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Abstract: Proteomics is a crucial tool for unravelling the molecular dynamics of essential biological
processes, becoming a pivotal technique for basic and applied research. Diverse bioinformatic tools are
required to manage and explore the huge amount of information obtained from a single proteomics
experiment. Thus, functional annotation and protein–protein interactions are evaluated in depth leading
to the biological conclusions that best fit the proteomic response in the system under study. To gain insight
into potential applications of the identified proteins, a novel approach named “Applied Proteomics” has
been developed by comparing the obtained protein information with the existing patents database. The
development of massive sequencing technology and mass spectrometry (MS/MS) improvements has
allowed the application of proteomics nonmodel microorganisms, which have been deeply described as a
novel source of metabolites. Between them, Nannochloropsis gaditana has been pointed out as an alternative
source of biomolecules. Recently, our research group has reported the first complete proteome analysis of
this microalga, which was analysed using the applied proteomics concept with the identification of 488
proteins with potential industrial applications. To validate our approach, we selected the UCA01 protein
from the prohibitin family. The recombinant version of this protein showed antiproliferative activity
against two tumor cell lines, Caco2 (colon adenocarcinoma) and HepG-2 (hepatocellular carcinoma),
proving that proteome data have been transformed into relevant biotechnological information. From
Nannochloropsis gaditana has been developed a new tool against cancer—the protein named UCA01.
This protein has selective effects inhibiting the growth of tumor cells, but does not show any effect on
control cells. This approach describes the first practical approach to transform proteome information in a
potential industrial application, named “applied proteomics”. It is based on a novel bioalgorithm, which
is able to identify proteins with potential industrial applications. From hundreds of proteins described in
the proteome of N. gaditana, the bioalgorithm identified over 400 proteins with potential uses; one of them
was selected as UCA01, “in vitro” and its potential was demonstrated against cancer. This approach has
great potential, but the applications are potentially numerous and undefined.

Keywords: microalgae; tumor-antiproliferative; protein; biomedicine; applied proteomics; indus-
trial application
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1. Introduction

Proteomics has become a crucial tool to reveal the molecular dynamics involved in
a wide range of biological processes. The importance of proteomics in the understanding
of biological processes is based on the functional information provided, which represents
the overall protein content of an organism, including post-translational modifications,
subcellular localization and protein–protein interactions, at a particular time and under
a particular set of conditions [1,2], becoming a useful technique for early pathogenic bacte-
rial identification, development of new antiviral drugs, identification of post-translational
modifications, determination of the most abundant proteins of the host and pathogen
during infection, finding of new therapeutic targets and biomarkers for the diagnosis of
several illness, etc. [3–6].

On the other hand, nonmodel organisms have been increasingly described as interest-
ing sources of novel bioproducts for human health, industry, agricultural applications and
biotechnology. The rapid development of sequencing technology and improvements in the
proteomics platforms have enabled the direct study of nonmodel microorganisms for the
discovery of new specialized metabolites [7–10]. Among them, marine microalgae have
recently awakened special interest due to their biological diversity, capacity to adapt their
metabolism to a broad variety of environmental conditions, their unique metabolic path-
ways, as well as their high protein content. Moreover, they can potentially produce specific
and new compounds, such as specific fatty acids, steroids, carotenoids, polysaccharides
and specific proteins and peptides among others with biological activity (e.g., antiprolifera-
tive, cytotoxic, anticancer, photoprotective, anti-infective, etc.) [11]. Due to the potential
applications of microalgae and being an eco-friendly product for the environment owing to
their capacity to fix atmospheric CO2, microalgae have been positioned in the center of EU
research policies and programmers, with the development of two main initiatives—Blue
growth and Bio-Based Industries (BBIs). Blue growth is a long-term strategy to support
sustainable growth in the marine and maritime sectors. BBI is a public-private partnership
between the EU and the Bio-based Industries Consortium with the main aim of promoting
initiatives to develop new bio-based products and markets. Both initiatives include the
development of new products from microalgae biomass.

