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ABSTRACT Alternative splicing leverages genomic content by allowing the synthesis of multiple transcripts
and, by implication, protein isoforms, from a single gene. However, estimating the abundance of transcripts
produced in a given tissue from short sequencing reads is difficult and can result in both the construction of
transcripts that do not exist, and the failure to identify true transcripts. An alternative approach is to catalog
the events that make up isoforms (splice junctions and exons). We present here the Event Analysis (EA)
approach, where we project transcripts onto the genome and identify overlapping/unique regions and
junctions. In addition, all possible logical junctions are assembled into a catalog. Transcripts are filtered
before quantitation based on simple measures: the proportion of the events detected, and the coverage.
We find that mapping to a junction catalog is more efficient at detecting novel junctions than mapping in a
splice aware manner. We identify 99.8% of true transcripts while iReckon identifies 82% of the true
transcripts and creates more transcripts not included in the simulation than were initially used in the
simulation. Using PacBio Iso-seq data from a mouse neural progenitor cell model, EA detects 60% of the
novel junctions that are combinations of existing exons while only 43% are detected by STAR. EA further
detects �5,000 annotated junctions missed by STAR. Filtering transcripts based on the proportion of the
transcript detected and the number of reads on average supporting that transcript captures 95% of the
PacBio transcriptome. Filtering the reference transcriptome before quantitation, results in is a more stable
estimate of isoform abundance, with improved correlation between replicates. This was particularly evident
when EA is applied to an RNA-seq study of type 1 diabetes (T1D), where the coefficient of variation among
subjects (n = 81) in the transcript abundance estimates was substantially reduced compared to the estima-
tion using the full reference. EA focuses on individual transcriptional events. These events can be quantitate
and analyzed directly or used to identify the probable set of expressed transcripts. Simple rules based on
detected events and coverage used in filtering result in a dramatic improvement in isoform estimation
without the use of ancillary data (e.g., ChIP, long reads) that may not be available for many studies.
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BACKGROUND
RNA-seq is a powerful tool for profiling gene expression, and has been
employed to quantitate expression, and infer allele specific expression
and alternative splicing (e.g., (Mortazavi et al. 2008; Main et al. 2009;
Wang et al. 2009; Montgomery et al. 2010; Nagalakshmi et al. 2010;
Pastinen 2010; Graze et al. 2012; Dalton et al. 2013; Korir and Seoighe

2014; Leon-Novelo et al. 2014; Akin et al. 2016; Fear et al. 2016;
Goldstein et al. 2016; Kang et al. 2016; Nellore et al. 2016; Newell
et al. 2016)). The importance of alternative splicing has led to the de-
velopment of numerous algorithms to estimate isoform abundance
from RNA-seq data, including Cufflinks (Trapnell et al. 2012), RSEM
(Li et al. 2010; Li and Dewey 2011), and eXpress (Roberts et al. 2011;
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Roberts and Pachter 2013), and more recently iReckon (Mezlini et al.
2013) and CIDANE (Canzar et al. 2016), and others (e.g., (Jiang and
Wong 2009; Nicolae et al. 2011; Turro et al. 2011; Li and Jiang 2012;
Sun 2012; Sturgill et al. 2013; Glaus et al. 2012; Patro et al. 2014; Nariai
et al. 2014; Lee et al. 2015)). The accurate identification of an individual
transcript requires the presence of at least one exon or splicing event
unique to that transcript (Cloonan et al. 2008; Liu et al. 2016b). How-
ever, there are transcript isoforms that contain no events unique to that
isoform. Even when a unique event is detected in one isoform, reads
mapping to non-unique portions of the transcript cannot be assigned
with certainty. Recent evaluations conclude that while some algorithms,
such as RSEM, perform better than others in simulations or particular
example data, there are, unsurprisingly, errors in all current methods
(Angelini et al. 2014; Kanitz et al. 2015; Ding et al. 2017; Williams et al.
2017; Tardaguila et al. 2018). Alternatives to isoform estimation include
focusing on differential abundance of junctions (Zhang et al. 2012;
Rezaeian et al. 2016) and alternative exon inclusion (Katz et al. 2010).
These event-based approaches have the benefit of not propagating the
uncertainty of an isoform estimate in inferences about splicing. Tests of
differential splicing are then exon based or exon/junction based (e.g.,
(Anders et al. 2012)). However, there are drawbacks with these ap-
proaches, as currently implemented, that include an increased multiple
testing burden, difficulties in making inferences about the impact of splic-
ing for a particular gene, and challenges in identifying patterns in results.
Here, we generalize the event- or feature-based analysis approach to
assessing alternative splicing, resulting in a number of improvements in
sensitivity and specificity, and in improved replicate-to-replicate con-
cordance of transcript estimates. We take advantage of prior observa-
tions from long read PacBio data indicating that, while there are many
novel isoforms detected (Sharon et al. 2013; Tombácz et al. 2016;Wang
et al. 2016; Tardaguila et al. 2018), most are new combinations of
known components (Au et al. 2013; Tardaguila et al. 2018). Nellore
et al. (Nellore et al. 2016) studied more than 20,000 human RNA-seq
samples derived frommultiple cell types and found that that only 3.5%
of junctions are not derivable in from existing genome annotations in
some form, and that 81.4% are from already annotated transcripts. We
also note that in the literature, there are examples of identified novel
transcripts of several genes that are comprised of new combinations of
known splice sites, frequently those that are the result of a variant
inducing an exon-skipping event (Booms et al. 1999; Hide et al.
2001; Zhou et al. 2010; Lim et al. 2011; Eswaran et al. 2013; Kim
et al. 2013b; Gabreski et al. 2016). This suggests that an augmented
reference consisting of probable new events based on the set of existing
transcripts can be developed. Here we present Event Analysis (EA), a
strategy for pre-filtering sample-specific transcriptomes to improve
transcript quantification. Basically, we expand the reference catalog
by including all plausible events based on known exons and annotate
all events. Then, for a particular RNA-seq sample, we quantitate events
and use this information to calculate summarymeasures for transcripts
which are used to filter the transcriptome of that sample. When the
resulting filtered set of likely expressed transcripts is used as input for

transcript quantification by RSEM (Li and Dewey 2011) or eXpress
(Roberts and Pachter 2013) the correlation between replicates is im-
proved compared to use of the unfiltered reference. Mapping to an
expanded catalog identifies more true junctions compared to mapping
using splice aware techniques (Dobin et al. 2013) both in simulation
and in data from mouse neural progenitor cells. Filtering based on
events results in more accurate estimates of the transcriptome than a
state of the art combination de novo/annotation method iReckon
(Mezlini et al. 2013). In a large scale RNA-seq experiment in different
cell types of�100 individuals with type 1 diabetes (T1D) we show that
our approach substantially decreases the coefficient of variation for
estimates of isoform abundance across samples.

METHODS

Simulated data
Polyester (Frazee et al. 2015) was used to simulate reads for the mouse
genome based on two scenarios. For the first simulation (Simulation 1), a
set of highly expressed geneswith few isoforms per genewas designed. This
represents a best case scenario. Here, 10,000 RefSeq transcripts were ran-
domly selected. The only restriction that was placed on transcript selection
was that it could not come from a gene with an exonic sequence shared
across more than one gene, thus avoiding regions of genic ambiguity. The
results was a set of 10,000 transcripts representing 7,876 genes. Paired end
reads were simulated for 6 replicates at 100· coverage (approximately 53.4
million paired end reads per sample). Read size was set to 2·56 bp (match-
ing themouse neural data below). A second simulation (Simulation 2) was
performed using all 467 annotated RefSeq transcripts from 59 genes, and
represents a small-scale scenario where all transcripts of a gene are
expressed (approximately 1.4 million paired end reads per sample). Genes
were selected to represent a variety of difficult to resolve multi-transcript
situations – the worst case scenario (see File S1). These simulated datasets
are available at https://github.com/McIntyre-Lab/events.

