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a b s t r a c t

Coronavirus Disease 2019 (COVID-19) has been considered one of the most critical diseases of the 21st
century. Only early detection can aid in the prevention of personal transmission of the disease. Recent
scientific research reports indicate that computed tomography (CT) images of COVID-19 patients
exhibit acute infections and lung abnormalities. However, analyzing these CT scan images is very
difficult because of the presence of noise and low-resolution. Therefore, this study suggests the
development of a new early detection method to detect abnormalities in chest CT scan images of
COVID-19 patients. By this motivation, a novel image clustering algorithm, called ambiguous D-means
fusion clustering algorithm (ADMFCA), is introduced in this study. This algorithm is based on the newly
proposed ambiguous set theory and associated concepts. The ambiguous set is used in the proposed
technique to characterize the ambiguity associated with grayscale values of pixels as true, false, true-
ambiguous and false-ambiguous. The proposed algorithm performs the clustering operation on the
CT scan images based on the entropies of different grayscale values. Finally, a final outcome image
is obtained from the clustered images by image fusion operation. The experiment is carried out on
40 different CT scan images of COVID-19 patients. The clustered images obtained by the proposed
algorithm are compared to five well-known clustering methods. The comparative study based on
statistical metrics shows that the proposed ADMFCA is more efficient than the five existing clustering
methods.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In December 2019, the first Coronavirus Disease 2019 (COVID-
9) outbreak has been discovered in Wuhan, China [1]. This
isease is caused by a novel virus, called Severe Acute Respiratory
yndrome Coronavirus 2 (SARS-CoV-2) [2]. According to the World
ealth Organization (WHO) [3], this disease has spread around
he world and reported 200,840,180 confirmed cases along with
,265,903 deaths by the end of 6th August, 2021. Now, this
isease has seriously affected the health, economic and social
ystems of advanced and emerging countries [4]. Therefore, the
HO has declared this disease as one of the deadliest pandemics
f all time. However, the pandemic situation caused by this dis-
ase has yet to be taken seriously [5]. Due to this reason, several
ountries, including the United States, Brazil, India and Italy, have
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been seriously affected by this virus [6,7]. As a result, several re-
search groups are collaborating in the development of strategies,
vaccines and new approaches to address the pandemic [8].

COVID-19 is associated with serious respiratory symptoms
that cause death in most cases [9]. This disease is observed as
pneumonia, the infection of which is very contagious from one to
the other [10]. Digital imaging techniques, such as X-ray [11] and
computed tomography (CT) [12] have contributed significantly
to the diagnosis of this disease. Computer scientists have been
actively involved in developing methods for analyzing these im-
ages based on machine learning. To develop such methods, they
mainly use the convolutional neural network (CNN), which is a
form of deep neural network. Some of the CNN based methods
devised by the researchers are summarized in Table 1.

The methodologies [11–19] discussed in Table 1 focus primar-
ily on classifying X-ray or CT scan images in terms of infection
and non-infection. Moreover, such approaches cannot identify the
infection in the lungs. However, these studies indicate that X-ray
and CT scan images of COVID-19 can be useful in determining the
severity of lung infection. But, there are some inherent drawbacks

https://doi.org/10.1016/j.knosys.2021.107432
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achine-learning based methods for X-ray and CT scan image analysis of COVID-19 patients.
Article Method developed Image used Objective

Ozturk et al. [13] DarkNet model with 17 convolutional layers X-ray Binary (COVID-19 and No-finding) and multiclass (COVID-
19, No-finding and Pneumonia) classification

Vaid et al. [14] CNN with transfer learning X-ray Structural abnormalities and disease classification
Apostolopoulos and Mpesiana
[11]

CNN with transfer learning X-ray Classification of abnormal X-ray images

Toraman et al. [15] CapsNet model with capsule networks X-ray Binary (COVID-19 and No-finding) and multiclass (COVID-
19, No-finding and Pneumonia) classification

Nour et al. [16] CNN with k-nearest neighbor, support
vector machine (SVM) and decision tree

X-ray Classification of infection

Ardakani et al. [12] CNN with machine learning CT Classification of positive COVID-19 cases
Kang et al. [17] Multi-view representation learning CT Extraction of multiple features with different views
Wang et al. [18] Weakly-supervised deep learning CT COVID-19 classification and lesion localization
Varela-Santos and Melin [19] Feed-forward with CNN X-ray Classification of positive COVID-19 cases
associated with X-ray and CT scan images of COVID-19, which are
described below:

Drawback 1: The grayscale values in these images indicate
some similarities between COVID-19 infection and other forms
of pneumonia, which complicates decision-making.
Drawback 2: Large dimensions of these images increase the
computational complexity during their processing.
Drawback 3: These images are available in multiple slices, but
only a few of them indicate infection in the lungs.
Drawback 4: These images available with low-resolution and
contain dense dark pixels, making it difficult to distinguish the
infected lung regions.

The drawbacks mentioned in (1)–(4) can be overcome by
arious image processing techniques that help in detecting ab-
ormalities in X-ray and CT scan images. Data clustering is one
uch method, whose main objective is to make a group of similar
nd dissimilar objects based on certain distance criteria [2,20,21].
owever, clustering an image is one of the most difficult tasks
n image processing, because in most cases it is difficult to form
lusters of pixels by distinguishing similar grayscale values from
issimilar grayscale values. In the case of an image K , clustering is
means of partitioning it into non-overlapping regions of clusters
1, K2, . . . , Kn, such that:
n

i=1

Ki = ∅ (1)

n⋃
i=1

Ki = K (2)

Based on the developments in clustering algorithms, they can
be classified into two categories: (a) crisp clustering and (b)
soft clustering [22]. Crisp and soft clusterings differ widely in
their approach to assigning group members. In crisp clustering,
the grayscale values of an image belong exclusively to a fixed
group, i.e., their assignment is completely binary. That is, they
completely belong to a cluster (true) or not (false). On the other
hand, a soft clustering approach allows grayscale values to share a
degree of membership in several groups. One of the most popular
algorithms in the category of crisp clustering is K-means cluster-
ing (KMC) algorithm [23,24]. Another example in this category
of clustering algorithm is multi-view information-theoretic co-
clustering (MV-ITCC), which is based on information-theoretic co-
clustering approach [25]. According to recent advances in the de-
velopment of clustering algorithms, soft clustering algorithms can
be divided into fuzzy set [26] based clustering, intuitionistic fuzzy
set (IFS) [27] based clustering and neutrosophic set [28] based
clustering. One of the most frequently used methods, developed
using fuzzy sets, is fuzzy C-means (FCM) [29,30]. Subsequently,
researchers introduce several variants of the FCM algorithm. For
2

example, Chen et al. [31] propose multiple-kernel FCM (MKFCM)
algorithm using the composite kernel concept. Ji et al. [32] pro-
pose the weighted image patch-based FCM (WIPFCM) algorithm,
which considers the spatial information of pixels during image
clustering. Wang et al. [33] incorporate information-theoretic
concept into the FCM algorithm to improve its performance.
To deal with the noise in grayscale images, Zhao et al. [34]
propose a new version of the FCM algorithm, called general-
ized fuzzy c-means clustering (GFCM) algorithm. Chaira [35] in-
troduce a novel intuitionistic FCM (IFCM) clustering algorithm
by adopting the concept of IFS. Verma et al. [36] propose an
improved intuitionistic FCM (IIFCM) clustering algorithm by in-
cluding the local spatial information during the clustering. To
overcome the drawback of FCM algorithm, Deng et al. [37] pro-
pose a new transfer prototype-based fuzzy clustering method.
Singh [38] introduces neutrosophic-entropy based clustering al-
gorithm (NEBCA) for performing clustering operation on magnetic
resonance imaging (MRI) of Parkinson’s disease.

The above discussed clustering methods [29,31–36,38] are
based on the concepts of fuzzy set, IFS and neutrosophic set,
and they are able to deal with inherent uncertainties of grayscale
values, but they have certain limitations, such as:

(a) The clustering methods based on fuzzy set (i.e., FCM [29]
and its variants [31–34]) support the representation of
uncertainties of grayscale values only by considering a
true degree of membership. These methods define the true
degree of membership of a grayscale value in [0, 1].

(b) IFS based clustering methods (i.e., IFCM [35] and IIFCM
1u [36]) model the uncertainties of grayscale values with
respect to hesitancy. These methods define the hesitancy
in terms of true and false degree of memberships.

(c) The clustering method based on neutrosophic sets (i.e.
NEBCA [38]) defines the uncertainties of grayscale values
with three degree of memberships, called true, false and
indeterministic [39,40].

The above discussion indicates the need of a more robust
clustering method that can deal with the drawbacks mentioned in
(1)–(4) as well as inherent uncertainties in the CT scan images of
COVID-19 patients precisely. Recently, Singh et al. [41] proposed
a novel theory to deal with uncertainties, called ambiguous set
theory. Ambiguous set theory is better than fuzzy set, IFS and neu-
trosophic set in terms of its capability of modeling the inherent
ambiguities very effectively with four degree of memberships, as
true, false, true-ambiguous and false-ambiguous. Singh et al. [41]
show the application of this theory in segmenting MRI of human
brain. However, the application of this theory has not been ex-
tended to the analysis of other types of medical images, such
as X-rays and CT scan images. A recent study by Singh and
Bose [2] shows that the clustering approach is useful to identify
infected regions in CT scan images of COVID-19 patients. With
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his motivation and considering the severity of COVID-19, this
tudy extends the application of this theory in the development of
clustering algorithm that could be helpful in the analysis of CT
can images of COVID-19 patients. Hence, the main contributions
f this study are five-fold as:

(1) First, we first introduce the notion of ambiguous set theory
with a mathematical representation.

(2) Second, this study presents ambiguous membership func-
tions (AMFs) to define the true, false, true-ambiguous and
false-ambiguous memberships of an event using ambigu-
ous set.