The potential of microalgae in the production of proteins with biotechnological appli-
cation has been widely validated [12–16]. Nevertheless, there are only a few proteomics
approaches to microalgae, most of them related to biofuels production [11,17–20] with-
out any reference to the potential biotechnological use of this information [21–36]. Only
17 species have been studied from the several million different species of algae and microal-
gae [37]. The nonmodel organism used in this report was Nannochloropsis gaditana, that has
been described as a producer of several high value compounds and has been pointed out
as an alternative source of biomolecules for different biotechnological applications [38–42].
In addition, the availability of an N. gaditana genome sequence and transformation methods
make the investigations into this microalga easier, such as for evaluating the performance
of proteomic approaches [43]. However, there are only three previous proteomics analyses
developed on N. gaditana, which have been mainly subproteomes of specific organelles, such
as thylakoids [44]. Recently, our research group has reported the first complete proteome
analysis of N. gaditana under industrial conditions [21].

Many computational techniques, databases and tools have been developed in order to
resolve the growing size and complexity of the experimental proteomics datasets. Com-
putational tools used to analyze proteomes are diverse, including fully automated and
intuitive software tools that provide both quality control and biological interpretation of
protein and Post-translational modification (PTM) level data at the same time [45]. How-
ever, tools for the optimal functional interpretation of proteomes in relation to several
research questions are still scarce, making the development of new approaches necessary
to increase the existing knowledge [46,47] and hopefully to develop biotechnological tools.
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In the present work, the potential of microalgae has been combined with a new con-
cept of using proteomics dataset, generating the “Applied proteomics” concept. Thus,
proteomics data are combined with patents databases by a novel developed bioalgorithm,
allowing the comparison of the identified proteins within a proteomics study, with those
sequences registered in any patent document, revealing native proteins with direct indus-
trial applications. To validate our approach, from the proteome of N. gaditana, the UCA01
protein from the prohibitin family was randomly selected by the algorithm. The recom-
binant protein UCA01 (patent number: 201930775) showed its antiproliferative activity
against two tumor cell lines, Caco2 (colon adenocarcinoma) and HepG-2 (hepatocellular
carcinoma), but not against nontumor cells, proving that proteome data can be transformed
into relevant biotechnological information.

2. Results
2.1. Identified Protein Analysis

In a previous proteomic approach of N. gaditana performed by our group, 1950 proteins
were identified, 655 of which were detected in all the employed samples and replicates [21].
In the present manuscript, this proteome was used to go through a second bioinformatic
algorithm, where the search of identified proteins from N. gaditana was carried out against
patented proteins database (Patent Protein database NRPL2 [48]). This new analysis
showed that 488 proteins from the N. gaditana proteome showed sequence similarity with
14,718 proteins published in the Patent Protein NRL2 database (Supplementary Figure S1,
sequence alignment of the sequencing results). Among those patents’ hits, 181 were related
to “Cancer”; 122 were related to “Tumor”; 11 were related to “Metastases/Metastatic”. One
of the N. gaditana proteins that showed similarity with some hits related to “Cancer” and
“Tumor” was the protein annotated as “Prohibitin” (Uniprot accession number: W7TLA3).

Taking this into consideration, an analysis of the prohibitin sequences contained in
N. gaditana genomes published in the databases was performed [49]. There were three
nucleotide sequences of N. gaditana recorded in The European Nucleotide Archive (ENA)
(https://www.ebi.ac.uk/ena), whose protein products belong to Prohibitin family of
the stomatin, prohibitin, flotillin, and HflK/C (SPFH) superfamily. One of these coding
sequences (CDSs) was EWM24278, the nucleotide sequence of the prohibitin presented in
our algorithm search (uniprot accession: W7TLA3). This nucleotide sequence was the result
of the Nannochloropsis gaditana strain:B-31 Genome sequencing (study: PRJNA170989) [50].
The others sequences, EWM26807 and EKU22077, were described by the Nannochloropsis
gaditana strain:B-31 Genome sequencing (Study: PRJNA170989) [50] and the Nannochloropsis
gaditana CCMP526 Genome sequencing (Study: PRJNA73791) [51], respectively. These last
two sequences were the same, only differing in an initial 108 bp/36 aminoacid fragment
that EWM26807 possesses compared to EKU22077 (Supplementary Figure S2. Comparative
sequence between EWM26807 (W7TL69) and EKU22077 (K8YWQ7)).