Mouse RNA-seq data
RNA-seq data from mouse neural progenitor cells (NPCs) and oligoden-
drocyte precursor cells (OPCs) used in this analysis were generated as
described in Tardaguila et al. (Tardaguila et al. 2018) and are available
from the NCBI Sequence Read Archive (study accession number
SRP101446). Briefly, NPCs were isolated from the subventricular zone
of killed neonatal c57/BL6 mice. NPCs were cultured as neurospheres in
EGF/bFGF-supplemented media, and OPCs were derived by differentiat-
ing NPCs with All Trans Retinoic Acid. Total RNAwas isolated using the
Nucleospin RNA kit (Macherey-Nagel). Two biological replicates were
performed for each cell type. RINs (RNA Integrity Numbers) were be-
tween 10 and 9.7 for all samples. Full-length cDNAwas synthesized using
the SMARTer PCR cDNA Synthesis kit (Clontech, version 040114) fol-
lowing PacBio recommendations. The reaction input was 1 mg of total
RNA. Two first-strand cDNA synthesis reactions were performed per
sample. First strand cDNA was then divided into nine PCR reactions
ultimately yielding approximately 14–16mg full-length cDNA per sample
(Tardaguila et al. 2018). The same cDNA preparation from each sample
was used to prepare both Illumina and PacBio sequencing libraries. Illu-
mina sequencing was performed at the Interdisciplinary Center for Bio-
technology Research (University of Florida) with the Illumina Nextseq
instrument using Nextera tagmentation, resulting in approximately
60 million 56 bp single end reads per sample (Tardaguila et al. 2018).

Mouse long read validation data
PacBio sequencing was performed as per the Iso-Seq protocol using
P4-C2 chemistry at the Interdisciplinary Center for Biotechnology
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Figure 1 (A) Example of alignment of reads to three transcripts of an example gene, and are displayed relative to their positions in the gene.
Exons are labeled sequentially by their 59 start and 39 end positions relative to the orientation of their respective gene, and exons with the same 59
start and 39 end positions are considered to be the same exon. Reads mapping to exonic regions or exon-intron borders are indicated by single
bars, and reads mapping to junctions are denoted by pairs of bars connected by a line. Reads can map to sequences unique to a single transcript
(blue, yellow, red), multiple transcripts (gray), theoretical junctions not present in any transcript (brown with white fill) or exon-intron boundaries
(teal). (B) Exons, exonic regions and exon fragments. This example shows exons that differ in donor and acceptor sites. The exonic region is
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Research (University of Florida). The samecDNAused for theRNA-seq
experiments was fractionated into three fractions (1-2kb, 2-3kb and
3-6kb) using BluePippin and sequenced on the RSII instrument using a
total of eight SMRT cells per sample (two SMRT cells for the 1-2kb
fraction, three SMRTcells for the 2-3kb and3-6kb fractions), generating
approximately 0.6M reads of insert (Tardaguila et al. 2018).

T1D RNA-seq data

RNA-seq data were obtained from three major classes of lymphocyte
(CD4+Tcells,CD8+Tcells andCD19+Bcells) from82T1Dcases from
the Type 1 Diabetes Genetics Consortium, as previously described
(Newman et al. 2017), and is available from NCBI database of Geno-
type of Phenotypes (dbGaP), accession number phs001426.v1.p1.
Briefly, peripheral blood mononuclear cells were fractionated by pos-
itive selection on antibody-coated magnetic beads into the three lym-
phocyte populations (CD4+ T cells, CD8+ T cells, CD19+ B cells).
Purities of these populations (.90%) were confirmed by flow cytom-
etry. RNA was purified and libraries were prepared and sequenced
(approximately 50 million 2·50bp reads per sample) in three pools
using the Illumina HiSeq 2000 platform at the HudsonAlpha Genome
Services Laboratory (Huntsville, Alabama). Individual cell samples with
low coverage were excluded from all analyses (2 CD4+ samples, 2 CD8
+ samples, 1 CD19+ sample). In total, there were 81 subjects with
sequencing data from at least one cell type were included, of which
79 subjects had usable sequencing data from all three cell types
(Newman et al. 2017).

Event Analysis

Creation of the Junction catalog: The first step of the EA approach
creates a junction catalog starting with existing junctions, and augment
this catalog by creating all possible logical junctions based on the set of
known exons andmap reads directly to junctions. Starting with a GFF3
file (e.g., Ensembl, RefSeq, UCSC, AceView, or an individually curated
custom reference) all junctions from logical combinations of exon pairs
within the gene going from 59-to-39 were generated (Figure 1). By
extending the 39 sequence of a donor exon, or the 59 region of an
acceptor exon into the neighboring intron, putative novel exon do-
nor/acceptors can be identified (Figure 1A, teal reads; Figure 1B, blue
arrows above exons; Table 1; Table 2; Table S1, Additional File 1). To
ensure that only currently annotated intronic sequences are evaluated
for putative novel donor/acceptor sites, the junction from the 59-most
donor exon and the junction from 39-most acceptor exon were used as
the starting points. The complete catalog contains all previously anno-
tated junctions; unannotated junctions that are novel combinations of
existing donor/acceptor sites; and potential novel new donor/acceptor
sites. The detection of previously unannotated junctions provides evi-
dence that a genemay be producing a novel isoform (e.g., see Figure 1A,
brown unfilled reads). We adopt the naming convention used by ASta-
lavista (Foissac and Sammeth 2007) and others, where each junction is

identified by the combination of chromosome (or scaffold, contig, etc.),
the last position of the donor exon, first position of the acceptor exon,
and strand (i.e., [chromosome]:[donor position]:[acceptor position]:
[strand]).

Exonic regions: The second step of event analysis is to identify all the
exonic regions. In higher eukaryotes, exons may overlap with one
another (e.g., due to alternative donors, alternative acceptors, alterna-
tive transcription initiation/termination sites, etc.). The exonic region
may be quantified without regard to differences in donor/acceptor sites
(Dalton et al. 2013; Graze et al. 2014; Fear et al. 2016; Newell et al. 2016)
to avoid double counting reads. In regions where differences are small
(less than 10 bp) there is no meaningful loss of information in this
approach. However, where exonic regions are comprised of overlap-
ping exons that differ measurably, the 59 and 39 positions of exons
within the exonic region are used to separate the region into exon
fragments. EA annotates each exon fragment within an exonic region
to indicate whether it is exclusive to a single exon or is shared among
sets of exons (Figure 1B) and is further annotated to transcripts.

Annotating events: EA annotates junctions based on whether they
exclude exons (exon-skipping splice junctions) or if they use alternative
59 and/or 39 splice sites (alternative donor junctions, alternative accep-
tor junctions). Exon-skipping junctions are defined as splice junctions
that exclude (“skip”) one or more exons that are situated in the refer-
ence annotation between the donor and acceptor site of the junction
(Figure 1, e.g., junction between exons E and I; Table 1). Where there
are multiple possible donor and/or acceptor sites within a group of
overlapping exons, all donors/acceptors are classified as “alternative”.
This follows a similar convention to other splicing definitions, such as
those used by AStalavista (Foissac and Sammeth 2007). Junction def-
initions are not mutually exclusive: a junction can utilize both alterna-
tive donor and alternative acceptor sites and also exclude one or more
intermediary exons (see examples in Figure 1, Table 1). The unanno-
tated, putative novel donor/novel acceptor sites may reflect unpro-
cessed transcript and intron retention events. To accommodate this
uncertainty EA annotates these as border junctions. The likelihood of
truly novel donor/acceptor sites is evaluated in a separate step based on
the experimental data that includes mapping information from the
adjoining exons/intron region. (Figure 2).

