inputted to a Fast Fourier Transform

analysis (FFT). The absolute power spectrum was then computed for

each electrode by taking the absolute values obtained from the FFT.

All processes were done using a standard pipeline in the Neuroguide

software. Data from each data set were then transformed into vector

format, with tag “0” for survivors and tag “1” for nonsurvivors. A

random‐forest model was applied to the datasets for selecting the

most important features. We tested the result of selecting different

numbers of features and finally found that selecting 20 features is the

most efficient option. The algorithms were implemented using the

Scikit‐learn library in Python where we used 32 examples with 266

attributes for absolute power data and 15 attributes for clinical/

paraclinical data. Also, the absolute power and clinical/paraclinical

data were fused both at the feature and model levels as we

mentioned in Section 2.8 and 2.9. The evaluations of all trained

models in each level of fusion were done by the means of Leave‐

One‐Out Cross Validation (LOOCV) and all of the evaluation metrics

reported in this study are the results of LOOCV criteria. Our analysis

has three phases. First, is the preprocessing phase. Second, is the
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feature selection phase with the random‐forest algorithm. Third, the

data processing phase uses the multiclassifier systems (MCS)

approach.20

The datasets were first preprocessed by eliminating the ID of

patients, sorting clinical and absolute datasets in the same order, and

encoding categorical and string features to numerical values. Before

the processing phase, a random‐forest model was used to select the

20 most important features.

In the processing phase, three levels of data analysis were

devised to improve the mortality prediction of patients in

comparison with SAPS II. The same processes were designed at

all levels including (1) constructing a pool of classifiers (Includ-

ing KNN, Decision Tree, Random Forest, Adaboost, MLP, SVM,

logistic regression, and SAPS II), (2) selecting the best classifiers by

their performance on the validation data set. (3) aggregating the

selected classifiers' decisions and testing them (Figure 1). SAPS II is

considered a benchmark (Table 1).

2.7 | qEEG data analysis

In this stage, the data set obtained from the EEG signals alone was

used to predict the mortality of patients. As mentioned before, 20

important features were selected based on Random Forest feature

importance criteria. Then MSC approach was implemented to predict

the surviving and non‐surviving patients.

2.8 | Feature fusion level

To achieve high prediction power, the idea of fusing the qEEG data

set with gathered information for computing SAPS II was followed. At

this level, we fused the qEEG data set with SAPS II and clinical/

paraclinical data used in the SAPS II calculation. As for the other

scenarios, the same procedure of creating a pool of classifiers and

selecting the most efficient ones was utilized to analyze the fused

data and obtain the optimized model.

2.9 | Model fusion level

Since all resources of information were used, we planned to improve

our prediction ability by adding a new model, obtained from SAPS II

to our existing hyper model inferred from the fused data set. After

appending the SAPS II model to the pool of classifier models and

implementing the procedure of training, validating, and testing, we

derived our final model. A summary of the methodological aspect of

our work is shown in Figure 2.

2.10 | Ethics approval and consent to participate

This study was approved by our local ethics committee at Shahid

Beheshti University of Medical Sciences (IR.SBMU.SM.REC.1394.141)

and has therefore been performed in accordance with the ethical

standards laid down in the 1964 Declaration of Helsinki and its later

amendments.

Informed written consent was taken from conscious patients. For

loss of conscious patients who had no capacity for consent, it was

taken from family members.

3 | RESULTS

3.1 | Clinical and paraclinical results

Seven out of 32 patients died. Table 2 shows the clinical and

demographic information of the patients.