Additionally, a phylogenetic analysis of the three sequences was performed in order
to reveal which type of prohibitin each of them was (Figure 1). This analysis showed that
EWM24278 clustered together with Prohibitin (PHB) type 1 (PHB1) genes and EWM26807
and EKU22077 clustered together with the type 2 (PHB2).

2.2. Heterologous Expression and Purification of Recombinant UCA01

Heterologous expression of UCA01 from cDNA (Supplementary Figure S3. Amplifica-
tion of UCA01 DNA) was performed in order to purify and analyze its biological activity
and the correct induction of the expression of N. gaditana recombinant protein by E. coli was
checked by visualizing proteins in an acrylamide SDS-PAGE gel (Supplementary Figure S4.
Expression of UCA01 in Rosetta gami), where it the induction of the recombinant prohibitin
expression with the addition of a minimum concentration of 0.6 mM Isopropyl-β-D-1-
thiogalactopyranoside (IPTG) was finally confirmed (Supplementary Figure S4. Expression
of UCA01 in Rosetta gami). Bands E and F from SDS-PAGE gel (Supplementary Figure S5.

https://www.ebi.ac.uk/ena
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UCA01 Purification) were extracted and analyzed by mass spectrometry (MS). This analysis
showed the identification of peptides belonging to two different proteins.
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Figure 1. Evolutionary relationships of several described prohibitin nucleotides sequences and the 3 putative prohibitin
of N. gaditana. Evolutionary analyses were conducted in MEGA X using pairwise deletion option 57. The phylogenetic
tree was constructed using the Neighbor-Joining method [52] for the evolutionary history and the Maximum Composite
Likelihood method [53] to compute the evolutionary distances. The bootstrap test was evaluated by 1000 replicates and the
results are shown next to the branches [54].

One of them (Prohibitin OS = Nannochloropsis gaditana GN = Naga_100018g43
PE = 4 SV = 1/UniProt Accession: W7TL69) presented a 55.6% (28–29 peptides) coverage
compared to a 3.7% (1 peptide) coverage of the other identified protein (elongation factor Tu,
chloroplastic, OS = Nannochloropsis gaditana, GN = tufa, PE = 3, SV = 1/UniProt Accession:
K9ZWB2), confirming the predominant presence of a type-2 prohibitin of N. gaditana in
the purified elution sample. Comparing the amino acid sequence of two type-2 prohibitin
proteins of N. gaditana (Uniprot Accession: W7TL69 and K8YWQ7), it was shown that
the percentage of coverage of K8YWQ7 (UCA01) with the identified peptides related to
prohibitin in the MS analysis was 62.82%, greater than the coverage of W7TL69 (Figure 2).
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2.3. Antiproliferative Activity against Human Tumor Cells of N. gaditana Recombinant UCA01

Antiproliferative activity evaluation of the selected N. gaditana UCA01 was carried
out on three different human cell lines: two tumor cell lines, Caco-2 (colon adenocarci-
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noma) and HepG2 (hepatocellular carcinoma) and a nontumor cell line (control cell line),
EA.hy926 (endothelial cell line). The study was performed in each cell line under culture
conditions indicated by the American type culture collection (ATCC, Manassas, VA, USA).
Then, cells were incubated in 96-well plates at 37 ◦C, using different UCA01 protein con-
centrations and incubation times, as described in the materials and methods. After the
incubation, cell viability was analyzed using a fluorescent detection method. This analysis
showed that UCA01 inhibited the proliferation and cell viability of the human cancer cell
lines, the liver cancer cell line HepG2 and the colon cancer cell line Caco-2 (Figure 3A,B),
demonstrating for the first time the antiproliferative activity against human tumor cells
of the N. gaditana recombinant protein UCA01 and of a type-2 PHB (PHB2). In addition,
the antiproliferative effect in Caco-2 presented a trend of positive correlation with the
concentration of recombinant UCA01—as protein concentration increases, so does the
inhibition of proliferation in this cell line. On the other hand, N. gaditana UCA01 did not
show antiproliferative effect against the EA.hy926 endothelial cell line—i.e., the nontumor
cell line (Figure 3C). This result suggests that this protein has a selective effect, acting only
on these tumor cell lines, but not against nontumor cells.