Events – junctions, exonic regions, and exon fragments – that are
only annotated in a single isoform in the reference database are classi-
fied as “unique”. Events that are common to a multiple but not all
isoforms are classified as “common”, while events that are annotated
in all isoforms are classified as “constitutive”. Events that are not an-
notated to any isoform are classified as “unannotated”. Non-unique
sequences can also result from the same event being shared in a set
of transcripts as well as genes within the same gene family that are
highly homologous. Uniqueness is expected to increase with longer
reads.When events are not unique among different genes, it is classified

defined as the genome co-ordinates where overlapping exons from different transcripts are found. Within the exonic region, sequences can be
classified based upon the exons that are annotated in the region. These exon fragments may be shared across all exons (black), unique to one
exon (blue, yellow, read) or common to a subset of exons (orange, green, purple). Within an exonic region, 39 (donor) sites and 59 (acceptor) sites
are classified as either the reference site (blue hatching) or an alternative site (red hatching). For each exonic region, a single border junction is
selected from sequences corresponding to unambiguous exon-intron borders. The exonic regions that comprise of only a single exon (i.e., exons
D, E, H and I) are termed single-exons. By definition single-exons have no fragments, and can be unique (exon G), common (exon H) or
constitutive (exon D and E) depending on their isoform membership. Examples of exons, exonic regions and exon fragments are demonstrated
with two real genes from the mm10 RefSeq annotations: (C) Psma3 (Entrez ID: 19167), consisting of 11 exonic regions and three transcripts that
share most of the same events; and (D) Rpl3 (Entrez ID: 27367), consisting of 10 exonic regions and two transcripts.
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as “multi-gene”. The complexity of resolving multi-gene events is well
known (Djebali et al. 2012; Treangen and Salzberg 2012) and multi-
gene events are not analyzed further. As more experiments are strand
specific, the incidence of multi-gene junctions and multi-gene exonic
regions will be reduced.

Mapping to the junction catalog: To apply EA to data, reads are
mapped to the junction catalog (Figure 3). For the RNA-seq data used
here, duplicate reads are removed and no other processing/trimming is
performed. Distinct (non-duplicate) RNA sequence reads are aligned as
single-ended reads to the set of cataloged junction sequences using the
Bowtie1 algorithm (version 0.12.9) (Langmead et al. 2009), allowing for
only a single alignment per read (parameter “-m 1”) and for up to three
mismatched nucleotides (“-v 3”).The “–tryhard” parameter, and the
“best” alignment in terms of stratum were reported using the options
“–best–strata–chunkmbs 1024”.

Mapping to the genome: The next step of EA is to map reads not
mapped to the junction catalog to the genome. Reads unmapped to
junctions weremapped to the genome (GRCm38/mm10 version for the
mouse data, GRCh37/hg19 version (release 73) for the T1D data) using
BWA-MEM (version 0.7.12) (Li 2013). Reads mapping to exon frag-
ments were identified using the BED file for the genomic regions de-
fining these events. Coverage is summarized as the average number of
reads per nucleotide (APN = number of reads aligning to region /
region length). For the simulated data, detection was defined as an
APN . 0 in at least three of the six samples. For the mouse neural
data, detection was defined as an APN. 0 for both replicates. For the
T1D data, detection was defined as an APN . 5 in at least 50% of
subjects per cell type (Newman et al. 2017).

Filtering transcripts: The EA process continues with a summarization
of the events as they map to transcripts. Each transcript consists of a
series of events (junctions and fragments) (Figure 1). To identify tran-
scripts that may be expressed and filter those that are likely not
expressed, EA uses simple measures that capture the elements deter-
mining the likelihood a transcript is expressed: coverage, the proportion
of events detected, and the proportion of unique events detected. EA
outputs a tab-delimited file containing these simple summary statistics.
Users can use this to decide what combination of detection, coverage
and uniqueness is to be used to filter transcripts. For example,

transcripts with no reads mapping to them are clearly not expressed
and can be filtered.

For each transcript, coverage is calculated by combining all of the
events for that transcript. Since the events are of varying lengths, EA
reports the average number of reads per nucleotide (reads in region/
length of the region: APN). APN can be interpreted directly: an APN of
2 means that an average of 2 reads cover that region. The proportion of
eventsdetected is calculatedbycounting thenumberof these eventswith
coverage (detected; APN. 0) and dividing this by the total number of
events in a transcript. Similarly, for transcripts with unique events the
proportion of unique events detected is calculated. The inclusion of
non-expressed transcripts in the reference can impact the expression
estimates of transcripts that are expressed (Liu et al. 2016b; Tardaguila
et al. 2018). Using the measures proposed, it is possible to filter tran-
scripts. For example, a transcript with no unique events but only 10% of
its events detected is a candidate for filtering. The measures, coverage,
proportion of events detected and proportion of unique events detected
are all given in the output of the code provided and so the users can set
their own filtering criteria. For the purposes of this manuscript, we
focus on several specific references: the complete RefSeq transcriptome
(i.e., no filtering), a reduced reference of transcripts with all their asso-
ciated events detected at APN . 0, and a reduced reference of tran-
scripts with at least 75% of their associated events detected at APN$ 5.

Splice aware mapping: STAR
Reads were aligned to the mm10 genome using STAR (version 2.5.4b)
(Dobin et al. 2013), using the alignment mode “EndToEnd” (no soft-
clipping), minimum allowable read junction overhang was set to 16 bp,
a maximum allowable junction overhang of 40 bp, up to three mis-
matches and no multimapping alignments were allowed. Junctions
were converted to genome in the format compatible with AStalavista
naming (chromosome, last position of donor exon, first position of
acceptor exon, strand) (Foissac and Sammeth 2007).

iReckon
Genome alignments and junctions identified using STAR (see above)
were used as input. Annotations consisting of a 12-column BED file of
transcripts (including genomic start positions and lengths of each exon)
was used to guide transcript assembly. Alignments to transcript se-
quenceswere carriedout usingBWA-MEM(version 0.7.15) (Li 2013) as
per the iReckon user guide, and all default parameters were selected.

n Table 1 All splice junctions derived from transcripts the gene model in Figure 1 example

Splice junction a Isoform
Annotated?

(Y/N)

Annotated frequency
(unique, common,

constitutive)
Exon-skipping?

(Y/N)

Alternative
donor?
(Y/N)

Alternative
acceptor?

(Y/N)

Exon A:Exon D Isoform 1 Y Unique N Y N
Exon B:Exon D Isoform 2 Y Unique N Y N
Exon C:Exon D Isoform 3 Y Unique N Y N
Exon D:Exon E Isoforms 1, 2 and 3 Y Constitutive N N N
Exon E:Exon

F|Exon E:Exon G�
Isoform 1 (E:G),
Isoform 2 (E:F)

Y Common N N N

Exon E:Exon I Isoform 3 Y Unique Y N N
Exon F:Exon I Isoform 2 Y Unique Y Y N
Exon G:Exon H Isoform 1 Y Unique N Y N
Exon H:Exon J Isoform 1 Y Unique Y N Y
Exon I:Exon K Isoform 3 Y Unique N N Y
Exon I:Exon L Isoform 2 Y Unique N N Y
a
Junctions here are denoted with the 59most exon first. The second exon/intron is separated from the first using a colon. Events with identical donors and acceptors
are separated by a “|”

�Junction is not distinct as exons F and G share the same donor site.
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Estimating transcript abundance using RSEM
and eXpress
Weestimated transcript abundanceusingRSEM(version1.2.28) (Li and
Dewey 2011) and eXpress (version 1.5.1) (Roberts and Pachter 2013).
For RSEM, references were prepared using the tool ‘rsem-prepare-
reference’, the set of transcript sequence for a given transcriptome
(complete RefSeq, PacBio, reduced references, etc.) and a tab-delimited
gene-to-transcript index file as input, as described in the RSEM user
guide. The default aligner (Bowtie, version 0.12.9) was used for map-
ping. For the mouse neural data, reads were aligned single-end, with a
mean fragment length of 80 bp and standard deviation of 50 bp. 95%
confidence intervals and posterior mean estimates of transcript abun-
dance were also requested. The read start position distribution was
estimated from the data. Default settings for RSEM for all other pa-
rameters were used. For the T1D data, reads were aligned as paired-end
and all other parameters were the same as the mouse neural data.