F IGURE 1 A multiple classifier system has three main steps. In
the first phase, a collection of classifiers is generated (classifiers pool).
Then, a set of classifiers is selected. In the end, the decision of the
selected classifiers integrates and makes the final decision.20

TABLE 1 Confusion matrix of different models among 32 opioid
poisoned patients

Model Prediction
Pred. false,
n (%)

Pred. true,
n (%)

SAPS II (Benchmark) Actual false 21 (65) 4 (13)

Actual true 1 (3) 6 (19)

Level 1a Actual false 23 (72) 2 (6)

Actual true 4 (13) 3 (9)

Level 2a Actual false 23 (72) 2 (6)

Actual true 4 (13) 3 (9)

Level 3a Actual false 24 (78) 1 (3)

Actual true 2 (6) 5 (13)

Abbreviation: SAPS: Simplified Acute Physiology Score.
aThe aggregated confusion matrix of the leave‐one‐out technique
for: Level 1: qEEG data by Dynamic Ensemble Selection performance with
dynamic frienemy pruning.

Level 2: Fusion of qEEG data and clinical/paraclinical data Overall Local
Accuracy. Level 3: Majority voting on Random forest with qEEG data and

clinical data and SAPS II classifiers.
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On‐arrival and highest pCO2 and lowest pH values differed

significantly between the two groups within the first 24 h. Also, the

second‐day pH and pCO2 values and 3rd‐day bicarbonate values

were significantly different between the two groups based on

univariate analysis. Statistically significant results were found for

the serum sodium levels before EEG recording and the 4th‐day

creatinine levels. Regression analysis failed to find which of the

abovementioned variables could predict death (Figure 3).

Mean (±SD) SAPS II were 41.1 ± 12.6 and 56.8 ± 6.2 in survivors

and nonsurvivors, respectively (p = 0.02). SAPS II had a sensitivity of

85.7% and specificity of 84% for the prediction of mortality with a

cut‐off of 50.5.

There were not any significant differences between the two

groups in terms of brain CT scan findings and prescribing sedative

drugs, so their effect on the EEG was not considered.

3.2 | qEEG results

As the number of samples was too small, LOOCV was used to

evaluate the models. In this cross‐validation analysis, the result of

testing each sample was aggregated in a confusion matrix.

In the qEEG data analysis (level 1) and the feature fusion level

(level 2), the results achieved by Dynamic Ensemble Selection

F IGURE 2 Schematic summary of the
procedure for patient recruitment and
prognosis prediction. Triple scenarios to
assess the ability of qEEG data in mortality
prediction in opioid overdose patients. In the
first scenario, we enter qEEG data lonely to an
MCS and evaluate it by LOOCV (level 1). In
the second scenario, we enter the fusion of
qEEG data and clinical/paraclinical data to
MCS and assess the effect of this extra data in
the final results (level 2). In the third scenario,
input data are like the second scenario, but we
push the SAPS II classifier in the classifier pool
embedded in MCS (level 3). (In the schematic,
“Yes” indicates that at least one of the
conditions for exclusion was fulfilled.) LOOCV,
leave‐one‐out cross‐validation; MCS,
multiclassifier system; qEEG, quantitative
electroencephalogram.
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performance with dynamic frienemy pruning22 (Supporting Informa-

tion: Table 1) and data Overall Local Accuracy (Supporting Informa-

tion: Table 1), respectively, yielded accuracy equal to 0.81, sensitivity

equal to 0.42, specificity equal to 0.92 and F1 score equal to 0.90. In

the model fusion level (level 3) the best result was obtained by

majority voting including the generated classifiers in the classifiers

pool and the SAPS II classifiers (Supporting Information: Table 1). This

approach yielded an accuracy equal to 0.90, a sensitivity equal to

0.71, a specificity equal to 0.96, and an F1 score equal to 0.94. The

best result was obtained when we improved the prediction model

according to the model fusion level approach (described in section

2.6.3): the error rate decreased to 0.09 while in the first and second

levels it was 0.15, so we were able to reduce the error rate by 40%.

This means that by fusing the SAPS II model in level 3, we obtained

an accurate predictor that had 40% fewer wrong decisions.

Table 3 shows diagnostic characteristics of four different models

predicting mortality and survival in opioid poisoned patients.

