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Abstract 

Background:  A vaccine that targets multiple developmental stages of malaria parasites would be an effective tool 
for malaria control and elimination.

Methods:  A conserved gene in Plasmodium, the Plasmodium berghei gene (PBANKA_020570) encoding a 51 kDa 
protein (pb51 gene), was identified through search of the PlasmoDB database using a combination of expression and 
protein localization criteria. A partial domain of the Pb51 protein was expressed in a prokaryotic expression system 
(rPb51) and used for immunization in mice. The protein expression profile and localization were studied by Western 
blot and indirect immunofluorescence assay (IFA), respectively. The inhibitory effect of the anti-rPb51 antibodies on 
parasite proliferation was evaluated in erythrocytes in vivo. The transmission-blocking activity of the immune sera was 
determined by in vitro ookinete conversion assay and by direct mosquito feeding assay (DFA).

Results:  The rPb51 elicited specific antibodies in mice. Western blot confirmed Pb51 expression in schizonts, game-
tocytes and ookinetes. IFA showed localization of Pb51 on the outer membranes of schizonts, gametocytes, zygotes, 
retorts, ookinetes and sporozoites of P. berghei. Mice immunized with the rPb51 protein significantly reduced parasite 
proliferation and gametocyte conversion in vivo. Moreover, the rPb51 antisera also significantly reduced the in vitro 
ookinete conversion when added into the ookinete culture medium. In DFA, mice immunized with the rPb51 reduced 
the prevalence of mosquito infection by 21.3% and oocyst density by 54.8%.

Conclusions:  In P. berghei, P51 was expressed in both asexual erythrocytic and sexual stages and localized on the sur-
face of these stages with the exception of the ring stage. The anti-rPb51 antibodies inhibited both P. berghei prolifera-
tion in mice and transmission of the parasite to mosquitoes.
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Background
Malaria remains a serious global health burden with 95 
countries and territories with ongoing malaria transmis-
sion. Approximately 214 million new clinical cases and 
438,000 deaths were recorded in 2015 [1]. Malaria control 

efforts rely heavily on treatment with artemisinin-based 
combination therapy (ACT), indoor residual spray-
ing of insecticides, and insecticide-treated mosquito 
nets, but these measures have become less effective due 
to the emergence of multidrug-resistant parasites and 
insecticide-resistant mosquitoes [2, 3]. As many malaria-
endemic nations are pursuing malaria elimination [4], 
these technical challenges require the development of 
integrated approaches, among which safe and effective 
malaria vaccines could be a crucial tool [5].
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Three strategic approaches for malaria vaccine devel-
opment target different stages of the malaria parasite life 
cycle [6–8]. Pre-erythrocytic vaccines targeting the sporo-
zoites and liver stages are designed to protect residents in 
low-endemic areas from becoming infected. Blood-stage 
malaria vaccines targeting the asexual blood stages aim 
to induce immunity to reduce the severity of the clinical 
disease. Transmission-blocking vaccines (TBVs) target-
ing the sexual stages and mosquito midgut antigens aim 
at inducing immunity to interrupt malaria transmission. 
Currently, the pre-erythrocytic sub-unit vaccines have 
concentrated on the circumsporozoite protein (CSP). The 
leading liver-stage vaccine RTS,S, which can induce CD4+ 
T cell and antibody responses against CSP [9], has only 
shown partial protection against clinical malaria [10, 11]. 
Blood-stage malaria vaccines have focused on merozoite 
antigens, such as the apical membrane antigen 1 and mer-
ozoite surface proteins, that are involved in the invasion 
of erythrocytes [12, 13]. TBVs have primarily targeted a 
few candidates expressed on gametocytes and gametes 
such as P48/45 [14, 15] and P230 [16, 17], as well as those 
on zygotes and ookinetes such as P25 and P28 [18–20]. 
Given the complex life cycle of malaria parasites, malaria 
vaccines should ideally target multiple developmental 
stages and multiple malaria parasite species.