 

Figure 3. Antiproliferative effect of the recombinant UCA01 of N. gaditana. Antiproliferative effect was 
evaluated using different prohibitin or dimethylsulfoxide (DMSO) (vehicle) concentrations on human cell 
lines: (A) HepG2 (tumor cell line) after 24h of contact; (B) Caco-2 (tumor cell line) after 24h of contact; (C) 
EA.hy926 (nontumor/control cell line) after 6h and 72h of contact. The dashed line represents 100% cell 
viability obtained with each cell line without treatment. Data are expressed as means ± standard errors of 
the mean (SEM). For statistical analysis, Student's t-test was used to compare each datum with the vehicle 
control DMSO (*p ≤ 0.05; **p ≤ 0.01 and ***p ≤ 0.001). 

 

Figure 3. Antiproliferative effect of the recombinant UCA01 of N. gaditana. Antiproliferative effect was evaluated using
different prohibitin or dimethylsulfoxide (DMSO) (vehicle) concentrations on human cell lines: (A) HepG2 (tumor cell line)
after 24 h of contact; (B) Caco-2 (tumor cell line) after 24 h of contact; (C) EA.hy926 (nontumor/control cell line) after 6 h
and 72 h of contact. The dashed line represents 100% cell viability obtained with each cell line without treatment. Data are
expressed as means ± standard errors of the mean (SEM). For statistical analysis, Student’s t-test was used to compare each
datum with the vehicle control DMSO (* p ≤ 0.05; ** p ≤ 0.01 and *** p ≤ 0.001).

3. Discussion

Currently, proteomics has become a main tool for understanding the molecular dynam-
ics involved in biological processes, in conjunction with other “omics” techniques [37,50,55].
The importance of proteomics to unravel biological processes is due to the functional infor-
mation provided by the proteome, which shows the set of proteins involved at a particular
time and under specific conditions, including post-translational modifications, subcellular
location and protein–protein interactions [51,56].

On the other hand, microalgae have demonstrated the ability to help the main prob-
lems derived from human activities, such as the greenhouse effect or the protection of
ecosystems [37]. These characteristics have turned microalgae into one of the key points
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of the “Blue growth” policies of the European Union—the revalorization of microalgae
biomass [57]. The existence of several million species of microalgae, in comparison with
terrestrial plants with 250,000 species, positions microalgae as ideal candidates to discover
new products.

The assays carried out during this investigation present a new approach, adding to the
possibilities of proteomics studies. To achieve this, the N. gaditana proteome was analyzed
by means of a bioinformatics algorithm developed for this investigation. This algorithm
allows the identification of existing proteins in N. gaditana with potential industrial applica-
tions, comparing the proteome with patent databases. This has led to the development of
an important biotechnological tool, creating a new concept “Applied Proteomics”. This
novel tool allows the transformation of proteome information into industrial information
by highlining those listed proteins with potential biotechnological applications [21].