4 | DISCUSSION

The rate of opioid overdose deaths is increasing in many countries

and we may need new prediction models to estimate mortali-

ties.21–24 A qEEG‐based machine learning approach alone was less

accurate than SAPS II in predicting opioid poisoning mortality in our

results. So, we tried to build a predictor model with the help of

qEEG combined with clinical/paraclinical data (including SAPS II

clinical parameters) as discussed in level 2. But the overall results

did not differ. Moreover, the performance was similar to the

performance when using the SAPS II‐based (traditional) method

(Table 1). However, when we added SAPS II to level 2 as a model

(i.e., level 3), the accuracy was greater than the SAPS II‐based

approach. However, this difference was not statistically significant.

So although our results show high diagnostic power, in particular in

comparison with studies that had evaluated the power of scoring

systems in the prediction of the outcome in poisoned patients, it has

no advantage over SAPS II.10,25–29 Such scoring systems are

designed to quantify the severity of an illness, to develop quality

control plans for patient care.

The higher specificity and NPV in different models can be

explained by the fact that our model may help physicians identify

patients that can survive if conservative management is done and

they are appropriately taken care of. This finding is in accordance

with previous studies that opioid‐related EEG abnormalities may be

reversible, and normal qEEG may have a better prognosis factor for

survival.30 APACHE II is calculated based on 12 physiologic criteria,

age, and previous health state of the patient. To the best of our

knowledge, our study is the first to attempt to use qEEG to predict

mortality in opioid overdose. Alizadeh et al. examined the power of

APACHE II and SAPS II in predicting mortality and morbidity rates in

195 patients hospitalized in toxicological ICU. Using an APACHE II

score of more than 22 and using a SAPS II score of more than 59

yielded a sensitivity of 50% and 42%, respectively, for the prediction

of mortality.10 The obtained specificity was 92% (in most of the

studies on organophosphate poisoning, the sensitivity values were

higher than specificity values). Other studies report very high

sensitivity values (90%–100% for both SAPS II and APACHE II) while

the specificity was between 60% and 90% for APACHE II and 70%

and 80% for SAPS II.26,27,31–33 We would like to highlight that,

although these studies are similar to ours in terms of sample size

TABLE 2 Patient's characteristics (n = 32)

Age: median years (IQR) 40.5 (29.5–58.5)

Female, n (%) 4 (12.5)

Left hand, n (%) 1 (3)

Fever during EEG recording 10 (31)

Past medical history, n (%)

Epilepsy 1 (3)

Cardiac disease 1 (3)

Depression 1 (3)

Schizophrenia 1 (3)

Chronic renal dysfunction 1 (3)

Convulsion in time from admission to EEG, n (%) 9 (28)

Convulsion in time EEG to discharge, n (%) 2 (6)

Time from admission to EEG: hours median (IQR) 28.5 (19–48.5)

Clinical status at time of EEG

Not intubated n (GCS) 1(13)/1(10)/1(9)

Mechanically ventilated, n (%)

GCS 2–3 4 (12.5)

GCS 4–5 5 (16)

GCS 6–7 13 (41)

GCS 8–9 7 (22)

Length of hospitalization: days median (range) 8 (3–73)

Nonsurviving 17 (3–73)

Surviving 8 (3–21)

Poisoning n (%)

Opium 9 (28)

Tramadol 5 (16)

Methadone 18 (56)

Outcome at hospital discharge, n (%)

Nonsurviving 7 (22)

Surviving 25 (78)

SAPS II score mean

Nonsurviving 52.7 ± 10.1

Surviving 40.8 ± 11.7

Abbreviations: IQR, interquartile range; SAPS, Simplified Acute Physiology

Score.
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(23–48 patients), the type of toxicity is different. The scoring systems

cannot precisely predict which patients will survive and have

limitations including complicated calculations, the high number of

variables, and uncertain measurements in various clinical conditions.