A vaccine that targets both asexual blood stages 
and sexual stages would not only offer direct protec-
tion against clinical disease, but also have the benefit of 
reducing transmission [21]. However, the majority of 
the vaccine candidates in the development pipeline are 
stage-specific; single vaccines providing broad and sus-
tained protection against different stages are notably 
deficient. The extensive ‘omics’ data on all stages of the 
entire malaria parasite life cycle offer an unprecedented 
opportunity for a reverse vaccinology approach to sys-
tematically in silico search novel vaccine candidates with 
desired expression properties [22].

By searching the omics data in PlasmoDB database [23] 
using defined criteria, a conserved Plasmodium protein 
that contains a signal peptide and an OST3_OST6-like 
domain was identified. This domain is described in the 
PFAM database as a domain present in the transporter 
protein family necessary for N-glycosylation. This protein 
is presumably expressed in both asexual blood stages and 
sexual stages based on available transcriptomic data. This 
gene in the rodent malaria parasite Plasmodium berghei 
encodes a hypothetical 51-kDa protein, and is thus 
referred to as Pb51. In this study, the protein expression 
profile of Pb51 in P. berghei was examined, and its poten-
tial as a vaccine targeting both blood stage and parasite 
transmission was evaluated.

Methods
Sequence analysis
The PlasmoDB database was searched using a combina-
tion of criteria including the presence of a signal peptide, 
two or more transmembrane domains, expression in 
both blood stages and gametocytes in P. falciparum, red 
blood cell (RBC) targeting with the presence of a PEXEL 
motif, and conservation among Plasmodium species. 
The genomic sequences of p51, a gene identified from 
this search, were retrieved from multiple Plasmodium 
species in PlasmoDB. Multiple sequence alignment was 
performed using ClustalW. Domain organization of the 
encoded proteins was predicated using the simple mod-
ular architecture research tool as described previously 
[23].

Animals and parasite
Six- to 8-weeks-old female BALB/c mice and New Zea-
land White (NZW) female rabbits (Beijing Animal Insti-
tute, China) were used following the guidelines approved 
by the animal ethics committee of China Medical Uni-
versity. The P. berghei ANKA strain 2.34 was maintained 
in BALB/c mice with passages through adult Anopheles 
stephensi as described previously [23]. For initiating a 
blood-stage infection, 1 ×  106 P. berghei-infected RBCs 
(iRBCs) were injected intraperitoneally (ip) into each 
mouse. Parasitaemia was measured daily by microscopy 
of Giemsa-stained blood smears.

Production of recombinant protein
A 207-amino acid (aa) fragment (aa 55–261) of pb51, 
excluding the putative signal peptide, low-complex-
ity region and transmembrane domains, was used for 
recombinant Pb51 protein (rPb51) expression (Fig.  1a). 
The pb51 fragment was PCR amplified using P. berghei 
genomic DNA as the template with a sense primer pb51F 
(5′-CTGGATCCGATAAAACACAAAATGAAATATCA 
TT-3′, BamHI site underlined) and a reverse primer pb51R  
(5′-CAGCGGCCGCACCATCTTTAGTTACAGATTC 
TTC-3′, NotI site underlined) and cloned into the prokar-
yotic expression vector pET32a (+). The recombinant 
Pb51 protein (rPb51) protein was expressed in Escheri-
chia coli Rosetta-gami B (DE3) (Novagen) as a fusion 
protein with a Trx/His/S-tag and purified using Ni-NTA 
His-Bind Superflow resin as described previously [24]. 
The Trx/His/S-tag without Pb51 protein in the expres-
sion vector pET32a (+) was also purified as a control 
for immunization. The purified protein was analysed by 
SDS-PAGE on 10% gels under reducing conditions. Pro-
tein concentration was determined by using a BCA Pro-
tein Assay Kit (Thermo Scientific).
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Immunization scheme and antibody quantification
Two groups of 6–8 weeks-old, female BALB/c mice (six 
per group) were used for immunization with the rPb51 
or Trx/His/S-tag protein. Each mouse was immunized 
subcutaneously with 50 μg of protein emulsified in 100 μl 
of complete Freund’s adjuvant (Sigma) at primary immu-
nization. At 15 and 30 days after the first immunization, 
mice were boosted with 25 μg recombinant protein emul-
sified in incomplete Freund’s adjuvant (Sigma). Serum 
was collected from the tail vein of mice before each 
immunization and at 10 days after the last immunization 
to assess the antibody response. The antisera from the 
final collection were pooled by immunization groups.