(3) Third, to quantify the inherent ambiguities associated with
the four degree of memberships of ambiguous set (i.e., true,
false, true-ambiguous and false-ambiguous), four different
entropy formulas are proposed.

(4) Fourth, a new image clustering algorithm is proposed in
this study using four memberships of the ambiguous set
and their respective entropies, called ambiguous D-means
fusion clustering algorithm (ADMFCA). The proposed algo-
rithm generates four different clustered images by per-
forming clustering of grayscale values of CT scan images.
For clustering, a distance metric, called ambiguous-entropy
distance function is introduced, whose main objective is to
assign the grayscale values to the different clusters based
on the minimum distance criterion. Finally, in order to
incorporate all the features of the four different clustered
images and obtain a final image, they are aggregated with
the help of image fusion [40]. This final image is referred
to as final clustered image (FCI). The main reason for using
image fusion operation in this algorithm is to integrate the
best features into the resultant image [42]. A major prob-
lem with most crisp clustering algorithms (as discussed
above) is that data points are often assigned to incorrect
clusters by ignoring their correlation with some other sub-
set of data points in the problem space [43]. Therefore, the
main goal of ADMFCA is to cluster the grayscale values
of CT scan images of COVID-19 patients in such a way
that correlated features of the infected regions can be eas-
ily identified and formed clusters with highly correlated
features.

(5) Fifth, in support of ambiguous set theory, various defini-
tions, set-theoretical operations, theorems and properties
are discussed.

The proposed ADMFCA is validated with chest CT scan images
of COVID-19 patients with the corresponding ground truth. The
performance of the proposed ADMFCA is compared with five
existing clustering algorithms, including KMC [23], FCM [29],
GFCM [34], IIFCM [36] and NEBCA [38]. The performance of the
proposed ADMFCA and existing algorithms [23,29,34,36,38] is
compared using statistical metrics, such as mean squared er-
ror (MSE), peak signal-to-noise ratio (PSNR), Dice similarity co-
efficient (DSC), Jaccard similarity coefficient (JSC) and correla-
tion coefficient (CC). These statistical analyses show the effec-
tiveness of the proposed ADMFCA over the selected clustering
algorithms [23,29,34,36,38].

The remainder of this article is organized as follows. Back-
ground for the study is presented in Section 2. Section 3 intro-
duces the proposed ambiguous set theory. The proposed ADMFCA
for image segmentation is presented in Section 4. Various prop-
erties of ambiguous-entropy distance function are discussed in
Section 5. Experimental results are described in Section 6. Finally,
conclusions and future directions are presented in Section 7.

2. Background for the study

This section presents an overview of the fuzzy set, intuitionis-
tic fuzzy set and neutrosophic set.
3

2.1. Fuzzy Set

The fuzzy set F̃ for any event Qi(i = 1, 2, . . . , n) in the discrete
and finite universe of discourse S can be described as [26]:

F̃ =

{
µF̃ (Q1)

Q1
+

µF̃ (Q2)
Q2

+ · · · +
µF̃ (Qn)

Qn

}
=

{
n∑

i=1

µF̃ (Qi)
Qi

}
(3)

For the continuous and infinite universe of discourse S, the
fuzzy set F̃ for any event Qi(i = 1, 2, . . . , n) can be defined as:

F̃ =

{
µF̃ (Qi)

Qi

}
(4)

In Eqs. (3)–(4), µF̃ (Qi) represents the degree of membership for
ach Qi ∈ S. In this theory, the degree of membership of each Qi,
.e., µF̃ (Qi) always belongs to the range [0, 1]. In Eqs. (3)–(4), the
orizontal bar represents a delimiter. The numerator of each term
eflects the degree of membership of each Qi in the fuzzy set F̃ . In
Eq. (3), the summation symbol ‘‘+’’ represents the aggregation of
each Qi, called an aggregation operator. In Eq. (4), the integral sign
indicates a continuous function-theoretic aggregation operator
for continuous events [26].

2.2. Intuitionistic fuzzy set

Atanassov [27] proposed the concept of intuitionistic fuzzy
set (IFS). It helps to represent the hesitancy involved in each
Qi ∈ S with respect to two membership functions, called degree
of membership and degree of non-membership.

For a fixed crisp set C, an IFS is denoted as CI (Qi), and defined
s:
I (Qi) = ⟨Qi, µF̃ (Qi), θC(Qi)⟩ (5)

ere, µF̃ (Qi) ∈ [0, 1] denotes the membership of Qi, and θC(Qi) ∈

0, 1] denotes the non-membership of Qi in the C.
In the IFS, the boundaries of membership and non-membership

f Qi must satisfy the following condition as:

≤ µF̃ (Qi) + θC(Qi) ≤ 1 (6)

The non-membership of Qi is defined in terms of the fuzzy
et as: θC(Qi) = 1 − µF̃ (Qi). However, this leads to a loss
f information when Qi changes its state from one to another.
herefore, this loss of information is shown using IFS with respect
o the membership and non-membership functions as:

(Qi) = 1 − (µF̃ (Qi) + θC(Qi)) (7)

ere, △(Qi) indicates the degree of loss. It can be defined only for
he IFS, because here △(Qi) ̸= 0. However, for ordinary fuzzy set,
C(Qi) = 1 − µF̃ (Qi), so △(Qi) = 0.
For Qi, an IFS can also be represented in terms of loss as:

I (Qi) = ⟨µF̃ (Qi), θC(Qi), △(Qi)⟩ (8)

.3. Neutrosophic set

Smarandache [28] introduced the neutrosophic set theory that
an model the inherent uncertainty of each Qi ∈ S in terms of
hree degree of memberships, namely truth (NT ), indeterminacy
NI ) and falsity (NF ).

Assume that a neutrosophic set N is defined for the Qi on
he universe of discourse S. Here, NT , NI and NF for the Qi ∈

can be expressed as: N ,N ,N : S → ]
−0, 1+

[, Q ≡
T I F i
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+.
A neutrosophic set N can be expressed as a single-valued neu-

rosophic set (SVNS) [44]. The SVNS can be expressed for discrete
nd finite S as:

=
⟨NT (Q1),NI (Q1),NF (Q1)⟩

Q1
+

⟨NT (Q2),NI (Q2),NF (Q2)⟩
Q2

+ · · ·

+
⟨NT (Qn),NI (Qn),NF (Qn)⟩

Qn

=

{
n∑

i=1

⟨NT (Qi),NI (Qi),NF (Qi)⟩
Qi

}
, ∀Qi ∈ S (9)

3. The proposed ambiguous set theory

This section presents the philosophy of the ambiguous set, its
various definitions followed by related properties.

3.1. Philosophy of ambiguous set

According to the Oxford Dictionary, the word ambiguous is
an adjective that means ‘‘open to more than one interpretation’’.
Some information reflects different interpretations, which leads
to ambiguity and incompleteness. As a result of this problem,
decision-making becomes difficult in most of the cases.

Consider this proposition: ‘‘Mr. X is lying’’. This statement is
either true or false; however, in view of the proposition, the
human cognitive process can have the following perceptions:

Perception 1: Mr. X is lying.

Perception 2: Mr. X is not lying.

Perceptions 1 and 2 can have definite true and false values,
respectively. However, there is often uncertainty and incom-
pleteness between truth and falsity. According to human cog-
nitive processes, both uncertainty and incompleteness can be
interpreted in terms of the following perceptions:

Perception 3: Mr. X is a little lying.

Perception 4: It’s a little false that Mr. X is lying.

Perceptions 3 and 4 cannot have distinct true and false values,
respectively. Perception 3 is very close to Perception 1, and it
inherits the ambiguity from Perception 1, so it can be categorized
as having a true-ambiguous value. Similarly, Perception 4 is very
close to Perception 2, but it develops ambiguity from Perception
2, so it can be represented with a false-ambiguous value.

The above discussion indicates that any event ⟨E⟩ can be
iewed in terms of the following four different perceptions listed
n P1-P4 as:

1: ⟨E⟩ is completely true, i.e., ⟨True: E⟩.

2: ⟨E⟩ is completely false, i.e., ⟨False: E⟩.

3: ⟨E⟩ is a little true, i.e., ⟨True-ambiguous: E⟩.

4: ⟨E⟩ is a little false, i.e., ⟨False-ambiguous: E⟩.

By integrating the four different perceptions of an event, a
ovel theory is proposed, called ambiguous set theory [41]. Ac-
ording to this theory, the initial perceptions of the event ⟨E⟩

re characterized as ⟨True: E⟩ and ⟨False: E⟩. The ambiguities
n ⟨True: E⟩ and ⟨False: E⟩ are characterized by the perceptions
f ⟨True-ambiguous: E⟩ and ⟨False-ambiguous: E⟩, respectively.

he ambiguities in ⟨True: E⟩, ⟨False: E⟩, ⟨True-ambiguous: E⟩

4

nd ⟨False-ambiguous: E⟩ are defined with respect to four degree
f membership functions, viz., true, false, true-ambiguous and
alse-ambiguous, respectively. Since the ambiguities of ⟨True: E⟩

nd ⟨False: E⟩ are contradictory, their true and false degree of
membership functions are considered complementary to one an-
other. True-ambiguous and false-ambiguous degree of member-
ship functions, on the other hand, are determined by the true
and false degree of membership functions, respectively. Thus,
the individual values of true, false, true-ambiguous and false-
ambiguous, which result from the respective degree of mem-
bership functions, indicate the ambiguities of ⟨E⟩ in terms of
degree-of-true, degree-of-false, degree-of-ambiguity-in-true and
degree-of-ambiguity-in-false, respectively. In this way, this the-
ory addresses the problems associated with ambiguous features
of the information in the data.

3.2. Proposed ambiguous set

The inherent uncertainty for any event x in the universe of dis-
course S can be defined using ambiguous set theory [41], which
represents the uncertainty in terms of four degree of membership
functions, namely, true (T ), false (F ), true-ambiguous (TA) and
false-ambiguous (FA). Mathematically, the ambiguous set can be
defined as follows.