For eXpress, reads were first aligned to transcript sequences using
BWA-MEM version 0.7.15 (Li 2013) with default parameters. Output
SAM files were then analyzed using eXpress to estimate abundances
of transcripts in each reference transcriptome. Mean fragment length
of 80bp and with a standard deviation of 50 bp was set for eXpress,
with all other parameters left at their default settings. We estimate tran-
script abundances for the complete RefSeq transcriptome and two the EA
reduced references and the iReckon transcriptome. All iReckon tran-
scripts assembled in each NPC replicate were combined and transcripts
present in both samples (based on identifiers and genomic coordinates)
were combined into a single transcript (iReckon “union” transcriptome).

Evaluation of the RNA-seq data
To estimate concordance of transcript estimates between replicates, we
first calculated the simple agreement between replicates as the proportion
of transcripts detected in both replicates. Transcripts were then binned
based on their TPMestimates (transcripts per kilobasemillion) estimates:
“no expression” (TPM = 0 in both replicates), “very low expression”
(minimum log-TPM: 0 - 0.5), “low expression” (minimum log-TPM:
0.5 - 2), “moderate expression” (minimum log-TPM: 2 – 4) and “high

expression” (minimum log-TPM: 4 or greater). This approximately cor-
responds to no expression, 25th percentile of expression (“very low ex-
pression”), 25th to 75th percentile of expression (“low expression”), 75th to
90th percentile of expression (“moderate expression”), and 90th to 100th

percentile of expression (“high expression”). The coefficient of variation
(CV) for each TPM bin was then calculated. Replicates are further com-
pared by generating Bland-Altman plots (Bland and Altman 1986).

Validation of Event Analysis, STAR and iReckon
via simulation
The two simulated datasets generated for this study (Simulations 1 and
Simulation 2) were used to evaluate and compare the performances of
EAandSTAR in termsof junction identification, andEAand iReckon in
termsof estimated transcriptomes.TocompareEAandSTAR, junctions
were identified and quantified. As STAR only reports the number of
reads mapping to a particular junction, the APN for each junction
sequence in each sample was estimated by dividing the number of
mapped reads reported to the expected junction size (i.e., twice max-
imum allowable junction overhang). EA cataloged junctions and STAR
junctions were matched on genomic coordinates (chromosome, last
position of donor exon, first position of acceptor exon, strand). The
number of junctions detected (APN . 0) and at different levels of
support (APN$ 2, 5, 10) by each method, by both methods (intersec-
tion of EA and STAR), and by either method (union of EA and STAR)
was compared with the number of expected junctions (e.g., the number
of annotated junctions from transcripts in the simulation).

The reference reduction using EAwas compared with the transcript
reassembly of iReckon. For EA, three reduced reference transcriptomes
were created: (i) 100% events detected at APN. 0; (ii) at least 75% of
events detected at APN. 0; and, (iii) at least 75% of events detected at
APN $ 5). From the iReckon results, two transcriptomes were used:
one consisting of transcripts observed all simulated samples, and one
consisting of transcripts observed in at least one simulated sample.
Transcripts from these simulations were classified into the following
categories: (1) transcripts that were used for read simulation and were
correctly identified by EA/iReckon; (2) “related RefSeq transcripts”,

n Table 2 Examples of other possible, logical splice junctions derived from the gene model in Figure 1 example

Splice junction a
Annotated?

(Y/N)

Annotated frequency
(unique, common,

constitutive)
Exon-skipping?

(Y/N)

Alternative
donor?
(Y/N)

Alternative
acceptor?

(Y/N)

Exon-intron
border?
(Y/N)

Exon A:Exon F|Exon
A:Exon G�

N n/a Y Y N N

Exon A:Exon E N n/a Y Y N N
Exon C:Exon H N n/a Y Y N N
Exon A:Exon I N n/a Y Y N N
Exon B:Exon J N n/a Y Y Y N
Exon D:Exon J N n/a Y N Y N
Exon D:Exon K N n/a Y N Y N
Exon H:Exon K N n/a Y N Y N
Exon H:Exon L N n/a Y N Y N
Exon I:Exon J N n/a N N Y N
Exon C donor:intron N n/a N Y N Y
Exon E donor:intron N n/a N N N Y
Exon H acceptor:

intron
N n/a N N N Y

Full list of all possible junctions are listed in Supplementary Table 1 in Additional File 1.
a
Junctions here are denoted with the 59most exon/intron first. The second exon/intron is separated from the first using a colon. Events with identical donors and
acceptors are separated by a “|”

�Junction is not unique as exons F and G share the same acceptor site.
ES = exon skipping, AD = alternative donor, AA = alternative acceptor.
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which are transcripts not selected for simulating reads but are from the
same gene as a transcript used for read simulation; (3) “related non-
RefSeq transcripts”, which are transcripts assembled by iReckon but
not in the RefSeq annotations, and are from the same gene as a tran-
script used for read simulation; (4) “unrelated transcripts”, which are
those transcripts that are not from genes used to simulate reads; and (5)
“missing transcripts”, which are those that were used for read simula-
tion but were not identified by EA/iReckon.

Validation of Event Analysis With PacBio
sequenced transcriptome
The set of transcripts identified using PacBio sequencing (Tardaguila
et al. 2018) was used for validation. Sequences for each detected exon

fragment and junction were compared to the PacBio transcript se-
quences. Transcripts were compared to PacBio using MegaBLAST
(Camacho et al. 2009) and events/transcripts were considered validated
if the alignment covers at least 90% and had no gaps or mismatches.

Validation of iReckon-assembled transcripts With
PacBio sequenced transcriptomes
To determine how well iReckon reassembles transcripts, the set of
transcripts identified using PacBio sequencing (Tardaguila et al.
2018) was used for validation. Sequences for each iReckon transcript
for each NPC replicate were extracted using BEDtools (version 2.17.0;
(Quinlan and Hall 2010)) from the output GTF files and compared to
the complete set of 16,104 PacBio transcript sequences using theMega-
BLAST algorithm (Camacho et al. 2009). BLAST alignments were
classified based on the length of the BLAST hit (100% of the iReckon
transcript sequence matches a PacBio transcript with more than 10bp
different in length between iReckon and PacBio transcripts, at least
90%, 75% or 50% of the iReckon transcript sequence matches a PacBio
transcript), and whether there were no mismatches or no more than
5 mismatches nucleotides. iReckon transcripts with gaps or multiple
fragmented hits to the same PacBio transcript were excluded from
analysis.

For identifying potential RefSeq matches to the iReckon-assembled
transcripts, a similar BLAST alignment of iReckon transcripts to the
complete RefSeq transcriptome was performed using the MegaBLAST
algorithm. We only considered BLAST hits with at least 90% of the
sequences matching, allowing for up to five mismatched nucleotides.