To produce antibodies against Pb51 in rabbits, two 
groups of 3–4  months old New Zealand White rabbits 
(two per group) were immunized subcutaneously with 

100 μg of rPb51 formulated with 100 μl of complete Fre-
und’s adjuvant followed by two booster immunizations 
with 50 μg recombinant protein emulsified in incomplete 
Freund’s adjuvant at 15 and 30 days after the first immu-
nization. Antisera were collected 10  days after the last 
immunization. Anti-rPb51 antibodies in immunized mice 
and rabbits were quantified by enzyme-linked immune 
sorbent assay (ELISA) essentially as described earlier [24].

Western blot
The purification or enrichment of schizonts, gametocytes 
and ookinetes was performed as previously described 
[24]. After purification, they were washed twice with 
phosphate-buffered saline (PBS, pH 7.0) and treated with 
0.15% saponin to lyse the erythrocytes. Parasite proteins 
were extracted using 1% Triton X-100 and 2% SDS in PBS 

Fig. 1  Sequence analysis and schematic domain composition of Pb51. a Schematic domain organization of Pb51. The signal peptide, low complex-
ity region and the OST3_OST6-like domain are shown as coloured boxes. The fragment used for E. coli expression is also marked. b Alignment of P51 
orthologs in Plasmodium species. Pb (P. berghei), Py (P. yoelii), Pc (P. chabaudi), Pk (P. knowlesi), Pf (P. falciparum), Pv (P. vivax). Conserved amino acids are 
shadowed in black (for identical residues) and grey (for similar residues). The OST3_OST6-like domain is highlighted. The predicted PEXEL motif is 
located at aa 38–44 of the Pf51 sequence
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with 1× protease inhibitors for 30 min at room temper-
ature. For Western blot, 10 μg of parasite proteins from 
each stage (schizonts, gametocytes and ookinetes) were 
electrophoresed on a 10% SDS-PAGE gel under reduc-
ing conditions and transferred to a 0.22-μm PVDF mem-
brane (Bio-Rad). The membrane was blocked with 5% 
(w/v) skimmed milk dissolved in PBS-T (PBS with 0.05% 
Tween 20) for 2 h at 37  °C, and probed with the mouse 
anti-rPb51 antisera (1:500) for 2 h at room temperature. 
Following washes with PBS-T, the membrane was incu-
bated with HRP-conjugated goat anti-mouse IgG anti-
bodies (1:5000, Invitrogen) in blocking solution. The blot 
was developed and visualized using a Pierce ECL West-
ern Blotting Kit (Thermo Scientific).

Indirect immunofluorescence assay (IFA)
Indirect immunofluorescence assay was performed to 
detect Pb51 expression in asexual blood stages, gameto-
cytes, zygotes, retorts, ookinetes and sporozoites of P. 
berghei. Parasites were air-dried on slides and then fixed 
with paraformaldehyde (Sigma) in PBS for 20 min. After 
permeabilization with 0.1% Triton X-100 (Sigma), the 
slide was blocked in 5% skim milk in PBS for 1 h at 37 °C. 
Pooled antisera against rPb51 were diluted (1:500) with 
5% skim milk in PBS-T for 1  h at 37  °C. After washing 
with 0.1M PBS, FITC-labelled goat anti-mouse IgG (1:500, 
Invitrogen) was used as the secondary antibody. To co-
localize Pb51 with major ookinete surface protein Pbs21, 
parasites were air-dried on slides and then fixed with 
paraformaldehyde in PBS for 20  min. Anti-rPb51 rabbit 
sera was used as first antibodies and detected by Alexa 
Fluor 555-conjugated secondary antibodies (red). Anti-
Pbs21 mouse mAb was used for surface staining detected 
by FITC-labeled secondary antibodies (green). Parasite 
nuclei were stained with 4′,6-diamidino-2-phenylindole 
(DAPI; Invitrogen). The specimen was observed under an 
Olympus BX53 (Olympus Corporation) microscope.