Once the proteins have been correlated with their potential industrial applications,
it was necessary to conduct a study to select a protein of interest and test the hypothesis
and the potential of “Applied Proteomics”. The protein UCA01 (K8YWQ7) was selected
because it belongs to the prohibitin family, a group of proteins described in humans as
multifunctional proteins. Among its functions, the upregulation of p53 protein activity,
known as the guardian of the human genome, has been described. The p53 protein has the
ability to control cell mitosis, reduce oxidative stress (antioxidant) and prevent mitochon-
drial dysfunction [58]. The protein UCA01 (K8YWQ7) has been compared with different
prohibitins through different software tools. Clustal Omega software was used to compare
UCA01 with other prohibitins presents in N. gaditana (Supplementary Figure S2. Compara-
tive sequence between EWM26807(W7TL69) and EKU22077(K8YWQ7)), and MEGA X was
used to compare with prohibitins present in other organisms (Figure 1). Results allowed us
to catalog the protein UCA01 as prohibitin type number 2 (PHB2).

Prohibitin (PHB) is a protein that, in humans, is encoded by the PHB gene. The PHB
gene has also been described in unicellular eukaryotes and pluricellular eukaryotes, such as
animals, fungi or plants. Prohibitins are classified into two types based on their similarity
to yeast PHB1 and PHB2, named Type-I and Type-II prohibitins, respectively [58,59]. Both
PHB1 and PHB2 are members of a superfamily SPFH, which includes, in addition to
prohibitins, stomatin, flotillin and HflKC. Each organism has at least one copy of each
type of prohibitin gene [60,61]. Depending on the cellular localization, nucleus, cytosol, or
mitochondria, PHB1 and PHB2 have distinctive functions, mainly within mitochondria.
Due to their multiple functions in mitochondria, PHBs have been reported to be altered in
various pathological conditions, such as cancer [62].

Several publications have showed differential expression of PHB1 and PHB2 in cancer
cell lines compared to normal tissues, verifying that PHB1 and PHB2 are involved in
biological processes of tumorigenesis, such as cancer cell proliferation [63]. PHB1 has been
well identified as a potential tumor suppressor with antiproliferative activity in mammalian
cells [64–66]. By contrast, PHB2 has only been highlighted as a promising antiproliferative
agent, but this activity has not been demonstrated yet. This suggests that it could be
interesting to perform a further analysis of the type-2 PHB gene. From the type-2 N. gaditana
prohibitins sequences, EKU22077 was the only one contained in the gene database of NCBI.
This is a searchable database of genes, focused on genomes that have been completely
sequenced and that have an active research community to contribute gene-specific data. For
this reason, EKU22077 (GenBank accession number: XM_005854224.1/GenPept accession
number. XP_005854286/UniProt accession no. K8YWQ7) was the selected sequence
to be deeply characterized by molecular and biochemical analysis, instead of selecting
EWM26807 (GenPept accession number. EWM26807/UniProt accession: W7TL69). The
selected sequence K8YWQ7 was renamed as UCA01.

The renamed protein UCA01 (patent number: 201930775) was synthesized in vitro and
purified. Its biological activity was demonstrated against two human tumor lines (Caco-2
and HepG2), where the UCA01 protein was shown to inhibit the normal growth of both
tumor lines (Figure 3). The effects of the UCA01 protein were also studied in a notumor
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human line, specifically the EA.hy926 line; in this cell line, the protein did not show any
inhibition. So, this assay has demonstrated the selective character of UCA01, showing an
antiproliferative effect on the Caco-2 and HepG2 tumor lines, while it showed no effect
on the EA.hy926 nontumor line (Figure 3). Differences observed between Caco-2 and
HepG2 in terms of effective antiproliferative concentrations are in line with recent previous
reports showing differences in values obtained in these cell lines [67–69]. The relevance
of discovering an antiproliferative protein in a microalga demonstrates the potential that
microalgae have in the search for new compounds that could help humans and, of course, the
potential of “Applied Proteomics” to identify them. The obtention of new compounds with
antiproliferative activities against tumor cells from recombinant proteins opens a new path
to replace existing treatments, which are very aggressive and with widely nondesirables side
effects in patients [70]. In addition, this work describes, for the first time, the antiproliferative
activities against human tumor cells of the N. gaditana recombinant protein belonging to the
prohibitin family and of a type-2 PHB (PHB2) have been reported.

Therefore, the synthesis of a new tool (UCA01) to fight against tumor diseases, such
as cancer, based on the new concept of applied proteomics, was achieved. The proteome of
N. gaditana, has allowed us to identify 488 proteins with potential industrial applications.