Definition 1 (Ambiguous Set [41]). An ambiguous set Å on the
universe of discourse S can be defined based on the four mem-
bership functions T , F , TA, FA : S → ]

−0, 1+
[. These membership

functions must satisfy the condition −0 ≤ T (x) + F (x) + TA(x) +

FA(x) ≤ 2+ for all x ∈ S. Here, T , F , TA and FA are real standard
values or non-standard subsets of ]

−0, 1+
[.

From a philosophical point of view, the ambiguous set takes
the value ]

−0, 1+
[ on real standard or non-standard subsets. Thus,

for engineering applications, instead of taking ]
−0, 1+

[, it is useful
to take the interval [0, 1], since it is difficult to use ]

−0, 1+
[ in real

applications such as engineering and science problems.
The AMFs consist of four membership functions, namely, T , F ,

TA and FA. The generalized form of the ambiguous set is called
single-valued ambiguous set (SVAS), if the AMFs are singleton
subintervals/subsets of the standard real unit interval [0, 1]. The
SVAS can be defined as:

Definition 2 (SVAS). An SVAS Å in S is represented by four mem-
bership functions: T : S → [0, 1], F : S → [0, 1], TA : S → [0, 1]
and FA : S → [0, 1]. Such SVAS Å can be designated as:

Å = {⟨x, T (x), F (x), TA(x), FA(x)⟩|x ∈ S}, (10)

with the condition −0 ≤ T (x)+ F (x)+ TA(x)+ FA(x) ≤ 2+, ∀x ∈ S.

An ambiguous set can be defined for the discrete case as
follows.

Definition 3 (Discrete Ambiguous Set). An ambiguous set Å for the
discrete and finite universe of discourse S = {x1, x2, . . . , xn} can
be represented as:

Å =
⟨T (x1), F (x1), TA(x1), FA(x1)⟩

x1
+

⟨T (x2), F (x2), TA(x2), FA(x2)⟩
x2

+

· · · +

⟨T (xn), F (xn), TA(xn), FA(xn)⟩
xn

=

n⋃
i=1

⟨T (xi), F (xi), TA(xi), FA(xi)⟩
xi

(11)
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In Eq. (11), both symbols ‘‘+’’ and ‘‘
⋃

’’ are termed as aggrega-
ion operators. For the continuous and infinite S, the ambiguous
et Å can be denoted as:

=

{
⟨T (x), F (x), TA(x), FA(x)⟩

x

}
(12)

The AMFs can be defined as follows for the SVAS.

efinition 4 (AMFs). The four degree of membership functions,
amely, T , F , TA and FA for a SVAS Å in S can be mathematically
efined as:

T (x)=
x − min(S)

max(S) − min(S)
(13)

F (x)= 1 − T (x) (14)

A(x)=
T (x)

T (x) + AF (x)
(15)

FA(x)=
F (x)

F (x) + AF (x)
(16)

n Eqs. (15) and (16), AF is termed as the ambiguous distance
unction. Mathematically, it can be formulated as:

F (x)=
√
T (x)2 + F (x)2 (17)

xample 1. A CT scan image consists of grayscale values within
the range [0, 255]. Fig. 1(a) and (b) show a CT scan image of a
COVID-19 patient and its three different grayscale values at pixel
positions P15, P17 and P112, which are 215, 228 and 240, respec-
tively. These three grayscale values create the illusion effect as
well as other perceptual problems in terms of their individual
intensity. The different grayscale intensities also pose the chal-
lenge of distinguishing one region from another. Consequently,
users cannot confidently use the linguistic terms ‘‘dark gray’’,
‘‘gray’’ and ‘‘light gray’’ to describe these three grayscale values.
However, this difficulty can be resolved by using ambiguous
sets, where inherent imprecision or approximation of grayscale
intensities are expressed by AMFs. In this respect, three different
ambiguous sets Å1, Å2 and Å3 can be defined for the grayscale
values at pixel positions P15, P17 and P112 on the universe of dis-
course Z = [0, 255] using the AMFs (Eqs. (13)–(16)), respectively,
as:

Å1 =

{
⟨T (P15), F (P15), TA(P15), FA(P15)⟩

P15

}
=

{
⟨0.85, 0.15, 0.50, 0.15⟩

215

}
(18)

2 =

{
⟨T (P17), F (P17), TA(P17), FA(P17)⟩

P17

}
=

{
⟨0.90, 0.10, 0.50, 0.10⟩

228

}
(19)

3 =

{
⟨T (P112), F (P112), TA(P112), FA(P112)⟩

P112

}
=

{
⟨0.95, 0.05, 0.50, 0.05⟩

240

}
(20)

In Eq. (18), T (P15), F (P15), TA(P15) and FA(P15) indicate the
mbiguousness belonging to the white pixel, non-white pixel, am-
iguous white pixel and ambiguous non-white pixel, respectively.
imilar explanations can be provided for Eqs. (19) and (20).
raphical representations of four degree of memberships of Å1,
2 and Å3 are shown in Fig. 1(c)–(e), respectively.
In Fig. 1(c)–(e), each of the shaded regions is called an ambigu-

us region (AR). This AR is extremely useful as it clearly describes
5

he inherent ambiguity measured by AMFs. The two-dimensional
egions, as shown in Fig. 1(c)–(e), obtain from the presence of
mbiguous features of the grayscale values at pixel positions P15,
17 and P112, respectively. Here, the AR provides two valuable
nformation:

1. linguistic description of all uncertainties associated with
the effect of AMFs, and

2. the distribution of ambiguity in the two-dimensional plane.

.3. Related concepts of ambiguous set

Entropy can be used to measure the individual ambiguousness
epresented by the AMFs, namely, T , F , TA and FA. Such mea-
urements of ambiguousness with respect to T , F , TA and FA are
alled true entropy (TE), false entropy (FE), true-ambiguous entropy
TAE) and false-ambiguous entropy (FAE), respectively. These four
ntropies can be defined as follows.

efinition 5 (Measurements of Ambiguousness). The four different
ntropies, viz., TE, FE, TAE and FAE of a SVAS Å at x ∈ S are
enoted as a measure ET (Å, x), EF (Å, x), ETA(Å, x) and EFA(Å, x),

respectively, where Å : {⟨x, T (x), F (x), TA(x), FA(x)⟩|x ∈ S}, which
can be defined as follows:

ET (Å, x) = −T (x) · ln(T (x)) (21)
EF (Å, x) = −F (x) · ln(F (x)) (22)
ETA(Å, x) = −TA(x) · ln(TA(x)) (23)
EFA(Å, x) = −FA(x) · ln(FA(x)) (24)

Definition 6 (Operations on Ambiguous Sets). Let

Å1 = {⟨x, T1(x), F1(x), TA1(x), FA1(x)⟩|x ∈ S}, and
Å2 = {⟨x, T2(x), F2(x), TA2(x), FA2(x)⟩|x ∈ S}

be two ambiguous sets. Some operations on ambiguous sets are
given below:

1. Å1 ⊆ Å2 if and only if T1(x) ≤ T2(x), F1(x) ≥ F2(x),
TA1(x) ≥ TA2(x), and FA1(x) ≥ FA2(x).

2. Åc
1 = {⟨x, T c

1 (x), F
c
1 (x), TA

c
1(x), FA

c
1(x)⟩|x ∈ S}, where T c

1 (x) =

F1(x), F c
1 (x) = T1(x), TAc

1(x) = 1−TA1(x), FAc
1(x) = 1−FA1(x).

3. Å1 ∩ Å2 = {⟨x, (T1(x) ∧ T2(x)), (F1(x) ∨ F2(x)), (TA1(x) ∨

TA2(x)), (FA1(x) ∨ FA2(a))⟩|x ∈ S}.
4. Å1 ∪ Å2 = {⟨x, (T1(x) ∨ T2(x)), (F1(x) ∧ F2(x)), (TA1(x) ∧

TA2(x)), (FA1(x) ∧ FA2(x))⟩|x ∈ S}.

Definition 7 (Ambiguous Vector and Its Complement). Let Θ =

(Θ1, Θ2, . . . , Θn) be a vector, where for each j = 1, 2, . . . , n,
Θj = {⟨x, TΘj (x), FΘj (x), TAΘj (x), FAΘj (x)⟩|x ∈ S} is an ambiguous
set on the universe S. Then, Θ is called an ambiguous vector on
S. We define the complement of Θ as Θc

= (Θc
1, Θc

2, . . . , Θc
n).

ΘT denotes the transpose of Θ . If n = 1, we do not distinguish
between the ambiguous vector Θ = (Θ1) and the ambiguous set
Θ1.