Active immunization, passive transfer of antisera 
and challenge experiments
Immunization of mice with rPb51 or the control protein 
was performed as described above. For passive antibody 
transfer, each mouse (six per group) received three daily 
ip injections of 125  µl anti-rPb51mouse sera, control 
sera, or PBS beginning on day 0 of P. berghei infection. 
Mice were infected ip with 1 ×  106 iRBCs as described 
above. The parasitaemia and the survivorship of mice 
were monitored daily as described above.

Exflagellation of male gametocytes and ookinete 
formation inhibition assay
To examine the transmission-blocking (TB) activity of 
the anti-rPb51 sera, 10  μl of infected mouse blood was 

mixed with the 90 μl ookinete culture medium (100 mg/l 
neomycin, 50 mg/l streptomycin, 50 mg/l penicillin, 20% 
(v/v) FBS, and 1 mg/l heparin in RPMI 1640, pH 8.3) con-
taining anti-rPb51 sera or control sera at final dilutions 
of 1:5, 1:10 and 1:50 and used in the male gametocyte 
exflagellation and ookinete formation inhibition assay 
as previously described [23]. Male gamete exflagellation 
centers were counted after incubation at 25 °C for 15 min 
[23], while ookinete development was enumerated after 
incubation at 19 °C for 24 h by fluorescence microscopy 
with anti-Pbs21 monoclonal antibody [25, 26]. In another 
experiment, rPb51-immunized or control mice were 
inoculated ip with 5 ×  106 iRBCs. On day 3 post-infec-
tion, 10  µl of parasite-infected blood from the mouse 
tail vein were directly added to 90  µl ookinete culture 
medium. At 24  h, different parasite stages during ooki-
nete conversion were enumerated as described above.

Direct mosquito feeding assays (DFA)
Mice (three per group) were immunized with the rPb51 
or the control protein as described above, and infected 
ip with 5 × 106 P. berghei-iRBCs at 10 days after the sec-
ond boost. Three days after infection, they were fed with 
starved, 4-days-old female An. stephensi mosquitoes for 
30 min. After removal of the unfed mosquitoes, engorged 
mosquitoes were maintained in an insectary at 19–21 °C 
and 70% relative humidity. Ten days after feeding, at least 
50 mosquitoes were dissected from each group to deter-
mine the prevalence (proportion of infected mosquitoes) 
and intensity (number of oocysts per midgut) of infection 
[24].

Statistical analysis
Statistical analysis was performed using GraphPad Prism 
software (version 6.01) and SPSS version 17.0. The optical 
density value, parasitaemia, exflagellation, and ookinete 
numbers were compared using the Student’s t test. The 
numbers of surviving mice between the two immuniza-
tion groups were compared using the Kaplan–Meier test. 
The prevalence of infection was analysed by Fisher’s exact 
test and the intensity of infection was analysed by the 
Mann–Whitney U test. Significance was set at P < 0.05.