4. Materials and Methods
4.1. Construction and Phylogenetics Analysis

In order to identify of N. gaditana proteins with industrial interest, a new algorithm was
developed using the proteomic data previously generated by our group 14. The development
of the algorithm was carried out at the Bioinformatics unit at University of Córdoba. This
algorithm allows us to cross the proteins identified in Fernández-Acero et al.’s 2019 study with
the United States patent database. This algorithm evaluates the putative industrial interest
of the identified proteins by comparing sequence information with those proteins already
involved in any patent document. Thus, a prohibitin coding protein of N. gaditana was selected
according to its putative industrial application. The prohibitins presents in N. gaditana were
searched in NCBI and Uniprot database (https://www.uniprot.org/). The existing sequences
were compared using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/).

For phylogenetic tree construction, multiple alignments were made with ClustalW
and evolutionary analyses were conducted in MEGA X [71]. The evolutionary history
was inferred using the Neighbor-Joining method [52]. The evolutionary distances were
computed using the Maximum Composite Likelihood method [53] and branch support
analysis was evaluated by 1000 ultrafast bootstrap replicates.

4.2. Heterologous Expression and Purification of Recombinant UCA01
4.2.1. RNA Extraction, cDNA Synthesis and PCR Amplification

Total RNA was isolated following the indications of the NucleoSpin RNA® commercial
kit (Macherey-Nagel). The cDNA synthesis amplification was realized with the qScript®

commercial kit (Quanta Biosciences) through RT-PCR, following the kit instructions. PCR
amplification was performed using the Phusion Flash High-Fidelity PCR Master Mix
commercial kit (Thermo Scientific). The reaction conditions were: 2x Phusion Flash PCR
Master Mix 25 µL, 10 µM, for Hypothetical protein (XM_005854224.1). “Forward primer”:
5′-GGC ATA TGT CTC CAG CAG GAC CGC TGG-3′ (cut site for NdeI) 2.5 µL, 10 µM “Re-
verse primer”: 5′-GGG TCG ACC TAC CGC TTC TTT CCA GAC TTC-3′ (cut site for SalI)
2.5 µL, cDNA (65 ng/µL) 2 µL and 18 µL water were used for a 50 µL reaction volume.
The primers were designed with OligoCalc Software (version 3.27) based on the informa-
tion of the prohibitin gene of N. gaditana (GenBank accession no. XM_005854224.1). The
amplification conditions were: initial denaturation at 98 ◦C, 10 s, followed by 30 cycles at
98 ◦C, 1 s, 72 ◦C at 5 s and 72 ◦C at 15 s. Final extension cycle was at 72 ◦C for 3 min and
the final storage step was at 4 ◦C. The amplified products were checked in agarose gel (1%),
the electrophoresis have realized 1 h at 110 V, and stained with Gel-Red. Amplification
fragments were sequenced (Stab Vida®, Lisboa Portugal).

https://www.uniprot.org/
https://www.ebi.ac.uk/Tools/msa/clustalo/
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Obtained sequences were checked using Blast (“BLAST: Basic Local Alignment Search Tool”).

4.2.2. Amplified Fragment Purification

Purification was performed with GeneJET Gel Extraction Kit (Thermo Scientific, Waltham,
MA, USA). The purified fragment from the gel bands was visualized by a 1% agarose gel run
for 1 h at 110 V and stained with Gel-Red.

4.2.3. Digestion with Restriction Enzymes

In order to “linearize” the pET28a vector (Novagen, Sacramento, CA, USA) to allow
for the ligation of the UCA01 fragment, the following reaction was carried out: 7 µL of
pET28 (2 µg), 10 µL of 10X Buffer D (brand), 2 µL of NdeI (10 U/µL; brand), 2 µL of SalI
(10 U/µL; brand) and 79 µL of water, for a total reaction volume of 100 µL. It was incubated
for 4 h at 73 ◦C. Then, 11 µL of FastAp 10X buffer and 2 µL of alkaline phosphatase (1 U/µL;
brand) were added and the reaction was incubated for 1 h at 37 ◦C.