Definition 8 (Inner Product). For each j = 1, 2, . . . , n, let

Θj = {⟨x, TΘj (x), FΘj (x), TAΘj (x), FAΘj (x)⟩|x ∈ S}, and
θj = {⟨x, Tθj (x), Fθj (x), TAθj (x), FAθj (x)⟩|x ∈ S}

be ambiguous sets on the universe S; let Θ = (Θ1, Θ2, . . . , Θn),
θ = (θ1, θ2, . . . , θn). We call Θ · θ = {⟨x, y, z, u, v⟩|x ∈ S}
the inner product of Θ and θ , where ∨ and ∧ denote the max
and min operations, respectively; and y =

⋁n
j=1(TΘj (x) ∧ Tθj (x)),

z =
⋀n

j=1(FΘj (x) ∨ Fθj (x)), u =
⋀n

j=1(TAΘj (x) ∨ TAθj (x)), and
v =

⋀n
j=1(FAΘj (x) ∨ FAθj (x)). Note that Θ · θ is an ambiguous set;

also, when n = 1, we have Θ · θ = Θ ∩ θ .
1 1
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P

D

Θ

Fig. 1. Representation of grayscale values using ambiguous sets: (a) a chest CT scan image of COVID-19, (b) three different grayscale values at pixel positions
15 = 215, P17 = 228 and P112 = 240, (c) AMF values for P15 = 215, (d) AMF values for P17 = 228, and (e) AMF values for P112 = 240.
efinition 9 (Outer Product). For each j = 1, 2, . . . , n, let

j = {⟨x, TΘj (x), FΘj (x), TAΘj (x), FAΘj (x)⟩|x ∈ S}, and
θj = {⟨x, Tθj (x), Fθj (x), TAθj (x), FAθj (x)⟩|x ∈ S}

be ambiguous sets on the universe S; let Θ = (Θ1, Θ2, . . . , Θn),
θ = (θ1, θ2, . . . , θn). We call Θ ◦ θ = {⟨x, y′, z ′, u′, v′

⟩|x ∈ S}
the outer product of Θ and θ , where y′

=
⋀n

j=1(TΘj (x) ∨ Tθj (x)),
z ′

=
⋁n

j=1(FΘj (x) ∧ Fθj (x)), u =
⋁n

j=1(TAΘj (x) ∧ TAθj (x)), and
v′

=
⋁n

j=1(FAΘj (x) ∧ FAθj (x)). Note that Θ ◦ θ is an ambiguous
set; also, when n = 1, we have Θ ◦ θ = Θ ∪ θ .
1 1

6

Theorem 1. For each j = 1, 2, . . . , n, let

Θj = {⟨x, TΘj (x), FΘj (x), TAΘj (x), FAΘj (x)⟩|x ∈ S}, and

θj = {⟨x, Tθj (x), Fθj (x), TAθj (x), FAθj (x)⟩|x ∈ S}

be ambiguous sets on the universe S; let Θ = (Θ1, Θ2, . . . , Θn),
θ = (θ1, θ2, . . . , θn). Then, (Θ · θ )c = Θc

◦ θ c , (Θ ◦ θ )c = Θc
· θ c .

Proof. According to Definitions 6, 8 and 9, we have:



P. Singh and S.S. Bose Knowledge-Based Systems 231 (2021) 107432

w
ς

D
a
c
v

D

(Θ · θ )c

=

{⟨
x,

n⋁
j=1

(TΘj (x) ∧ Tθj (x)),
n⋀

j=1

(FΘj (x) ∨ Fθj (x)),

n⋀
j=1

(TAΘj (x) ∨ TAθj (x)),

n⋀
j=1

(FAΘj (x) ∨ FAθj (x))
⟩
|x ∈ S

}c

=

{⟨
x,

n⋀
j=1

(FΘj (x) ∨ Fθj (x)),
n⋁

j=1

(TΘj (x) ∧ Tθj (x)),

1 −

n⋀
j=1

(TAΘj (x) ∨ TAθj (x)),

1 −

n⋀
j=1

(FAΘj (x) ∨ FAθj (x))
⟩
|x ∈ S

}
=

{⟨
x,

n⋀
j=1

(FΘj (x) ∨ Fθj (x)),
n⋁

j=1

(TΘj (x) ∧ Tθj (x)),

n⋁
j=1

[
(1 − TAΘj (x)) ∧ (1 − TAθj (x))

]
,

n⋁
j=1

[
(1 − FAΘj (x)) ∧ (1 − FAθj (x))

]⟩
|x ∈ S

}
= Θc

◦ θ c .

(Θ ◦ θ )c

=

{⟨
x,

n⋀
j=1

(TΘj (x) ∨ Tθj (x)),

n⋁
j=1

(FΘj (x) ∧ Fθj (x)),
n⋁

j=1

(TAΘj (x) ∧ TAθj (x)),

n⋁
j=1

(FAΘj (x) ∧ FAθj (x))
⟩
|x ∈ S

}c

=

{⟨
x,

n⋁
j=1

(FΘj (x) ∧ Fθj (x)),

n⋀
j=1

(TΘj (x) ∨ Tθj (x)), 1 −

n⋁
j=1

(TAΘj (x) ∧ TAθj (x)),

1 −

n⋁
j=1

(FAΘj (x) ∧ FAθj (x))
⟩
|x ∈ S

}
=

{⟨
x,

n⋁
j=1

(FΘj (x) ∧ Fθj (x)),
n⋀

j=1

(TΘj (x) ∨ Tθj (x)),

n⋀
j=1

[
(1 − TAΘj (x)) ∨ (1 − TAθj (x))

]
,

n⋀
j=1

[
(1 − FAΘj (x)) ∨ (1 − FAθj (x))

]⟩
|x ∈ S

}
= Θc

· θ c . ■

Theorem 2. For each j = 1, 2, . . . , n, let

Θj = {⟨x, TΘj (x), FΘj (x), TAΘj (x), FAΘj (x)⟩|x ∈ S}, and

θj = {⟨x, Tθj (x), Fθj (x), TAθj (x), FAθj (x)⟩|x ∈ S}

7

be ambiguous sets on the universe S; let Θ = (Θ1, Θ2, . . . , Θn),
θ = (θ1, θ2, . . . , θn). Then, Θ · θ = θ · Θ , Θ ◦ θ = θ ◦ Θ .

Proof. According to Definitions 8 and 9:

Θ · θ

=

{⟨
x,

n⋁
j=1

(TΘj (x) ∧ Tθj (x)),
n⋀

j=1

(FΘj (x) ∨ Fθj (x)),

n⋀
j=1

(TAΘj (x) ∨ TAθj (x)),

n⋀
j=1

(FAΘj (x) ∨ FAθj (x))
⟩
|x ∈ S

}
=

{⟨
x,

n⋁
j=1

(Tθj (x) ∧ TΘj (x)),
n⋀

j=1

(Fθj (x) ∨ FΘj (x)),

n⋀
j=1

(TAθj (x) ∨ TAΘj (x)),

n⋀
j=1

(FAθj (x) ∨ FAΘj (x))
⟩
|x ∈ S

}
= θ · Θ.

Θ ◦ θ

=

{⟨
x,

n⋀
j=1

(TΘj (x) ∨ Tθj (x)),
n⋁

j=1

(FΘj (x) ∧ Fθj (x)),

n⋁
j=1

(TAΘj (x) ∧ TAθj (x)),

n⋁
j=1

(FAΘj (x) ∧ FAθj (x))
⟩
|x ∈ S

}
=

{⟨
x,

n⋀
j=1

(Tθj (x) ∨ TΘj (x)),

n⋁
j=1

(Fθj (x) ∧ FΘj (x)),
n⋁

j=1

(TAθj (x) ∧ TAΘj (x)),

n⋁
j=1

(FAθj (x) ∧ FAΘj (x))
⟩
|x ∈ S

}
= θ ◦ Θ. ■

Definition 10 (Jaccard Similarity Measure). Let η = (η1, η2, . . . , ηn)
and ς = (ς1, ς2, . . . , ςn) be two vectors of length n, where all
coordinates are positive. The Jaccard similarity measure of these
two vectors is defined as:

J(η, ς ) =
η · ς

∥η∥2 + ∥ς∥2 + η · ς

=

∑n
i=1 ηiςi∑n

i=1 η2
i +

∑n
i=1 ς2

i −
∑n

i=1 ηiςi
(25)

here, η ·ς =
∑n

i=1 ηiςi is the inner product of the vectors η and
.

efinition 11 (Dice Similarity Measure). Let η = (η1, η2, . . . , ηn)
nd ς = (ς1, ς2, . . . , ςn) be two vectors of length n, where all
oordinates are positive. The Dice similarity measure of these two
ectors is defined as:

(η, ς ) =
2η · ς

∥η∥2 + ∥ς∥2 =
2
∑n

i=1 ηiςi∑n
i=1 η2

i +
∑n

i=1 ς2
i

(26)
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D
efinition 12 (Cosine Similarity Measure). Let η = (η1, η2, . . . , ηn)
and ς = (ς1, ς2, . . . , ςn) be two vectors of length n, where all
the coordinates are positive. The cosine similarity measure of these
two vectors is defined as:

C(η, ς ) =
η · ς

∥η∥2∥ς∥2 =

∑n
i=1 ηiςi

[
∑n

i=1 η2
i ][

∑n
i=1 ς2

i ]
(27)

Property 1. The Jaccard, Dice and cosine similarity measures satisfy
the following properties as:

P1 : J(η, ς ),D(η, ς ), C(η, ς ) ∈ [0, 1].
P2 : J(η, ς ) = J(ς, η), D(η, ς ) = D(ς, η), C(η, ς ) = C(ς, η).
P3 : If η = ς , then J(η, ς ) = D(η, ς ) = C(η, ς ) = 1.

The above similarity measures motivate the following defini-
tion.

Definition 13. Let

Å1 = {⟨x, T1(x), F1(x), TA1(x), FA1(x)⟩|x ∈ S},
Å2 = {⟨x, T2(x), F2(x), TA2(x), FA2(x)⟩|x ∈ S}

be two ambiguous sets on the universe S. Let η = (η1, η2, . . . , ηn)
and ς = (ς1, ς2, . . . , ςn) be two vectors of length n, where
ηi, ςi ∈ S for i = 1, 2, . . . , n. Let w1, w2, . . . , wn be non-negative
real numbers, called weights. The ambiguous weighted Jaccard
similarity measure, ambiguous weighted Dice similarity measure
and ambiguous weighted cosine similarity measure of these two
ambiguous sets for the vectors η, ς are defined, respectively, as:

AWJ(Å1,Å2; η, ς )

=

n∑
i=1

wiJ
((
T1(xi), F1(xi), TA1(xi), FA1(xi)

)
,(

T2(xi), F2(xi), TA2(xi), FA2(xi)
))

,

AWD(Å1,Å2; η, ς )

=

n∑
i=1

wiD
((
T1(xi), F1(xi), TA1(xi), FA1(xi)

)
,(

T2(xi), F2(xi), TA2(xi), FA2(xi)
))

,

AWC(Å1,Å2; η, ς )

=

n∑
i=1

wiC
((
T1(xi), F1(xi), TA1(xi), FA1(xi)

)
,(

T2(xi), F2(xi), TA2(xi), FA2(xi)
))

.