Here we showed that fusing qEEG, clinical/paraclinical data, and

SAPS II using machine learning can also be a valuable tool to predict

survival.

In a study by Aghabiklooei and colleagues, clinical and laboratory

factors were evaluated in methadone‐poisoned patients to predict

their prognosis. Their results showed that the respiratory rate was

significantly higher in nonsurvivors. They mentioned lower arterial

blood pH and higher pCO2 as poor prognostic factors in their

patients. Also, severe loss of consciousness and acute renal

dysfunction were determined to be poor prognostic factors.31,34

It should be borne in mind that the current study was done based

on three common opioids in Iran. Some opioids like street fentanyl

may not show up on a toxicology screen and the respiratory muscle

paralysis that can occur seems more likely to cause brain injury than

with traditional opioid agonists, where the major issue is respiratory

depression, not apnea. Practically, clinicians and ICUs may seldom

use any scoring system to change their management of individual

patients. Moreover, even a perfect model may only have a small

F IGURE 3 Distribution of variables that showed significant differences in univariate analysis with SPSS software (standard deviation is
shown in error bars). (A) on presentation PCO2 measurements (B) measurements of Na before EEG recording (C) measurements of the lowest pH
values on the first day (D) measurements of the highest PCO2 values on the first day E) pH measurements on the second day (F) PCO2

measurements on the second day (G) HCO3 measurements on the 3rd day (H) box plot of creatinine measurements on the 4th‐day
postadmission.

TABLE 3 Diagnostic characteristics of four different models predicting mortality and survival in opioid poisoned patients.

Model
Sensitivity Specificity PPV NPV Accuracy
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

SAPS II 85.7 84.0 60.0 95.5 84.4

(Benchmark) (42.1, 99.6) (63.9, 95.5) (36.8, 79.5) (77.2, 99.2) (67.2, 94.7)

Level 1 42.9 92.0 60.0 85.2 81.2

(9.9, 81.6) (74.0, 99.0) (23.6, 87.9) (75.0, 91.7) (63.6, 92.8)

Level 2 42.9 92.0 60.0 85.2 81.2

(9.9, 81.6) (74.0, 99.0) (23.6, 87.9) (75.0, 91.7) (63.6, 92.8)

Level 3 71.4 96.0 83.3 92.3 90.6

(29.0, 99.3) (79.6, 99.9) (40.9, 97.3) (78.8, 97.5) (75.0, 98.0)

Note: p < 0.001: Ref to SAPS, Ref to 3, SAPS to 1, SAPS to 2, SAPS to 3, 1–2; p < 0.05: 1–3.

Abbreviations: NPV, negative predictive value; PPV, positive predictive value; SAPS, Simplified Acute Physiology Score.
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impact on the reduction of mortality rates, since in most cases the

damage (if any) is done before the patient arrives in the hospital.

Nevertheless, models are useful to provide objective information for

family members and facilitate the discussion of goals of care. In cases

where the survival rate is wrongly estimated, and with limited access

to ICU beds, physicians in low and middle‐income countries may

transfer these patients to a lower level of care to admit new patients

in ICUs.

The patients were included with any level of loss of conscious-

ness. This may be a potential problem limiting our results. Another

limitation of the current study is its small sample size. Due to the

limited number of patients, many static and dynamic classifier

selections were employed for finding the best predictor and

evaluated by LOOCV. By acquiring additional data in the future,

the prediction performance of our proposed machine learning‐based

approach may be further refined. There is also a significant sex

imbalance in our study and due to limitations in the number of

personnel, there was a waiting time between admission of some of

the patients and their EEG recordings. Taking into account this time

elapsed between drug use and EEG recording could be a further

informative factor in future studies.

5 | CONCLUSION

Although the machine learning was able to predict survival with more

accuracy than SAPS using a combination of qEEG and clinical/

paraclinical information, this difference was not significant in our study.

This may support a prospective study utilizing qEEG to further

strengthen the above results, and this can be the topic of a larger study.
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