Software availability
The bioinformatics workflow can be found in Figure 3. All code is in
python and scripts and documentation can be found at https://github.
com/McIntyre-Lab/events.

Data availability
The mouse neural dataset analyzed in this study is available from
the NCBI Sequence Read Archive under accession number
SRP101446. The T1D dataset used in this study is available from the
dbGaP repository under accession number phs001426.v1.p1. The sim-
ulated datasets used to evaluate the performance of EA, iReckon and
STAR as well as all code pertaining to the analyses presented in this
manuscript can be found at https://github.com/McIntyre-Lab/events.
Supplemental material available at Figshare: https://doi.org/10.25387/
g3.6205793.

RESULTS

Simulation results

Junctions: EAusesmapping to a catalogof junctions for the detectionof
quantification of junction sequences. An alternative to EA is to map to
the genome in a splice aware fashion. We compared the junction
detection rate of EA with that of the splice-aware aligner STAR
(Dobin et al. 2013), using alignment parameters were comparable to
those used for mapping to the junction catalog to enable direct
comparisons.

In Simulation 1, we found that EA and STAR identify almost the
same set of junctions, with EA detecting a fewmore true junctions than
STAR (File S1, Table S1.3). STAR detected�100 true junctions that EA
did not, and these are almost all complex multi-junction alignments
involving microexons (File S1, Table S1.3). Without annotation of
microexons (defined as exons of 51 nucleotides or fewer in length) in

Figure 2 Possible classifications for border junctions. Detected border
junctions are only classified if their adjacent exon is also detected. These
border junctions can be categorized as a possible novel donor/acceptor,
and possible intron retention. If the coverage at the border junction was
similar in coverage to its adjacent exon (defined as the border junction
having a mean APN of at least 90% of the APN of the exon), then the
border junction is classified as a possible novel donor. If the coverage (as
APN) of the border junction was at least 10% of the adjacent exon and
the adjacent intron was also detected, then the border junction is
classified as possible intron retention. These values are conservative and
can be changed. Where a border junction could be classified as both a
possible novel donor and possible intron retention, the event is
classified as ambiguous intron retention. All remaining border junctions
are classified as possible unprocessed transcript.

Volume 8 September 2018 | Quantifying alternative splicing events | 2929

https://github.com/McIntyre-Lab/events
https://github.com/McIntyre-Lab/events
https://github.com/McIntyre-Lab/events
https://doi.org/10.25387/g3.6205793
https://doi.org/10.25387/g3.6205793


Figure 3 The Event Analysis workflow.
Event Analysis consists of three main
components: (1) annotation genera-
tion; (2) alignment and coverage; (3)
event detection and transcript identifi-
cation. First, annotations for exon-level
annotations (exonic regions, exon frag-
ments, introns) and junction annota-
tions are generated. A GFF3 file as
input to generate annotations for ex-
onic regions, exon fragments, distinct
introns and a catalog of all possible,
logical junctions within a gene, and a
genome FASTA file is used to extract
junction sequences to use for quantifi-
cation. Second, RNA-seq reads are first
aligned to junction sequences and
coverage is calculated. Reads that do
not align to junctions are then aligned
to the genome to calculate the cover-
age of exonic regions, exon fragments
and introns. Third, the output set of
counts from alignments are then ana-
lyzed to determine what transcriptional
events (exonic regions, exon fragment,
introns, and junctions) are detected
and what transcripts likely present/
absent in a given condition.
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the reference these events will be missed by any reference-based ap-
proach, including EA. However, papers carefully looking at microexons
point to the difficulty in capturing these events (Florea et al. 1998; Wu
et al. 2013; Irimia et al. 2014; Ustianenko et al. 2017).

In Simulation 2, we found that the junctions EA and STAR identify
are also largely concordant (File S1, Table S1.5). EAdetects 17 annotated
junctions that STAR did not. Of the nine unannotated junctions in-
cluded in this simulation, EA identified all of them, while STARmissed
three (File S1, Table S1.6).

Transcripts: For Simulation 1, using the definitionsAPN. 0 and100%
of the events detected, EA detects 93% of all transcripts simulated and
an additional 25,368 transcripts cannot be eliminated from consider-
ation due to similarity with simulated transcripts (File S1, Table S1.4).
At APN $ 5 combined with the requirement that 75% of events be

detected; 90% of the true transcripts are detected 24,201 additional
transcripts cannot be eliminated from consideration. iReckon detects
fewer (80%) of all simulated transcripts in at least one sample but only
66% in all samples and generates an almost equal number of unrelated
transcripts. (File S1, Table S1.4).

For Simulation 2, EA correctly retained more transcripts than
iReckon correctly reassembles (File S1, Table S1.7). Using an event
detection criteria of APN . 0 and requiring 100% of events detected,
EA identified 90% of the 467 simulated RefSeq transcripts, as well one
additional, unrelated transcript. When the event detection criteria was
set toAPN$ 5 and transcripts with at least 75% of events detectedwere
retained, EA identified all but one of the 467 RefSeq transcripts and no
unrelated transcripts (File S1, Table S1.7). iReckon correctly assembled
391 of the 467 simulated transcripts, and assembled an additional
565 unrelated transcripts (File S1, Table S1.7). When only transcripts

Figure 4 Events detected in cultured mouse NPCs. (A) Exons and exon fragments detected in mouse NPCs. (B) Splicing events by event type
detected in mouse NPCs. (C) Detected exon-exon junctions by event annotation. Blue bars indicate exon-exon junctions annotated to known
transcripts, gray bars indicate exon-exon junctions that are not annotated to known transcripts.
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in common to all samples were included, iReckon only retained 180 of
the 467 transcripts (File S1, Table S1.7).

Detection of expression in mouse neural progenitors
In cultured mouse NPCs, a total of 105,891 single-exons and 39,739 exon
fragments of length at least 10 bp, and 125,716 junctions were detected in
20,875 genes (Figure 4Aand4B). This included89,812 exon-exon junctions
that are annotated to at least one transcript (71% of detected junctions),
8,412 junctions not annotated to any known mouse RefSeq transcript (7%
of detected junctions), and 27,492 border junctions (22% of detected junc-
tions; Figure 4B and 4C). The majority of transcript events are constitu-
tively included in all known transcripts for a gene or set of genes (Figure 5).

Validation of novel events
The set of detected unannotated splicing events (unannotated junctions
and putative IR events) identified in EA are potentially from novel
transcripts. We identified 583 putative novel junction events with both
flanking exons detected from520 genes (Figure 6A);most of these genes
only have single unannotated junction (Figure 6B). We compared this
set of putatively novel junctions against PacBio transcripts to determine
the proportion of putative novel events with supporting evidence in the
PacBio transcriptome. We found that of 69% were captured in the
PacBio transcriptome. Similar to annotated events, novel events cap-
tured in PacBio transcripts have a slightly higher mean APN values
compared to putatively novel events not present in the PacBio tran-
scriptome (Figure 6C; Figure S1, Additional File 1). The 31% of the
unannotated junctions not found in the PacBio data may be from tran-
scripts with lower levels of expression, or they may be false positives.

Border junctions may represent retained introns, novel donors, novel
acceptors or incomplete messenger RNA processing. From the set of
154,934 introns, their associated border events and 59 donor exonic re-
gions, only those with the junction and exonic region detected (APN$ 5)
were analyzed further (505 border junctions from 391 genes). This set of
505 were classified into their likely sources as described in Figure 2, and
the results for confirmation with PacBio are on average 32% (Table 3).