4. The proposed ADMFCA

This section introduces the proposed ADMFCA for clustering
grayscale images. The proposed ADMFCA is based on ambiguous
set theory, entropies and image fusion operation. Each step of the
proposed ADMFCA is explained next.

Step 1. Define the grayscale domain of image: The grayscale
value Gij associated with each pixel Pij(i = 1, 2, . . . ,m)(j =

1, 2, . . . , n) of an input gray image IGI can be expressed in a
grayscale domain as:

IGI =

⎡⎢⎢⎣
G11 G12 . . . G1n
G21 G22 . . . G2n
...

...
. . .

...

Gm1 Gm2 . . . Gmn

⎤⎥⎥⎦ (28)

Here, m × n represents the total number of grayscale values in
the IGI . In Eq. (28), each grayscale value Gij ∈ Pij is defined in the
range [0,G] with G = 255. Hence, the universe of discourse S for
each G ∈ I is defined as S = [0,G].
ij GI

8

Step 2. Define the ambiguous domain of image: The ambigu-
ous domain for the grayscale image IGI is defined by representing
the grayscale value Gij of each pixel in the ambiguous set. The
ambiguous set of each Gij is denoted as Åij, and can be expressed
in the following matrix ÅA as:

ÅA =

⎡⎢⎢⎢⎣
Å11 Å12 . . . Å1n
Å21 Å22 . . . Å2n
...

...
. . .

...

Åm1 Åm2 . . . Åmn

⎤⎥⎥⎥⎦ (29)

In Eq. (29), each Åij is defined as:

Åij = {Gij, ⟨T (Gij), F (Gij), TA(Gij), FA(Gij)⟩|Gij ∈ S} (30)

In Eq. (30), the four AMFs, namely, T , F , TA and FA for Gij ∈ S can
be defined as:

T (Gij) =
Gij − min(S)

max(S) − min(S)
(31)

F (Gij) = 1 − T (Gij) (32)

TA(Gij) =
T (Gij)

T (Gij) + AF (Gij)
(33)

FA(Gij) =
F (Gij)

F (Gij) + AF (Gij)
(34)

In Eq. (31), min and max represent the minimum and maximum
functions, respectively. In Eqs. (33) and (34), the ambiguous
distance function AF can be defined as:

AF (Gij) =

√
T (Gij)2 + F (Gij)2 (35)

Step 3. Measurements of ambiguousness for ambiguous set:
The ambiguousness of the AMFs (Eqs. (31)–(34)) can be mea-
sured individually by TE, FE, TAE and FAE, which are expressed
as ET (Åij,Gij), EF (Åij,Gij), ETA(Åij,Gij) and EFA(Åij,Gij), defined in
Eqs. (36)–(39), respectively, as:

ET (Åij,Gij) = −T (Gij) · ln(T (Gij)) (36)

EF (Åij,Gij) = −F (Gij) · ln(F (Gij)) (37)

ETA(Åij,Gij) = −TA(Gij) · ln(TA(Gij)) (38)

EFA(Åij,Gij) = −FA(Gij) · ln(FA(Gij)) (39)

Step 4. Selection of clusters for the entropies: Choose D ini-
tial number of clusters at random for the ET (Åij,Gij), EF (Åij,Gij),
ETA(Åij,Gij) and EFA(Åij,Gij) (Eqs. (36)–(39), respectively) as CT

d ,
C F
d , C

TA
d and C FA

d , respectively; where d = 1, 2, . . . ,D. Here, CT
d ,

C F
d , C

TA
d and C FA

d occupy each ET (Åij,Gij), EF (Åij,Gij), ETA(Åij,Gij)
and EFA(Åij,Gij), respectively.
Step 5. Define the set of centers for each of the clusters: Define
a set of random initialized centers for each of the clusters CT

d , C
F
d ,

CTA
d and C FA

d as:

W (0) = [W1(0),W2(0), . . . ,WD(0)] ∈ CT
d (40)

X(0) = [X1(0), X2(0), . . . , XD(0)] ∈ C F
d (41)

Y (0) = [Y1(0), Y2(0), . . . , YD(0)] ∈ CTA
d (42)

Z(0) = [Z1(0), Z2(0), . . . , ZD(0)] ∈ C FA
d (43)

Here, 0 indicates the 1st epoch of the algorithm. From Eq. (40),
it can be assumed that CT

d cluster has Wi center, where Wi ⊆

ET (Åij,Gij)(1 ≤ d ≤ D). Similar assumptions can be made for C F
d ,

CTA
d and C FA

d in terms of Eqs. (41)–(43), respectively.
Step 6. Set the epochs: For individual clustering of ET (Åij,Gij),
EF (Åij,Gij), ETA(Åij,Gij) and EFA(Åij,Gij), the epoch e from 0 to
Epoch is set as e = 0, 1, . . . , Epoch, where Epoch denotes the
maximum number of epochs.
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Step 7. Computation of distances between entropies and cen-
ters: Each of the entropies ET (Åij,Gij), EF (Åij,Gij), ETA(Åij,Gij) and
EFA(Åij,Gij) is assigned to the individual clusters CT

d , C
F
d , C

TA
d and

C FA
d with respect to the nearest centers Wi(0), Xi(0), Yi(0) and

Zi(0), respectively. The determination of the nearest center vec-
torsWi(0), Xi(0), Yi(0) and Zi(0) is done by employing ambiguous-
entropy distance function. The proposed function computes the
distance between ET (Åij,Gij) and Wi(0) as:

Dist[ET (Åij,Gij),Wi(0)]

= [ET (Åij,Gij)]2 + [Wi(0)]2 − 2 · [ET (Åij,Gij)] · [Wi(0)] (44)

Similarly, the proposed metric computes the distances between
EF (Åij,Gij) and Xi(0), ETA(Åij,Gij) and Y (0), and EFA(Åij,Gij) and
Zi(0), defined in Eqs. (45)–(47), respectively, as:

Dist[EF (Åij,Gij), Xi(0)]

= [EF (Åij,Gij)]2 + [Xi(0)]2 − 2 · [EF (Åij,Gij)] · [Xi(0)] (45)
Dist[ETA(Åij,Gij), Yi(0)]

= [ETA(Åij,Gij)]2 + [Yi(0)]2 − 2 · [ETA(Åij,Gij)] · [Yi(0)] (46)
Dist[EFA(Åij,Gij), Zi(0)]

= [EFA(Åij,Gij)]2 + [Zi(0)]2 − 2 · [EFA(Åij,Gij)] · [Zi(0)] (47)

In Eqs. (44)–(47), Dist[·] denotes the ambiguous-entropy dis-
tance metric. In Eq. (44), if Wi(0) is the closest center to
ET (Åij,Gij), then it is assigned to the cluster CT

d . A similar expla-
nation can be given for Eqs. (45)–(47).
Step 8. Selection criterion of clusters: The selection of each
cluster by ET (Åij,Gij), EF (Åij,Gij), ETA(Åij,Gij) and EFA(Åij,Gij) de-
pends on the minimum values of the ambiguous-entropy dis-
tances (Eqs. (44)–(47), respectively). For example, let Wi(0) and
Wj(0) be the two randomly defined centers for the clusters CT

i
and CT

j with respect to the clustering ET (Åij,Gij). Now,
ET (Åij,Gij) ∈ Wi(0) if it satisfies the following condition as:

|Dist[ET (Åij,Gij),Wi(0)]| < |Dist[ET (Åij,Gij),Wj(0)]| (48)

where, Wi(0) ̸= Wj(0). In Eq. (48), Dist[ET (Åij,Gij),Wi(0)] and
Dist[ET (Åij,Gij),Wj(0)] can be obtained by employing Eq. (44).
Eq. (48) indicates that Wi(0) is the nearest center for ET (Åij,Gij),
so it is assigned to the cluster CT

i . A similar explanation can be
given for clustering EF (Åij,Gij), ETA(Åij,Gij) and EFA(Åij,Gij).
Step 9. Update the centers: After each epoch, the proposed
algorithm updates their centers. This process continues until
it reaches the maximum epoch Epoch. During the individual
clustering of ET (Åij,Gij), EF (Åij,Gij), ETA(Åij,Gij) and EFA(Åij,Gij),
the respective new centers are denoted as Wi(e + 1), Xi(e + 1),
Yi(e+1) and Zi(e+1), defined in Eqs. (49)–(52), respectively, as:

Wi(e + 1) =
1

A × B

A∑
i=1

B∑
j=1

ET (Åij,Gij) (49)

Xi(e + 1) =
1

I × J

I∑
i=1

J∑
j=1

EF (Åij,Gij) (50)

Yi(e + 1) =
1

P × Q

P∑
i=1

Q∑
j=1

ETA(Åij,Gij) (51)

Zi(e + 1) =
1

S × T

S∑
i=1

T∑
j=1

EFA(Åij,Gij) (52)

In Eqs. (49)–(52), A× B, I × J , P ×Q and S × T represent the size
of the clusters CT , C F , CTA and C FA, respectively.
d d d d

9

Step 10. Stop the clustering process: Go to Step 6 and proceed
from epoch e = 0 to the next epoch e = e+ 1. This process con-
tinues until the centers stop changing or the algorithm reaches
the maximum epoch Epoch.
Step 11. Generate the clustered images: Individual clustering
of ET (Åij,Gij), EF (Åij,Gij), ETA(Åij,Gij) and EFA(Åij,Gij) generates the
four different clustered images, called TE clustered image (TECI),
FE clustered image (FECI), TAE clustered image (TAECI) and FAE
clustered image (FAECI). TECI, FECI, TAECI and FAECI are denoted
as TECI , FECI , TAECI and FAECI , respectively.
Step 12. Obtain the final clustered image: The final clustered
image (FCI) is generated by applying the image fusion opera-
tion [40] on four clustered images, viz., TECI , FECI , TAECI and FAECI
as:

FCI =
1
4
[TECI + FECI + TAECI + FAECI ] (53)

Here, FCI denotes the FCI.