4.2.4. Plasmid (pET28a) Plus Amplification Product Construction

Plasmid and amplification products were purified with the GeneJET Gel Extraction
(Thermo Scientific) commercial kit. The products obtained after using the commercial kit
were checked in agarose gel trough electrophoresis for 1 h at 110 V and the staining was
performed with Gel-Red.

In total, 3 µL of vector (pET28a(+), 5369 bp) (12.8 ng/µL) with 10 µL of insert UCA01
(16.4 ng/µL) were mixed. The mix was incubated for 5 min at 70 ◦C, cooling afterwards
on ice for 15 min. After, 5 µL of 5X Rapid Ligation Buffer, 1 µL ADN ligasa T4 enzyme
(5 U/µL) (Thermo Scientific) and 13 µL nuclease free water were added. Total volume
reaction was 25 µL and it was incubated at 22 ◦C for 1 h.

4.2.5. Competent E. coli Cells Transformed with PET28a-UCA01 Construction

For the transformation procedure, competent E. coli top 10 (store strain, chemically
competent, Invitrogen, USA) and E. coli Rosetta gami 1 (DE3) (expression strain, Novagen),
cells were used, following the next protocol: 5 µL of the ligation mixture was added into
50 µL of the competent cells, gently mixed with the pipette and incubated on ice for 20 min.
Then, a thermal shock of 42 ◦C was applied for exactly 45 s and then immediately incubated
on ice for 5 min. Subsequently, 200 µL of LB medium were added, which was incubated for
1 h at 37 ◦C with stirring (200 rpm). Then, solid medium plates (LB/Kanamycin, 50 µg/mL)
were spread with the mixture and incubated overnight at 37 ◦C.

4.2.6. UCA01 Transform Isolation

To verify the correct transformation of the competent cells, the commercial kit GeneJET
Miniprep (Thermo Scientific) was used to extract the isolated plasmid. Colony PCR were
performed to verify that the transformation of both E. coli strains and the assembly of the
plasmid with the insert had been correctly carried out.

4.2.7. Induction of UCA01 Protein Expression

E. coli Rosseta gami 1 (DE3), transformed with the vector pET28Luci (complete gene)
and with pET28, respectively, was incubated at 37 ◦C. Subsequently, fresh medium LB-
kanamycin (50 µg/mL) was inoculated, and the culture was incubated at 37 ◦C with stirring
(250 rpm) until reaching an optical density at 600 nm of 0.5–0.6. To induce protein expres-
sion, Isopropyl-β-D-1-thiogalactopyranoside (IPTG) was added until at a concentration
of 1mM and incubated at 37 ◦C with stirring (250 rpm) for 2.5–3 h. Then, 1 mL of the
induced culture was taken and mixed with 350 µL of resuspension buffer under native
conditions (50 mM NaH2PO4-H2O, 300 mM NaCl, 10 mM imidazole, pH 8.0). The mix was
frozen (−80 ◦C) and thawed four times, and then it was sonicated (60% amplitude) and
centrifuged for 20 min at 8000 rpm. The soluble fraction was taken from the supernatant
and the remaining pellet was resuspended in 350 µL of solubilization buffer under native
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conditions. The results were visualized by 10% SDS-PAGE, run at 200 V for 45 min and
stained with Coomasie blue.

4.2.8. UCA01 Recombinant Protein Purification

The purification of the recombinant protein was performed with His Spin Trap com-
mercial kit (GE Healtcare), under denaturing conditions, and according to the manufac-
turer’s instruction. Binding buffer (20 mM Tris-HCl, 8 M urea, 500 mM NaCl, 5 mM
imidazole, pH 8.0 + 1 mM β-mercaptoethanol) and elution buffer (20 mM Tris-HCl, 8 M
urea, 500 mM NaCl, 500 mM imidazole, pH 8.0 + 1 mM β-mercaptoethanol) were used.
The results were visualized by SDS-PAGE (10%), run at 200 V for 45 min and stained
with Coomasie blue. Samples were then lyophilized for further testing. Six samples
were purified with a content between 1.2 and 2.74 µg of protein (total = 10.46 µg of pro-
tein).Antiproliferative activity was exhibited against human tumor cells of N. gaditana
recombinant UCA01.