Results
Pb51 is a conserved Plasmodium protein
In order to identify potential vaccine candidates that 
could target both asexual erythrocytic and sexual 
stages, the PlasmoDB was searched using a number 
of criteria for expression and subcellular localization. 
Seven genes satisfied all criteria including three con-
served hypothetical proteins, two exported proteins of 
unknown functions, a rifin, and CX3CL1-binding pro-
tein. A gene (PBANKA_020570) annotated as “conserved 
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Plasmodium membrane protein of unknown function” 
for further analysis in the rodent parasite P. berghei was 
selected. This gene, designated pb51, encodes a protein 
of 420 aa with a calculated molecular weight of 51 kDa. 
In addition to the putative signal peptide, the  ~  140-aa 
C-terminal region has four predicted transmembrane 
helices that resemble the OST3_OST6 domain in the 
PFAM database (Fig. 1a). OST3 and OST6 are homolo-
gous proteins present in the oligosaccharyl transferase 
complex within the lumen of the rough endoplasmic 
reticulum, which mediates en bloc transfer of a high-
mannose oligosaccharide moiety to asparagine acceptor 
sites in nascent polypeptides [27, 28]. Yet, the presence 
of a PEXEL motif in Pf51, which would target the protein 
to the RBC membrane, suggests that the OST3_OST6-
like domain may have different functions in Plasmodium 
other than glycosylation. This gene is highly conserved 
among all Plasmodium species, as evidenced from 
the alignment of the predicted amino acid sequences 
(Fig. 1b).

The rPb51 protein is immunogenic
In order to produce soluble recombinant protein in bac-
teria, the aa 55–261 region between the signal peptide 
and the first transmembrane domain of Pb51 was cloned 
into the expression vector (Fig. 1a). This region includes 
eight predicted antibody epitopes (Additional file 1: Fig-
ure S1). The recombinant protein was expressed in E. coli 
as a Trx/His/S-tag fusion protein. Protein expression was 
induced at low temperature (20  °C) for 12 h to enhance 
protein solubility. The rPb51 was present in the soluble 
fraction of the lysate and thus performed purification 
under native conditions. SDS-PAGE analysis showed that 
rPb51 migrated as a single band at approximately 44 kDa, 
consistent with the predicted molecular size of the rPb51 
fusion protein (Fig. 2a).

To determine the immunogenicity of rPb51, BALB/c 
mice were immunized with purified rPb51 emulsified in 
Freund’s adjuvants to produce polyclonal antisera. IgG 
levels against rPb51 in mouse antisera during the course 
of immunization were followed using ELISA. IgG titres 
in the rPb51 immunization group showed statisti-
cally meaningful increases at all sampling time points 
(Fig.  2b, P  <  0.01, Student t test), which indicates the 
rPb51 successfully induced the production of antibodies 
in mice.

Pb51 is expressed both on asexual stages and sexual 
stages
The orthologue of Pb51 in P. falciparum (PF3D7_0107700) 
is expressed in both asexual erythrocytic stages [29] and 
mature male/female gametocytes [30, 31]. To determine 
the expression of Pb51 during development, Western blot 

analysis was performed using protein extracts obtained 
from purified schizonts, gametocytes and ookinetes.

The anti-rPb51 sera recognized a band of approxi-
mately 51 kDa in the lysates of all parasite stages tested, 
which is close to the predicted size of Pb51 (Fig.  3a). 
Then, the cellular locations of Pb51 using IFA was exam-
ined. Consistent with the results from the Western blot, 
the pooled antisera against rPb51 at 500-fold dilution 
successfully stained all P. berghei stages examined (rings, 
schizonts, gametocytes, gametes, zygotes, retorts, ooki-
netes and sporozoites) (Fig.  3b). The results indicated 
the anti-rPb51 could recognize the native parasite anti-
gens. Except for the ring stage where fluorescence was 
restricted to the parasite inside the iRBC, IFA with anti-
rPb51 antisera all showed fluorescent patterns that are 
consistent with surface staining (Fig. 3b). In retorts and 
ookinetes, the staining with anti-rPb51 well overlapped 
with that of Pbs21 (Fig. 3c). Moreover, IFA with or with-
out membrane permeabilization showed similar fluores-
cence patterns (Additional file  2: Figure S2), indicating 
that the Pb51 protein is localized on the outer surfaces of 
both asexual and sexual stages as well as sporozoites of P. 
berghei.