The pseudocode of the proposed ADMFCA is summarized in
lgorithm 1.

Algorithm 1 PROCEDURE ADMFC().

Input: an image ĜI with grayscale value Gij ∈ Pij is defined
between the range S = [0,G] with G = 255, where each Pij(i =

1, 2, . . . ,m)(j = 1, 2, . . . , n) denotes the pixel of ĜI .
Output: final clustered image (FCI).
1: Represent ĜI as grayscale domain denoted by IGI (Eq. (28)).
2: Represent ĜI into ambiguous domain denoted by ÅA (Eq. (29)).
3: Measure the ambiguousness of the AMFs of ÅA , and expressed
as ET (Åij,Gij), EF (Åij,Gij), ETA(Åij,Gij) and EFA(Åij,Gij) (Eqs. (36)–
(39), respectively).
4: Choose D initial clusters at random for the ET (Åij,Gij),
EF (Åij,Gij), ETA(Åij,Gij) and EFA(Åij,Gij) as CT

d , C F
d , CTA

d and C FA
d ,

respectively; where d = 1, 2, . . . ,D.
5: Define a set of random initialized centers for each of the
clusters CT

d , C
F
d , C

TA
d and C FA

d (Eqs. (40)–(43), respectively).
while e=0 do

a: Compute the distances between entropies and centers (Eqs.
(44)–(47)).
b: Select each cluster by employing condition given (Eq. (48)).
c: Update each of the centers (Eqs. (49)–(52)).

end
e=e+1;
6: Generate the four different clustered images as TECI, FECI,
TAECI and FAECI.
7: Apply the image fusion operation on four clustered images to
obtain the final clustered image as FCI.

5. Properties of ambiguous-entropy distance function

This section presents various properties of ambiguous-entropy
distance function. This function is used in the proposed ADMFCA
to compute the distance between entropy and center of the
clusters. Consider the following generalized form of ambiguous-
entropy distance function that computes the distance between
ET (Åij,Gij) and Wi as:

Dist[ET (Åij,Gij),Wi] = [ET (Åij,Gij)]2 +[Wi]
2
−2 · [ET (Åij,Gij)] · [Wi]

(54)

Here, ambiguous-entropy distance function Dist[ET (Åij,Gij),Wi] is
used to compute the distance between ET (Åij,Gij) and Wi. For
ease of explanation of various properties of this function, we only
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c
onsider the vectors ET (Åij,Gij) and Wi. However, these properties
are also valid in the case of the computation of the distances
between EF (Åij,Gij) and Xi, ETA(Åij,Gij) and Yi, and EFA(Åij,Gij)
and Zi. In the following, we have discussed various properties of
ambiguous-entropy distance function in terms of Eq. (54).

Property 2. Dist[ET (Åij,Gij),Wi] : R × R → R is equal to 0 if
ET (Åij,Gij) = Wi.

Proof. If ET (Åij,Gij) = Wi, then Dist[ET (Åij,Gij),Wi] = [ET (Åij,

Gij)]2 +[Wi]
2
−2 · [ET (Åij,Gij)] · [Wi] = [ET (Åij,Gij)−Wi]

2
= 0. ■

Property 3. As the distance between ET (Åij,Gij) and Wi increases,
Dist[ET (Åij,Gij),Wi] increases.

Proof. Assume two centers Wi and Wj, where Wi,Wj ∈ W and
Wi > Wj. From Eq. (54), it is clear that Dist[ET (Åij,Gij),Wi] >

Dist[ET (Åij,Gij),Wj]. It indicates that as Wi increases,
Dist[ET (Åij,Gij),Wi] increases.

Similarly, assume two TEs as ET (Åij,Gij) and ET (Åkl,Gkl), where
ET (Åij,Gij) > ET (Åkl,Gkl). Now, if we compute the distances of
these two TEs with respect to Wi, then clearly get Dist[ET (Åij,Gij),
Wi] > Dist[ET (Åkl,Gkl),Wi]. It indicates that as ET (Åij,Gij) in-
creases, Dist[ET (Åij,Gij),Wi] increases. ■

Property 4. The ambiguous-entropy distance function follows the
symmetry property, i.e., Dist[ET (Åij,Gij),Wi] = Dist[Wi, ET (Åij,Gij)].

Proof. It is obvious from Eq. (54). ■

Theorem 3. For Dist[ET (Åij,Gij),Wi] : R × R → R, there exists an
Euclidean space E and a distance vector V : R × R → E such that
Dist[ET (Åij,Gij),Wi] = V

(
ET (Åij,Gij),Wi

)
·V

(
ET (Åij,Gij),Wi

)
, where

‘‘·’’ denotes the dot product of two vectors.

Proof. Let E be the 1-dimensional Euclidean space R. Define V :

R × R → E by V (a, b) = a − b. Then,

V
(
ET (Åij,Gij),Wi

)
· V

(
ET (Åij,Gij),Wi

)
= [ET (Åij,Gij) − Wi] · [ET (Åij,Gij) − Wi]

= [ET (Åij,Gij) − Wi]
2

= [ET (Åij,Gij)]2 + [Wi]
2
− 2 · [ET (◦Aij,Gij)] · [Wi]

= Dist[ET (Åij,Gij),Wi]. ■

Theorem 4. Dist[ET (Åij,Gij),Wi] = ∥V
(
ET (Åij,Gij),Wi

)
∥
2, where

∥ · ∥ denotes the standard Euclidean norm on R2.

Proof. By the previous theorem, we have

Dist[ET (Åij,Gij),Wi] = V
(
ET (Åij,Gij),Wi

)
· V

(
ET (Åij,Gij),Wi

)
=

[√
V
(
ET (Åij,Gij),Wi

)
· V

(
ET (Åij,Gij),Wi

)]2

= ∥V
(
ET (Åij,Gij),Wi

)
∥
2. ■

6. Experimental results

This section is divided into several subsections, such as:
dataset description is provided in Section 6.1. Various perfor-
mance evaluation metrics are discussed in Section 6.2. The initial
experimental setup is presented in Section 6.3. Visual analysis
of the clustered images is discussed in Section 6.4. Finally, the
comparison with existing models is presented in Section 6.5.
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Table 2
Detailed information about the chest CT scan images of COVID-19 patients.
Group Label Extracted CT

scan image
Image size in
KB (before
preprocessed)

Image size in
KB (after pre-
processed)

Group #1

1 #142 169 129
2 #94 237 172
3 #105 218 154
4 #85 202 146
5 #100 207 155
6 #110 211 140
7 #94 212 134
8 #96 184 126
9 #109 181 130
10 #155 173 121

Group #2

1 #118 179 120
2 #106 231 7.15
3 #81 216 152
4 #71 191 144
5 #76 193 147
6 #87 211 150
7 #113 225 149
8 #120 169 127
9 #90 173 136
10 #179 177 130

Group #3

1 #129 188 124
2 #97 250 164
3 #92 223 150
4 #95 206 139
5 #87 210 143
6 #98 222 141
7 #102 222 139
8 #107 192 129
9 #100 185 137
10 #166 179 127

Group #4

1 #136 173 71.0
2 #86 223 92.5
3 #100 190 81.6
4 #77 179 82.2
5 #80 179 80.9
6 #92 191 83.0
7 #89 177 76.5
8 #114 181 75.3
9 #104 185 77.8
10 #171 163 70.6

6.1. Dataset description

The proposed ADMFCA and selected clustering algorithms,
namely KMC [23], FCM [29], GFCM [34], IIFCM [36] and NEBCA
[38] are applied to different types of chest CT scan images of
COVID-19 patients [45]. This dataset contains CT scan images of
COVID-19 patients with 20 different labels. In this study, CT scan
images with 10 different labels are selected for the experiment.
Out of each label, four different CT scan images are selected.
Thus, a total of 10 × 4 = 40 CT scan images are available with
their respective ground truths. These 40 images are split into four
different groups, called Group #1, Group #2, Group #3 and Group
#4. However, the extracted CT scan images have noise and poor
resolution issues. Therefore, these images are preprocessed before
carrying out the experiment. The adaptive filtering technique [46]
and the histogram equalization method [47] are used for noise
removal and resolution improvement, respectively. Eventually,
these preprocessed images are used for the experiment. Detailed
information on the experimental datasets is available in Table 2.