Using Event Analysis as a prior for estimation of
transcript quantity
One of the applications of EA is to filter transcripts not likely expressed
(e.g., transcripts with few or none of their associated events detected),

and thus define a reduced reference. This reduced transcriptome can
then be used in transcript quantification methods. The expectation is
that reducing the complexity of a reference transcriptome yields better
estimates of transcript abundance (Tardaguila et al. 2018). The agree-
ment between replicates was calculated for the RSEM quantification
based on the complete RefSeq transcriptome (�160,000 transcripts in
mouse) as a baseline and overall 17% of transcripts disagreed between
replicates in terms of detection (Table 4). The CV of lower expressed
transcripts was high, particularly for very-lowly expressed transcripts
(average CV = 96.290), whereas highly expressed transcripts had a
much lower CV (average CV = 19.234; Table 4 and Figure S2, Addi-
tional File 1). Concordance at low levels of expression is known to be
problematic (McIntyre et al. 2011; Tardaguila et al. 2018); low expres-
sion events (defined reads per kilobase million (RPKM) , 5) typically
have amuch higher variance (McIntyre et al. 2011), and this is observed
with the both the variances of very-low and low expression transcripts
(RPKMof 5 is approximately equivalent to a log-TPMof 2). There were
20,875 genes with at least one exonic region detected corresponding to
75,926 annotated transcripts. 2,391 transcripts from the set of expressed
genes had none of their exons or junctions detected and were removed
for a total of 73,535 possible expressed transcripts (Figure 7). The
agreement among replicates based on this transcriptome was similar
to that of the complete RefSeq transcriptome (Table 4), and the average
CV only marginally improved for the lower expressed transcripts (Sup-
plementary Figures 2 and 3, Additional File 1), indicating that RSEM
already effectively removes clearly unexpressed transcripts and there is
no incremental benefit to only removing these transcripts.

The proportion of total events, and the proportion of unique events
that were detected was calculated for each RefSeq transcript. The
transcripts fell into two distinct modes, those with at least half of their
associated events detected and those with a much lower proportion
detected, with approximately 20% of the potential transcripts with less
than 25% of their events detected (Figure 7A and 7B). The number of
transcripts per gene was lower when requiring all events to be detected
(Figure 7C). There were 34,900 expressed transcripts without any
assigned unique events (i.e., non-resolvable transcripts (Figure 7D
and 7E). Because these transcripts are not resolvable, their detection
is by definition ambiguous. Among the transcripts with detected
unique events, there was little evidence that the number of unique
events assigned to a transcript affected the proportion that were

Figure 5 Transcript-specificity of
events. Transcriptional events (single-
exon exons, exon fragments, junc-
tions) are divided on the basis of
transcript-specificity (unique, com-
mon, constitutive) Exons of mono-
transcript genes are a special case
of single-exon exons as these are
both unique and constitutive. These
are indicated as a subset within
unique single-exon exons, and
are included within the total set
of unique events. The majority of
detected events correspond to
those constitutively included in
all known transcripts for a gene
or set of genes.
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detected per transcript, but that the proportion of unique events
detected was a function of the amount of total events detected
(Figure 7F).

Wereasonedthat transcriptsconsistentlydetectedacross their length
were more likely to be present than those inconsistently detected. We
then examined the agreement between replicates in transcript detection
and variation in transcript estimates after eliminating transcripts with
different proportions of their events detected and at different levels of
average coverage. There was a distinct improvement in replicate agree-
ment and estimate precisionwhen limiting the set of possible transcripts
to those with more consistent within transcript detection (Table 4;
Supplementary Figures 2 and 3, Additional File 1). Restricting the list
of possible transcripts before quantification to those for which there
were at least 5 reads on average for 75% or more of their events resulted
in an average CV of 36.051 for lowly expressed transcripts, and an
agreement of 91% between replicates for detection of transcripts.
Restricting the list of possible transcripts before quantification to those
for which there were at least 5 reads on average with 100% of their
events detected resulted in an average CV of 28.249 for lowly expressed
transcripts, and an agreement of almost 99% between replicates for
detection of transcripts.

Validation of Event Analysis transcriptomes With the
PacBio transcriptome
From the set of 20,785 genes not filtered from the RNA-seq data, we
examined the howmany of the detected annotated events – 39,739 exon
fragments, 105,891 single-exons and 89,632 annotated junctions –were
present in the set of PacBio transcripts. PacBio transcripts were
assigned reference transcript identifiers (RefSeq or Ensembl) if: (1)
the PacBio transcript matched at all splice junctions of a reference
transcript (“full splice match” or FSM (Tardaguila et al. 2018)), or
(2) splice junctions of the PacBio transcript matched consecutive but
not all splice junctions of a reference transcript (“incomplete splice
match”; ISM (Tardaguila et al. 2018)). Monoexonic PacBio transcripts
were considered a “full splice match” if they corresponded to a mono-
exonic reference transcript, or “incomplete splice match” if they were
corresponded to multiexonic reference. Of the total 235,262 events
detected, 66,646 events from 4,426 genes (3,796 fragments, 19,388 sin-
gle-exons and 43,462 junctions) matched at least one PacBio transcript
(28% of events, 21% genes). We hypothesize that the remaining RNA-
seq mapped reads to annotated events are representative of transcripts
that are not captured by PacBio due to lack of sequence depth, and thus
will have lower short-read coverage than annotated events that mapped

Figure 6 Unannotated splicing events detected in mouse NPCs. (A) Genes with detected unannotated events. (B) Distribution of the number of
detected unannotated splicing events per gene. Density plot of the log-APN distribution between detected unannotated junctions (C) and border
junctions (D), with and without BLAST hits to the PacBio transcriptome.
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to PacBio transcripts. To test this we compared the APN in events
captured by PacBio to events not captured by PacBio. (Figure 8A).

Of the �16,000 PacBio transcripts (Tardaguila et al. 2018), there are
9,653 that match to RefSeq transcripts, and of these 5,880 have all events
unambiguously annotated to a single gene. Only 24 of the PacBio tran-
scripts (,1%) had fewer than 25% of their total associated events de-
tected. Of the remaining set of 5,856 PacBio transcripts, all were included
in the set of probable transcripts identified by EA (Figure 8). EA tran-
scripts were categorized based on whether they had unique events, the
proportion of total events detected, and the average coverage. The num-
ber of transcripts in each category for the 73,535 EA transcripts and 5,856
PacBio Transcripts are listed in Table 5. Eliminating EA transcripts with
fewer than 75% of their annotated events detected (38,913 transcripts
with,75% of total features detected, APN. 0) reduces the complexity
of the EA transcriptome by 53% (35,342 transcripts remaining) while
missing only 3% of the PacBio transcriptome (194 of 5,880 PacBio tran-
scripts). If a higher APN threshold is used to determine event detected
(e.g., APN$ 5)with a lower frequency of event detection (50%) results in
less than 1% of the true PacBio transcriptome is missed and the EA
transcriptome is much less complex (20,336 transcripts; Table 5).
A similar number of transcripts, with a similar set of PacBio transcripts
are identified with two thresholds (100% events detected (APN . 0),
14,734 transcripts;$75%events detected (APN$ 5), 13,740 transcripts).
These two sets have 9,310 transcripts are in common between the
two possible transcriptomes. This overlap captures 79% of the PacBio
transcripts that match to either of these possible transcriptomes. This
demonstrates that the choice of parameters impacts the proportion of
PacBio-validated transcripts that can be captured in the possible, reduced
transcriptomes and that selecting a single set of parameters will included
more PacBio transcripts than the intersection of two parameter sets.

Event Analysis improves transcript
abundance estimates
The mouse neural data used thus far demonstrates that using a reduced
transcriptome as a prior improves the concordance between technical

replicates and also captures most of the same reference transcripts as
PacBio. AnRNA-seq dataset of 3 lymphocyte populations (CD4+,CD8+

and CD19+ lymphocytes) from 81 T1D cases was used to determine
whether a reduced transcriptome also reduces the variability of tran-
script estimates in a larger set of RNA-seq data.