Immunization with rPb51 protects against infection
Given the localization of Pb51 on the surface of later 
stages of asexual erythrocytic cycle, whether the anti-
bodies against this protein affect asexual erythrocytic 

Fig. 2  Production of rPb51 and immunization. a rPb51 was purified 
from E. coli and analysed by SDS-PAGE under reducing conditions. 
Molecular weight markers are shown on the left. b Anti-rPb51 anti-
body titres after immunizations. Serum samples were collected on 
days 14, 29 and 44 post-immunization. Antibody titres correspond to 
the last dilution of the anti-rPb51 serum, wherein OD490 values were 
above the cut-off values in ELISA. Cut-off value was defined as that of 
the pooled sera from control mice. Serum samples were tested at 1: 
200–1:102,400 serial dilutions, 1:200 dilutions were used and the data 
represent three separate experiments. Error bars indicate mean ± SD. 
*P < 0.05, **P < 0.01 (Student’s t test)
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development was determined. To do this, mice were 
immunized with the rPb51 protein emulsified in com-
plete Freund’s adjuvant, and after two boosts with rPb51 
protein emulsified in incomplete Freund’s adjuvant, they 

were challenged by ip injection with 1 × 106 P. berghei-
iRBCs. It was evident that immunization with rPb51 
greatly slowed down the rise of both asexual parasitae-
mia (Fig.  4a, P  <  0.01, Student t test) at 6–9  days post 

Fig. 3  The expression profile and localization of Pb51. a Western blot analysis of Pb51 expression in lysates from P. berghei schizont (S), gametocytes 
(G), and ookinetes (O). Anti-HSP70 serum was used for protein loading control. b IFA analysis of Pb51 localization. Different stages (rings, schizonts, 
gametocytes, zygotes, retorts, ookinetes and sporozoites) at different time points of P. berghei development were used. Pb51 was detected by FITC-
conjugated secondary antibodies (green). Cells were permeabilized with 0.1% Triton X-100. Pbs21 mAb was used for surface staining of ookinetes. 
BF bright field. c Co-localization IFA analysis of Pb51 expression. Retorts and ookinetes were proceeded directly for antibody binding. Anti-rPb51 
rabbit sera was used as first antibodies and detected by Alexa Fluor 555-conjugated secondary antibodies (red). Anti-Pbs21 mouse mAb was used 
for surface staining detected by FITC-labeled secondary antibodies (green). For Fig. 3b, c, parasite nuclei were stained with DAPI (blue). The scale bar 
indicates 5 µm
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infection, and gametocytaemia (Fig.  4b, P  <  0.01, Stu-
dent t test) at 8 and 9  days post-infection, and delayed 
the death of the infected mice (Fig. 4c, P < 0.01, Kaplan–
Meier test). In addition, P. berghei infected mice passively 
treated with three daily transfers of the anti-rPb51 sera 
also showed significant inhibition of parasite develop-
ment and better survivorship of the infected mice (Addi-
tional file  3: Figure S3). These data collectively indicate 
that anti-rPb51 antibodies provide some degree of pro-
tection against P. berghei infection in mice.

Antibodies against Pb51 show obvious TB activities
With Pb51 expression in sexual-stage parasites, the 
potential TB effect of the anti-rPb51 antibodies using 
both in vitro and in vivo assays were further investigated. 
In  vitro incubation of the anti-rPb51 antisera with P. 
berghei infected blood at dilutions of 1:5, 1:10 and 1:50 
did not have any noticeable effect on the exflagellation 
of male gametocytes as compared to the control sera 
(Fig. 5a). However, in vitro culture of ookinetes with the 
anti-rPb51 antisera, at all dilutions tested, significantly 
reduced the ookinete numbers by 49.3, 48.7, and 31.0%, 
respectively, as compared to the control sera (Fig.  5b, 
P  <  0.01, Student t test). To observe which steps of the 
ookinete development were obstructed by the anti-rPb51 
sera, infected blood was collected from the rPb51-immu-
nized group or the control group on day 3 after infec-
tion, when gametocytaemia between the two groups 
was not statistically different, and was mixed with cul-
ture medium at 1:10. At 24 h of the in vitro culture, most 
parasites (75.4%) in the control group progressed to the 
mature ookinete stages, whereas 45.4 and 37.4% of the 
parasites in the medium containing antisera from rPb51-
immunized mice were at the retort and ookinete stages, 
respectively, leading to a 38% reduction of mature ooki-
netes (Fig. 5c, P < 0.01, Student t test).