Lyophilized samples were initially solubilized with dimethylsulfoxide (DMSO) at
pH = 2, and subsequently, for application to cell cultures, diluted in DMEM culture
medium (ATCC) supplemented with 100 U/mL penicillin and 100 µg/mL streptomycin
(PAN Biotech), until a final DMSO concentration less than 0.5% was reached. Six samples
were purified with a content of protein between 1.2 and 2.74 µg (total = 10.46 µg of protein).

The following cell lines obtained from the American type culture collection (ATCC,
Manassas, VA, USA) were used:

• Human colorectal adenocarcinoma epithelial cell line: Caco-2 (ATCC® HTB-5 37);
• Human hepatocellular carcinoma cell line: HepG2 (ATCC®-HB-8065);
• Human endothelial cell line EA.hy926 (ATCC® CRL-2922 ™).

Cell lines were cultured at 37 ◦C and 5% CO2 in the cell culture medium recommended
by the ATCC. For the Caco-2 cell line, the EMEM (Eagle’s Minimal Essential) medium was
used and, for the HepG2 and for EA.hy926 cell lines, the DMEM (Dulbecco’s Modified
Eagle) medium. These media were supplemented with 10% fetal bovine serum (FBS) and
100 U/mL penicillin and 100 µg/mL streptomycin.

The evaluation of the antiproliferative activity in the cells in contact with the UCA01
was analyzed in the indicated human cell lines. For this, the cells were grown in 96-well
plates and incubated with a range between 0.7 and 0.003 µg/mL of UCA01 at different
incubation times. In HepG2 and Caco-2 cells, the incubation time was 24 h, while in the
nontumor cell line, EA.hy926, the incubation times were 6 and 72 h. After the incubation
period, cell viability was evaluated by a fluori-colorimetric assay with the alamarBlue®

reagent (Invitrogen, Carlsbad, CA, USA). Fluorescence was measured at λexc/λem of
540/590 nm by a Fluostar Optima plate spectrofluorimeter (BMG Labtechnologies, Orten-
berg, Germany). Given the direct relationship between fluorescence units and cell viability,
the viability calculation was made with respect to the control cells without treatment, using
the following formula:

% Cell Viability = (Sample Fluorescence Units/Control Fluorescence Units) × 100.

At least two independent experiments with triplicates were performed for each de-
termination. Statistical significance between different conditions was assessed using the
Student’s t-test with a Welch’s correction applied in case of significantly different variances
(F test). A value of p ≤ 0.05 was considered significant.

5. Conclusions

Currently, proteomics is a fundamental tool for unraveling the molecular dynamics
involved in different biological processes due to the functional information provided by the
proteome [37,50,55]. This investigation has opened a new approach to the possibilities of
proteomic studies. Analyzing the N. gaditana proteome with a new developed bioinformat-
ics algorithm has allowed the identification of N. gaditana proteins with potential industrial
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applications. This has led to the development of a new concept “Applied Proteomics”,
which has transformed the proteome of a microalga into an information of high industrial
value. Analyzing the proteome of N. gaditana has permitted the identification of 488 pro-
teins with potential industrial applications. Between them, the biological activity of the
selected protein (UCA01) was demonstrated against two human tumor lines (caco-2 and
HepG2), where the UCA01 protein showed antiproliferative activity against both tumor
cell lines. This study has demonstrated, for the first time, the potential antitumor activity of
the N. gaditana recombinant prohibitin UCA01 and the suggested antiproliferative activity
of a type-2 PHB (PHB2). This represents the synthesis of a new first approach with great
potential against tumor diseases, based on the new concept of applied proteomics.
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