In T1D data, a total of 16,156 single-exons and 67,888 exon
fragments of length at least 10 bp, and 38,367 junctions were detected
from8,700genes inat leastonecell type.This included34,421exon-exon
junctions that are annotated to at least one transcript (90% of detected
junctions), 402 junctions not annotated to any known humanAceView
transcript (1% of detected junctions), and 3,544 border junctions
(9% of detected junctions). We used the criteria APN $ 5 and 75%
of more events detected to a filter the reference with a resulting reduced
transcriptome consisting of 26,437 transcripts (Figure S4, Additional
File 1).

We then examined whether using this reduced transcriptome re-
duced variability in abundance estimates compared to the complete
transcriptome (�596,000 AceView transcripts in human). As there are
81 subjects who have been examined for 3 lymphocyte cell types,
we calculated the coefficient of variation (CV) for each transcript/cell
type after quantitation using RSEM for the complete AceView tran-
scriptome (Figure 9, blue line) and for the reduced reference (26,437
transcripts). The distribution of the CV across transcripts was com-
pared between the full reference and the filtered reference (Figure 9).
For each transcript the CV between the two was compared and if the
CV was larger in the full reference it was scored (+) and of the CV was
smaller it was scored (-). The null hypothesis that the distribution is
random was tested using a sign test (P , 0.0001). The overall distri-
bution showed a dramatic decrease in the CV in the reduced reference
and per transcript the CV was lower in the filtered reference. Together
this indicates a dramatic increase in the concordance of estimates
among samples. Similar results were obtained with eXpress (File S2).

As an example, for the T1D data, in the IKZF3 gene, a lymphoid
transcription factor and T1D candidate gene (Morgan et al. 1997;
Hosokawa et al. 1999; Barrett et al. 2009), EA reduces the number of
transcripts from 18 to four, and quantitation demonstrates there is a
shift in expression such that the isoform IKZF3.iAug10 is expressed
more frequently in CD4+ and CD8+ T cells than in CD19+ B cells
(Supplementary Figures 5 and 6, Additional File 1). This isoform
corresponds to the isoform variant 5 of IKZF3, which lacks two
exons and several zinc finger binding domains (Morgan et al.
1997; Hosokawa et al. 1999). This enables us to follow up on the
most-likely, relevant IKZF3 transcripts in these cell types without
the burden of transcripts that provide little additional information
about the transcription of this gene.

n Table 3 Border junctions and the overlap with PacBio

Classification
Number of junctions

(Junctions with PacBio hit)

Possible IR 123 (52)
Possible novel donor 37 (8)
Ambiguous IR (possible IR

and possible novel donor)
11 (6)

Possible unprocessed transcript 334 (94)

n Table 4 Agreement statistics of detection of transcripts per transcriptome

Transcriptome
Event

detection

Proportion
events

detected

Total
transcripts

(N)

Not
detected

(N)

Detected in
NPC replicate

1 (N)

Detected in
NPC replicate

2 (N)

Detected
in both
(N)

Disagreement
(%)

RefSeq All n/a 128,631 62,940 10,441 11,528 43,722 17.08%
EA All .0% 73,535 28,071 6,894 7,621 30,949 19.74%
EA APN . 0 $50% 45,883 12,375 4,443 3,306 25,759 16.89%
EA APN . 0 $75% 34,622 8,006 3,078 2,180 21,358 15.19%
EA APN . 0 100% 14,734 970 563 532 12,669 7.43%
EA APN $ 5 $50% 20,336 3,871 1,487 918 14,060 11.83%
EA APN $ 5 $75% 13,740 1,868 757 439 10,676 8.70%
EA APN $ 5 100% 3,815 103 37 17 3,658 1.42%
PacBio All n/a 16,104 1,002 508 303 14,291 5.04%
PacBio APN . 0 .0% 6,286 175 61 41 6,009 1.62%
PacBio APN $ 5 .0% 6,078 168 56 29 5,825 1.40%
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Comparison of mouse NPC data With STAR
STAR identifies�24% of the junctions (883 out of 3,691) not present in
the current annotation, and �95% of the junctions present in the
annotation and verified by PacBio reads while EA detects 100% of
the junctions present in the annotations. When adding the criteria of
at least two reads to support the identification of a junction, STAR
identifies only 3% of junctions while EA identifies 76%. STAR identifies
43% (229 out of 536) of the junctions that are novel combinations of
existing donor/acceptors and EA detects �60% (321/536) of these
junctions. Thus, mapping directly to the junction catalog that includes
all possible logical junctions improves support of annotated junctions
(Tables S3.2 to S3.5, File S3).

Comparison of mouse NPC data With iReckon
Wealso compared the set of possible transcripts identifiedbyEAand the
transcripts assembled by iReckon against the 5,880 PacBio transcripts

with RefSeq identifiers. iReckon assembles 10% of the validation set of
transcripts. EA is able to identify as many as 97% of the 5,880 PacBio
transcripts, when considering transcripts with at least 75% of their
associated events detected (Figure 8; File S4). Even when only tran-
scripts with 100% of their events detected are considered, 77% of the
PacBio transcriptome is identified with EA, a substantial improvement
over that of iReckon. In addition, the majority of iReckon transcripts
are classified as novel transcripts (File S4), and only approximately 13%
of the iReckon transcripts have good sequence similarity to the PacBio
transcriptome. EA is also unable to eliminate �10,000-30,000 addi-
tional RefSeq transcripts, owing to the high degree of sequence simi-
larity and event sharing with other transcripts within in the same genes.

DISCUSSION
At the core of EA is the preparation of a catalog of junctions. Some
analysis approaches (e.g., (Katz et al. 2010)) restrict the definition of

Figure 7 Distribution of the total events detected per transcript. (A) Density plot of the distribution of proportion of total events detected. (B) Proportion
of transcripts by the proportion of total events detected. (C) Distribution of number of transcripts detected per gene. (D) The proportions of transcripts
with at least one unique event detected, transcripts with unique events but none detected, and transcripts with no assigned unique events. (E)
Distribution of the expressed transcripts with at least one unique event detected by the proportion of unique events detected. (F) Scatterplot of number
of unique events and proportion of unique events detected per transcript. Most of the transcripts with detected unique events typically had fewer than
3 unique events detected, and about 61% of these 22,319 transcripts had only a single unique event detected.
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junctions to those present in existing annotations. Others attempt to
estimate junctions de novo from short reads (Trapnell et al. 2009; Dobin
et al. 2013; Kim et al. 2013a). The literature indicates that the vast
majority of novel isoforms are assembled from currently annotated
exons (Booms et al. 1999; Hide et al. 2001; Zhou et al. 2010; Lim
et al. 2011; Eswaran et al. 2013; Kim et al. 2013b; Gabreski et al.
2016; Nellore et al. 2016; Tardaguila et al. 2018). By designing a junc-
tion catalog that includes junctions created from all possible logical

combinations of existing exons, and mapping to that catalog more true
novel junctions are mapped than by mapping to the genome with a
splice aware aligner. While completely novel junctions (i.e., junc-
tions with donor and/or acceptor sites not present in the reference
annotation) will be missed, we find that in the study here of mouse
NPC cells novel junctions and transcripts identified by PacBio are
not frequently identified by de novo tools STAR or iReckon (Sup-
plementary Files 3 and 4).