To further examine the TB effect of anti-rPb51 anti-
bodies in  vivo, immunized mice were used in DFA. 
Compared to the control group (immunization with the 
control protein), mosquitoes fed on rPb51-immunized 
mice showed a significant reduction in both infection 
prevalence and oocyst intensity (Table  1 and Fig.  5d). 
Whereas the average infection prevalence in mosquitoes 
fed on the control mice was 96%, it was reduced to 74.7% 
in mosquitoes fed on rPb51-immunized mice (Table  1, 
P  <  0.001, Fisher’s exact test). Further, mosquitoes fed 
on control mice displayed a mean oocyst intensity of 
86.7/midgut, whereas it was reduced to 31.9/midgut in 
mosquitoes fed on the rPb51-immunized mice (Table 1, 
Fig. 5d, P < 0.001, Mann–Whitney U test).

Discussion
The development of an effective malaria vaccine is impor-
tant for the control and eventual elimination of malaria 
in endemic areas [32]. The publication of the genomes, 
transcriptomes and proteomes of a number of malaria 
parasite species [33–35] has enabled in silico identifica-
tion of potential malaria vaccine candidates [36]. In this 
study, a conserved Plasmodium membrane protein Pb51 
that is expressed in both asexual blood stages and sexual 
stages was identified. The partial domain of Pb51 protein 
was expressed and raised polyclonal antisera in mice, 
which were found not only to provide protection against 
P. berghei blood stages but also to possess effective TB 
activity.

Development of an effective malaria vaccine depends 
on better understanding of the parasite biology and the 
host immune responses [37]. Malaria parasites have a 
complex life cycle and sub-unit vaccines containing mul-
tiple components and targeting multiple stages have been 
pursued. One strategy to achieve this goal is to express 
fusion proteins of different antigens. For example, a 

Fig. 4  Effects of immunization against rPb51 on asexual proliferation, gametocytogenesis and host survival. a Growth curves of P. berghei in normal 
BALB/c mice (no immunization) and mice immunized with the control Trx/His/S-tag protein (control) or rPb51. Normal group exhibited 1.82-
fold higher parasitaemia than the rPb51-immunized group on day 9 post-infection. b Gametocytaemia in mice without immunization (normal), 
immunized with Trx/His/S-tag protein (control) or rPb51. Note that gametocytaemia on day 3 was not statistically different among the immuniza-
tion groups. c Survival of mice in different treatment groups. Mice in the rPb51-immunized group survived 6 days longer than the normal group 
and 7 days longer than control group. The data represent three separate experiments (six mice/group). Error bars indicate mean ± SD. *P < 0.05, 
**P < 0.01 (Student’s t test)
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fragment of the asexual blood-stage antigen glutamate-
rich protein (GLURP) fused with a functional fragment 
of the sexual stage antigen Pfs48/45 (10 C) can induce 

antibodies showing both asexual growth inhibition and 
TB activities against P. falciparum [21]. Additional combi-
nations have also been tried including sporozoite, asexual 

Fig. 5  TB activities of the anti-rPb51 sera. a Effect of the antiserum on exflagellation of male gametocytes. Anti-rPb51 sera, or control mouse sera 
were diluted at 1:5, 1:10 and 1:50 and incubated with gametocytes to quantify exflagellation centres. b Effect of anti-rPb51 sera at 1:5, 1:10 and 1:50 
dilutions on P. berghei ookinete formation in vitro. c In vitro development of ookinetes using P. berghei-infected blood of control or rPb51-immu-
nized mice. Infected blood on day 3 post P. berghei infection collected from these two groups of mice were incubated with culture medium (1:10) 
and parasite stages were counted at 24 h of incubation. d Direct mosquito feeding assay on control and rPb51-immunized mice. For a–d, means 
were representative of three separate experiments. Error bars indicate mean ± SD. **Indicate significant difference compared with the control sera 
(P < 0.01)