6.2. Performance evaluation metrics

Clustered images obtained using the proposed ADMFCA and
selected clustering algorithms are evaluated using five statistical
metrics, namely MSE, PSNR, DSC, JSC and CC. These metrics are
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Fig. 2. Example of clustering CT scan image (Group: #1, Label: 2, Image: #94) based on the ADMFCA and selection of optimal FCI: (a) original CT scan image, (b)
round truth of (a), (c) preprocessed CT scan image of (a), (d) FCI with D = 2 (MSE: 4.03, PSNR: 42.08, DSC: 0.89, JSC: 0.93, CC: 0.94), (e) FCI with D = 3 (MSE:
.04, PSNR: 43.30, DSC: 0.91, JSC: 0.95, CC: 0.96), and (f) final FCI with D = 4 (MSE: 4.05, PSNR: 42.06, DSC: 0.90, JSC: 0.94, CC: 0.95). The optimal FCI is shown in
e) obtained with D = 3.
efined based on the input grayscale image (IGI ), final clustered
mage (FCI ) and corresponding ground truth (GTI ) as:

SE(IGI , FCI ) =
1

M × N

M∑
m=1

N∑
n=1

(IGI − FCI )2 (55)

SNR(IGI , FCI ) = 10 × log10

[
(255)2

MSE(IGI , FCI )

]
(56)

SC(FCI ,GTI ) =
2|FCI ∩ GTI |

|FCI + GTI |
(57)

SC(FCI ,GTI ) =
|FCI ∩ GTI |

|FCI ∪ GTI |
(58)

C(FCI ,GTI )

=

∑M
m=1

∑N
n=1(FCI − F̄CI )(GTI − ḠTI )(∑M

m=1
∑N

n=1(FCI − F̄CI )2
)(∑M

m=1
∑N

n=1(GTI − ḠTI )2
) (59)

A lower MSE value (Eq. (55)) indicates a lower intensity loss
and produces a robust clustered image. A higher PSNR value
(Eq. (56)) shows less distortion in grayscale values and generates
a better clustered image. The DSC and JSC values (Eqs. (57) and
(58), respectively) always lie in the range of 0–1. Their values
close to 1 imply that the region of interest of the clustered image
is nearly similar to the corresponding ground truth. The CC value
(Eq. (59)) remains within the range [−1.1]. In Eq. (59), F̄CI and ḠTI
indicate mean values of FCI and GTI , respectively. A CC value close
to 1 shows that the region of interest of the clustered image is
perfectly similar to its corresponding background truth.
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6.3. Initial experimental set-up

The main objective of ADMFCA is to effectively detect infected
regions by clustering the grayscale values of the CT scan images of
COVID-19 patients. In this algorithm, we first define the grayscale
values (Gij) of all preprocessed CT scan images of COVID-19 pa-
tients (Table 2) in terms of the four degree of memberships in the
ambiguous set as:

• Gij of all white pixels are defined by T (Gij),
• Gij of all non-white pixels are defined by F (Gij),
• Gij of all white pixels with certain non-white pixels are

defined by TA(Gij), and
• Gij of all non-white pixels with certain white pixels are

represented by FA(Gij).

The individual ambiguity of T (Gij), F (Gij), TA(Gij) and FA(Gij) is
measured using the corresponding TE, FE, TAE and FAE (Eqs. (36)–
(39), respectively). Finally, the proposed algorithm is applied
sequentially to create clusters T (Gij), F (Gij), TA(Gij) and FA(Gij).
The proposed algorithm develops four different clustered im-
ages, called TECI, FECI, TAECI and FAECI. The final clustered im-
ages (FCIs) are obtained by applying the image fusion operation
(Eq. (53)) to TECI, FECI, TAECI and FAECI.

The proposed algorithm is simulated by selecting three dif-
ferent cluster numbers as D = 2, 3, 4. The main objective of
the simulation with different cluster numbers is to determine
which cluster number is best to generate the optimal FCIs. The
best cluster number for the proposed ADMFCA is determined by
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Fig. 3. Visual analysis of clustering the CT scan image (Group: #1, Label: 1, Image: #142) based on the ADMFCA: (a) original CT scan image, (b) ground truth of
(a), (c) preprocessed CT scan image of (a), (d) TECI, (e) FECI, (f) TAECI, (g) FAECI, (h) FCI, (i) histogram of (c), and (j) histogram of (h).

12
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Table 3
Performance evaluation of existing clustering algorithms with the proposed ADMFCA with respect to MSE for
clustering the CT scan images of COVID-19.
Group Label CT scan image

(preprocessed)
KMC FCM GFCM IIFCM NEBCA ADMFCA

Group #1

1 #142 405.24 305.60 240.67 179.67 119.34 2.03
2 #94 439.72 307.73 230.24 174.14 118.15 3.04
3 #105 464.27 393.48 238.01 125.01 115.01 3.04
4 #85 493.26 391.21 235.11 126.11 116.11 1.02
5 #100 409.28 394.91 244.44 138.10 114.23 2.03
6 #110 475.81 310.35 248.87 128.23 116.45 1.03
7 #94 513.15 311.36 238.87 130.15 117.12 1.04
8 #96 418.35 318.27 210.30 132.30 115.13 1.04
9 #109 436.93 311.90 217.93 136.93 114.93 1.05
10 #155 463.07 312.73 215.77 136.77 114.77 2.05

Group #2

1 #118 497.78 313.26 213.13 135.13 114.13 1.07
2 #106 497.64 312.25 216.40 127.40 116.14 1.02
3 #81 425.53 314.63 243.64 136.64 118.64 4.03
4 #71 420.01 316.22 239.11 136.11 114.11 1.03
5 #76 594.30 317.85 216.13 123.13 116.23 1.03
6 #87 593.02 314.75 236.87 125.87 116.27 2.01
7 #113 438.52 315.23 235.72 128.72 115.72 1.03
8 #120 450.75 317.63 238.28 126.28 115.28 1.04
9 #90 435.72 312.82 232.82 132.82 112.82 1.05
10 #179 493.02 314.75 236.87 126.87 116.87 1.04

Group #3

1 #129 416.24 311.10 239.67 135.17 119.54 1.04
2 #97 430.72 312.13 230.24 121.24 110.15 1.05
3 #92 563.17 302.58 238.11 128.11 113.21 1.06
4 #95 583.16 316.24 215.31 124.11 115.11 1.04
5 #87 511.18 339.95 212.42 129.10 114.23 1.05
6 #98 475.31 312.15 266.57 129.23 116.45 1.03
7 #102 411.15 311.16 218.77 127.15 118.12 2.05
8 #107 415.15 324.17 240.32 131.31 111.13 3.01
9 #100 435.13 321.91 236.83 138.93 118.93 1.04
10 #166 413.17 322.13 244.87 136.75 114.77 2.02

Group #4

1 #136 425.64 321.20 239.67 129.12 119.14 2.04
2 #86 411.72 332.13 231.14 125.21 110.25 2.03
3 #100 464.17 312.38 248.21 128.21 113.23 4.05
4 #77 583.16 331.14 236.32 139.11 115.21 1.02
5 #80 511.38 341.95 232.45 128.12 114.24 1.03
6 #92 477.36 332.15 246.67 133.43 116.41 1.06
7 #89 414.35 324.66 218.71 139.25 118.22 1.02
8 #114 418.35 314.27 239.31 139.32 111.23 2.05
9 #104 436.23 341.92 236.82 130.82 118.92 1.03
10 #171 413.27 332.23 214.82 136.54 114.17 2.05

Average – – 464.38 324.11 232.91 133.42 115.50 1.59
evaluating the quality of the FCIs using statistical metrics, such
as MSE, PSNR, DSC, JSC and CC (Eqs. (55)–(59), respectively). The
FCIs are obtained by setting the maximum number of epochs to
Epoch = 100.

6.4. Visual analysis

Consider a CT scan image #94 (Group #1, Label: 2) shown in
Fig. 2(a). The respective ground truth of this image is shown in
Fig. 2(b). In Fig. 2(c), the preprocessed image of Fig. 2(a) obtained
by the adaptive filtering technique [46] followed by the histogram
equalization method [47] is shown. Then, the proposed ADMFCA
is applied to the preprocessed image (Fig. 2(c)) to obtain the FCIs
with respect to D = 2, 3, 4. The FCIs of Fig. 2(c) with respect to

= 2, 3, 4 are given in Fig. 2(d)∼(f), respectively.
Finally, the MSE, PSNR, DSC, JSC and CC values of the FCIs

re measured with respect to D = 2, 3, 4, and their values are
mentioned in the caption of Fig. 2(d)∼(f). The MSE, PSNR, DSC,
JSC and CC values of the FCI (Fig. 2(e)) obtained by D = 3 are
0.01, 68.75, 0.92, 0.96 and 0.97, respectively; these values are
significantly better than the FCIs (Fig. 2(d) and (f)) obtained by
D = 2 and D = 4. This way, all preprocessed images listed in
Table 2 are grouped using the proposed ADMFCA, and FCIs are
generated. From the experiment, it is observed that the proposed
ADMFCA generates the optimal FCIs from preprocessed images
13
with D = 3. From now on, the rest of our experimental results
and discussion on the proposed ADMFCA are based on D = 3.

A visual analysis is conducted to assess the quality of FCIs
obtained from preprocessed CT scan images of COVID-19 patients.
To demonstrate visual analysis, CT scan images #142 (Label:
1), #118 (Label: 1), #166 (Label: 10) and #114 (Label: 8) are
selected from Groups #1-#4, respectively. These selected images
are shown in Figs. 3–6(a). The ground truths of the selected
images are shown in Figs. 3–6(b). The preprocessed images of
Figs. 3–6(a) are shown in Figs. 3–6(c). The four different clustered
images, namely TECIs, FECIs, TAECIs and FAECIs, obtained by the
proposed ADMFCA are depicted in Figs. 3–6(d)∼(g), respectively.
By applying the fusion operation to TECI, FECI, TAECI, and FAECI,
we obtain the FCIs shown in Figs. 3–6(h). In Figs. 3–6(h), dense
white pixels in the lungs denote infection and symptoms of
COVID-19. Figs. 3–6(i) present the histograms of the preprocessed
images (Figs. 3–6(c)), which indicate the distribution of grayscale
values in the pixels before performing the clustering operation.
Figs. 3–6(j) depict the histograms of the FCIs (Figs. 3–6(h)), which
indicate the distribution of grayscale values in the pixels after
performing the clustering operation. From Figs. 3–6(j), it can be
seen that the proposed ADMFCA has effectively performed the
clustering operation on grayscale values.
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Fig. 4. Visual analysis of clustering the CT scan image (Group: #2, Label: 1, Image: #118) based on the ADMFCA: (a) original CT scan image, (b) ground truth of
(a), (c) preprocessed CT scan image of (a), (d) TECI, (e) FECI, (f) TAECI, (g) FAECI, (h) FCI, (i) histogram of (c), and (j) histogram of (h).
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Fig. 5. Visual analysis of clustering the CT scan image (Group: #3, Label: 10, Image: #166) based on the ADMFCA: (a) original CT scan image, (b) ground truth of
(a), (c) preprocessed CT scan image of (a), (d) TECI, (e) FECI, (f) TAECI, (g) FAECI, (h) FCI, (i) histogram of (c), and (j) histogram of (h).
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Fig. 6. Visual analysis of clustering the CT scan image (Group: #4, Label: 8, Image: #114) based on the ADMFCA: (a) original CT scan image, (b) ground truth of
(a), (c) preprocessed CT scan image of (a), (d) TECI, (e) FECI, (f) TAECI, (g) FAECI, (h) FCI, (i) histogram of (c), and (j) histogram of (h).
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Fig. 7. Clustering of CT scan images (Group: #1, Labels: 1–5) of COVID-19 using the existing clustering algorithms and proposed ADMFCA: (a) preprocessed CT scan
image, (b) ground truth, (c) KMC (number of clusters: 3), (d) FCM, (e) GFCM, (f) IIFCM, (g) NEBCA, and (h) ADMFCA.