Figure 8 Comparison of Event Analysis with
PacBio sequenced transcripts. (E) Distribution of
log-APN of annotated events with and without
PacBio hits. Blue line represents the of log-APN
distribution of annotated events with PacBio
hits, red line represents the of log-APN distribu-
tion of annotated events with no PacBio hits.
Overlap between the Event Analysis trancrip-
tome (yellow) against the PacBio transcriptome
(blue = complete splice match; red = incomplete
splice match), for EA transcripts with 100% of
events detected (B), at least 75% of events
detected (C), at least 50% of events detected
(D), and at least 25% of events detected (E).

n Table 5 Distribution of transcripts by proportion of events detected Number in parenthesis is the number of transcripts with a matching
PacBio transcript

Proportion of events
detected (%)

APN . 0 event detection level APN $ 5 event detection level

Transcripts with
no unique events

Transcripts with
unique events

Transcripts with
no unique events

Transcripts with
unique events

1–24% 9,342 (4) 6,621 (20) 3,248 (80) 4,147 (195)
25–49% 6,628 (11) 5,061 (15) 2,185 (82) 3,193 (243)
50–74% 5,837 (26) 5,424 (118) 2,544 (206) 4,052 (465)
75–99% 8,809 (408) 11,799 (740) 3,499 (851) 6,426 (1,505)
100.00% 5,004 (1,307) 9,730 (3,231) 1,053 (480) 2,762 (1,566)
Total 34,900 (1,756) 38,635 (4,124) 12,529 (1,699) 20,400 (3,974)
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EA views each transcript as an annotated set of discrete events. The
detectionandcoverageofeacheventcanbeuseddirectly inananalysisor
to filter transcripts. Code for this is provided. EA does not rely on
complex probabilistic models of transcription nor specific sequenc-
ing technology. Using this approach, in mouse neural progenitor cell
RNA-seq data EA identified the overwhelming majority of annotated
PacBio transcripts (5,686 of 5,880 transcripts, 97%) using the criteria
75% or more events detected (APN. 0). A more stringent definition
(least 75% of their events detected at APN$ 5) identifies 4,402 anno-
tated PacBio transcripts.

There is a limit to the ability of any RNA-seq based approach to
identify transcripts. As EA relies on existing genome annotations, it is
not able to identify completely novel exons or splice sites. This is a
commonlimitation forannotation-basedquantificationapproaches.EA
does not de novo assemble transcripts, as accurate transcript reassembly
and resolution from short-read data are known to result in a higher
number of false transcripts (Steijger et al. 2013; Angelini et al. 2014;
Bernard et al. 2015; Hayer et al. 2015; Liu et al. 2016a; Song et al. 2016)
and shown here. Long reads are able to clearly identify novel isoforms,
provided adequate quality control mechanisms are applied (Tardaguila
et al. 2018). Another limitation is the resolvability of individual tran-
scripts. Transcript resolvability is not a limitation of EA but of the
uniqueness of transcripts. When we examined presence/absence of
unique events among the PacBio transcripts we found that 30% of
the PacBio transcripts have no unique events distinguishing them,
meaning that these will never be identifiable from short read data alone.
Issues with transcript quantification from short read RNA-seq data
alone have been acknowledged and discussed (Angelini et al. 2014;
Kanitz et al. 2015; Ding et al. 2017; Williams et al. 2017; Tardaguila
et al. 2018).

The newly released pRSEM cleverly tackles the issue of transcript
resolvability by leveraging ChIP-seq data. In addition, pRSEM uses a
binomial distribution to divide transcripts into two groups, probably
expressed and unexpressed, before quantification. Dramatic improve-
ments in transcriptquantificationweredemonstratedusing information
from ChIP-seq and PolII to estimate the initial transcript set (Liu et al.
2016b). Additional methods aim to reduce the number of transcripts to
quantify by leveraging long-read sequencing like PacBio to serve as a
reference set of transcripts (Au et al. 2013; Ning et al. 2017), which
improve the accuracy of genes model (Tardaguila et al. 2018) but at the
cost of excluding other, likely-expressed transcripts. However, much
like pRSEM, such approaches rely on additional data to determine the
likely transcriptome. Other methods that require only short read data
to identify reduced reference set have also been successful (e.g., (Mezlini
et al. 2013; Soneson et al. 2016)). One of these, iReckon, which leverages
existing annotations to guide the reassembly of transcripts from short
reads and quantification of assembled sequences (Mezlini et al. 2013).
iReckon also creates novel junctions and exons based on readmapping.
The overall approach is to create all possible transcripts from the data,
then eliminate those with low/no coverage. However, we find iReckon
tends to reconstruct many novel sample-specific transcripts not sup-
ported by long read data and also reported in the literature (Angelini
et al. 2014).

Another approach, taken by Soneson et al. (Soneson et al. 2016), has
the transcript abundance algorithm guide what transcripts are likely
present. First, all possible transcripts are quantified and the proportion
that each transcripts contributes toward the overall expression of it
corresponding gene. Transcripts with low abundance and that contrib-
ute little toward to its gene’s expression are removed, and the remaining
transcript sequences are re-quantified.While this approach is similar to
EA (i.e., elimination of unlikely transcripts based on coverage), it may

eliminate transcripts that are actually present but whose reads have
been initially misassigned to other transcripts. For example, from the
mouse neural data used in thismanuscript, elimination of the transcript
NM_025668 as suggested by this algorithm also eliminates the only
PacBio-sequenced transcript for the Spcs2 gene, and assigns all reads to
a different transcript, XM_006508117 (Tardaguila et al. 2018). This
read misassignment is likely due to variability of the length of the 39
UTR: while the junctions of the PacBio transcript completely match

Figure 9 Distribution of the coefficient of variation of transcript
estimates in T1D lymphocyte data. The distribution of CV between
samples from the quantification for all AceView transcripts (blue line)
and the reduced set of transcripts (red line) for (A) CD4+, (B) CD8+ and
(C) CD19+ lymphocytes.
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those NM_025668, the 39UTR of the PacBio transcript better matches
that of XM_006508117 (Tardaguila et al. 2018). This occurs because
RSEM infers the likely transcript based on coverage in the 39UTR. This
also highlights the need for a good-quality reference transcriptome that
best reflects the actual expression of the experimental system in use.

Providing a reduced set of reference transcript sequences based on
the expression of individual transcript events dramatically improves the
performance of both RSEM (Li and Dewey 2011) and eXpress (Roberts
and Pachter 2013). The agreement between replicates jumps from 80 to
above 90% and is as high as 99%, with a dramatic reduction in estimates
of variability. The advantages to EA are: (1) only RNA-seq data are
required; (2) nomodel for transcript generation is needed; (3) nomodel
for bias in sequencing technology is needed; and (4) the degree of over/
underspecification of the likely transcriptome can be easily adjusted
based on the goals of the particular study by applying different thresh-
olds (see Figure S4, Additional File 1). The improved transcript esti-
mates, in turn, will improve the accuracy of differential expression
analyses.

Junctions and exonic regions can be used directly to test for
differential expression. In a comparison of cell types among type
1 diabetes patients, we found that 20% of splicing events were
differentially detected, 34%of geneswere alternatively spliced among
cell types (Newman et al. 2017) and the genes implicated in immune
function and autoimmunity are enriched for splicing differences
(Newman et al. 2017).

CONCLUSIONS
EA is straightforward to apply. There are only two relatively simple new
steps that are needed- the creation of an expanded junction catalog, and
the scoring of transcripts based on simple measures of detection and
abundance. Here we demonstrate that the junction catalog successfully
identifies novel junctions and that using transcriptional events to reduce
the complexity of a probable transcriptome dramatically improves
transcript estimates from RNA-seq data. EA provides rich annotation
for events (junctions and exons) enhancing our understanding of the
effect of splicing in human disease (Akin et al. 2016; Newman et al.
2017). Examining individual junctions, exons and exon fragments re-
veals detail in differential detection/expression patterns previously
obscured.
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