Table 1  Transmission-blocking effects of mouse antiserum produced by rPb51 immunization

* P < 0.001 for comparisons between the experimental group and the control group
a  The prevalence of infection was calculated by the number of mosquitoes with oocysts/total mosquitoes dissected in each group × 100%
b  The percent reduction of prevalence was calculated as % mean prevalencecontrol − % mean prevalence rPb51
c  Mean number of oocysts per mosquito midgut
d  Standard error of the mean
e  The percent reduction in oocyst intensity was calculated as (mean oocyst intensitycontrol − mean oocyst intensityrPb51)/mean oocyst intensitycontrol × 100%

Control mice rPb51 immunized mice

Con-M1 Con-M2 Con-M3 rPb5-M1 rPb5-M2 rPb5-M3

Mosquitoes infected/dissected 47/50 49/50 48/50 38/50 39/50 35/50

Prevalence of infection (%)a 94 98 96 76 78 70

Mean prevalence (%) 96 74.7

Reduction in prevalence (%)b 21.3*

Oocyst intensityc 87.2 90.1 82.9 33.8 29.9 32.1

SEMd 6.7 6.7 6.8 4.5 3.6 4.4

Mean oocyst intensity 86.7 31.9*

Reduction in oocyst intensity (%)e 54.8
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blood stage and sexual stage antigens (PfTRAP, PfCelTos, 
PfCSP, PfMSP1-19, PfMSP4, PfMSP8, PfMSP8, PfMSP3, 
Pfs230, and Pfs25); some of these combinations showed 
great promise [38]. However, multiple unrelated compo-
nent domains in one recombinant protein are not always 
compatible with each other, which may lead to misfolding 
and aggregation of the protein that impair their biological 
activity [39]. In addition, the selection of suitable linkers 
between the domains is another difficult factor [40]. The 
protein expression profile of P51 in both asexual blood 
stages and sexual stages naturally circumvents this prob-
lem. Though P51 contains an OST3_OST6-like domain 
that suggests localization in the endoplasmic reticulum, 
the inclusion of a signal peptide and PEXEL motif sug-
gests that this protein is likely exported to the RBC and 
potentially its membrane. Here the evidence show that 
Pb51 is indeed expressed in multiple stages and local-
ized primarily on the outer membranes of iRBCs except 
for the ring stage. Antibodies induced by the rPb51 not 
only inhibited the parasite proliferation during the asex-
ual erythrocytic cycle, but also inhibited the formation of 
ookinetes and subsequent transmission to the mosqui-
toes. Since the protection activities observed in this study 
were the results of immunization of mice with a Pb51 
fragment, which contains only limited epitopes, future 
studies using full-length Pb51 may provide better protec-
tive activity. Exploration of eukaryotic protein expression 
systems may offer further improvement of antigenicity of 
the recombinant protein. Furthermore, because Freund’s 
adjuvants are unsuitable for human use, future investiga-
tions of the P51 vaccine potential in human malaria para-
sites using an adjuvant suitable for clinical development 
(e.g., Montanide ISA-51 or Alhydrogel) are warranted.

Conclusions
This study identified a conserved Plasmodium protein 
P51, which was expressed in all asexual erythrocytic 
stages (rings through schizonts) and in sexual stages 
(gametocytes, zygotes, retorts, ookinetes and sporozo-
ites) of P. berghei. The rPb51 possesses excellent immu-
nogenicity and antibodies against this protein inhibited 
both asexual proliferation in RBCs as well as transmis-
sion of the parasites to the mosquitoes. Altogether, these 
data support further assessment of P51 as a potential 
candidate for malaria vaccine development.
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