Fig. 8. Clustering of CT scan images (Group: #1, Labels: 6–10) of COVID-19 using the existing clustering algorithms and proposed ADMFCA: (a) preprocessed CT
scan image, (b) ground truth, (c) KMC (number of clusters: 3), (d) FCM, (e) GFCM, (f) IIFCM, (g) NEBCA, and (h) ADMFCA.
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Fig. 9. Clustering of CT scan images (Group: #2, Labels: 1–5) of COVID-19 using the existing clustering algorithms and proposed ADMFCA: (a) preprocessed CT scan
image, (b) ground truth, (c) KMC (number of clusters: 3), (d) FCM, (e) GFCM, (f) IIFCM, (g) NEBCA, and (h) ADMFCA.

Fig. 10. Clustering of CT scan images (Group: #2, Labels: 6–10) of COVID-19 using the existing clustering algorithms and proposed ADMFCA: (a) preprocessed CT
scan image, (b) ground truth, (c) KMC (number of clusters: 3), (d) FCM, (e) GFCM, (f) IIFCM, (g) NEBCA, and (h) ADMFCA.
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Fig. 11. Clustering of CT scan images (Group: #3, Labels: 1–5) of COVID-19 using the existing clustering algorithms and proposed ADMFCA: (a) preprocessed CT
scan image, (b) ground truth, (c) KMC (number of clusters: 3), (d) FCM, (e) GFCM, (f) IIFCM, (g) NEBCA, and (h) ADMFCA.

Fig. 12. Clustering of CT scan images (Group: #3, Labels: 6–10) of COVID-19 using the existing clustering algorithms and proposed ADMFCA: (a) preprocessed CT
scan image, (b) ground truth, (c) KMC (number of clusters: 3), (d) FCM, (e) GFCM, (f) IIFCM, (g) NEBCA, and (h) ADMFCA.
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Fig. 13. Clustering of CT scan images (Group: #4, Labels: 1–5) of COVID-19 using the existing clustering algorithms and proposed ADMFCA: (a) preprocessed CT
scan image, (b) ground truth, (c) KMC (number of clusters: 3), (d) FCM, (e) GFCM, (f) IIFCM, (g) NEBCA, and (h) ADMFCA.

Fig. 14. Clustering of CT scan images (Group: #4, Labels: 6–10) of COVID-19 using the existing clustering algorithms and proposed ADMFCA: (a) preprocessed CT
scan image, (b) ground truth, (c) KMC (number of clusters: 3), (d) FCM, (e) GFCM, (f) IIFCM, (g) NEBCA, and (h) ADMFCA.
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Table 4
Performance evaluation of existing clustering algorithms with the proposed ADMFCA with respect to PSNR for
clustering the CT scan images of COVID-19.
Group Label CT scan image

(preprocessed)
KMC FCM GFCM IIFCM NEBCA ADMFCA

Group #1

1 #142 22.05 23.28 24.32 25.59 27.36 45.06
2 #94 21.70 23.25 24.51 25.72 27.41 43.30
3 #105 21.46 22.18 24.36 27.16 27.52 43.30
4 #85 21.20 22.21 24.42 27.12 27.48 48.04
5 #100 22.01 22.17 24.25 26.73 27.55 45.06
6 #110 22.01 22.17 24.25 26.73 27.55 45.06
7 #94 21.03 23.20 24.35 26.99 27.44 47.96
8 #96 21.92 23.10 24.90 26.92 27.52 47.96
9 #109 21.73 23.19 24.75 26.77 27.53 47.92
10 #155 21.47 23.18 24.79 26.77 27.53 45.01

Group #2

1 #118 21.47 23.18 24.79 26.77 27.53 45.01
2 #106 21.16 23.19 24.78 27.08 27.48 48.04
3 #81 21.84 23.15 24.26 26.78 27.39 42.08
4 #71 21.90 23.13 24.34 26.79 27.56 48.00
5 #76 20.39 23.11 24.78 27.23 27.48 48.00
6 #87 20.40 23.15 24.39 27.13 27.48 45.10
7 #113 20.40 23.15 24.39 27.13 27.48 45.10
8 #120 21.59 23.11 24.36 27.12 27.51 47.96
9 #90 21.74 23.18 24.46 26.90 27.61 47.92
10 #179 21.20 23.15 24.39 27.10 27.45 47.96

Group #3

1 #129 21.94 23.20 24.33 26.82 27.36 47.96
2 #97 21.79 23.19 24.51 27.29 27.71 47.92
3 #92 20.62 23.32 24.36 27.05 27.59 47.88
4 #95 20.47 23.13 24.80 27.19 27.52 47.96
5 #87 21.05 22.82 24.86 27.02 27.55 47.92
6 #98 21.36 23.19 23.87 27.02 27.47 48.00
7 #102 21.99 23.20 24.73 27.09 27.41 45.01
8 #107 21.95 23.02 24.32 26.95 27.67 43.35
9 #100 21.74 23.05 24.39 26.70 27.38 47.96
10 #166 21.97 23.05 24.24 26.77 27.53 45.08

Group #4

1 #136 21.84 23.06 24.33 27.02 27.37 45.03
2 #86 21.98 22.92 24.49 27.15 27.71 45.06
3 #100 21.46 23.18 24.18 27.05 27.59 42.06
4 #77 20.47 22.93 24.40 26.70 27.52 48.04
5 #80 21.04 22.79 24.47 27.05 27.55 48.00
6 #92 21.34 22.92 24.21 26.88 27.47 47.88
7 #89 21.96 23.02 24.73 26.69 27.40 48.04
8 #114 21.92 23.16 24.34 26.69 27.67 45.01
9 #104 21.73 22.79 24.39 26.96 27.38 48.00
10 #171 21.97 22.92 24.81 26.78 27.56 45.01

Average – – 21.49 23.03 24.47 26.89 27.51 46.59
6.5. Comparison of existing clustering methods with the proposed
ADMFCA

The preprocessed CT scan images of COVID-19 patients are
hown in Figs. 7–14(a) column-wise. Figs. 7–14(b) show the re-
pective ground truth of Figs. 7–14(a). Various clustered images
rom the existing clustering methods, such as KMC [23], FCM [29],
FCM [34], IIFCM [36] and NEBCA [38] are shown column-wise
n Figs. 7–14(c)∼(g), respectively. Figs. 7–14(h) show the FCIs
btained with the proposed ADMFCA.
It is clear from the clustered images presented in Figs. 7–

4(c)∼(g) that CT scan images and infected regions are not prop-
rly clustered using the existing clustering methods [23,29,34,36,
8]. While comparing these images with the FCIs, it can be seen
hat the proposed ADMFCA appropriately clusters not only the CT
can images, but also the grayscale values of the infected regions.
he clustered images obtained by existing clustering methods, as
hown in Figs. 7–14(c)∼(g), demonstrate that these methods are
nable to process these images due to the ambiguous and unclear
oundaries.
Finally, the performance of the proposed ADMFCA is compared

ith clustering methods, such as KMC, FCM, GFCM, IIFCM and
EBCA using five statistical metrics, namely MSE, PSNR, DSC, JSC
nd CC. The MSE, PSNR, DSC, JSC and CC values of the existing
lustering methods [23,29,34,36,38] and proposed ADMFCA are
21
presented in Tables 3–7, respectively. The average values of MSE,
PSNR, DSC, JSC and CC are obtained and shown in the last row of
each table. A discussion is carried out on these statistical values
next.

• Table 3 shows comparable results with respect to MSE val-
ues. The average MSE values of KMC, FCM, GFCM, IIFCM
and NEBCA are 464.38, 324.11, 232.91, 133.42 and 115.50
respectively. The proposed ADMFCA, on the other hand,
has an average MSE value of 1.59, which is significantly
lower than the existing clustering approaches, such as KMC,
FCM, GFCM, IIFCM and NEBCA. This low MSE value for the
proposed ADMFCA indicates that it can produce high quality
FCIs with minimal intensity loss.

• Table 4 shows the comparison values of PSNR for the ex-
isting clustering methods and the proposed ADMFCA. The
average PSNR values for KMC, FCM, GFCM, IIFCM and NEBCA
are 21.49, 23.03, 24.47, 26.89 and 27.51, respectively. The
proposed ADMFCA, on the other hand, has a PSNR value
of 46.59, which is significantly higher than the existing
clustering methods. This high PSNR value for the proposed
ADMFCA demonstrates that it can produce FCIs with very
low grayscale deformation.

• Table 5 shows the statistics of DSC values for the existing

methods and the proposed ADMFCA. The proposed ADMFCA
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Table 5
Performance evaluation of existing clustering algorithms with the proposed ADMFCA with respect to DSC for
clustering the CT scan images of COVID-19.
Group Label CT scan image

(preprocessed)
KMC FCM GFCM IIFCM NEBCA ADMFCA

Group #1

1 #142 0.44 0.50 0.65 0.78 0.82 0.90
2 #94 0.40 0.51 0.66 0.76 0.81 0.91
3 #105 0.37 0.54 0.68 0.77 0.83 0.89
4 #85 0.39 0.52 0.65 0.78 0.84 0.93
5 #100 0.40 0.53 0.63 0.77 0.83 0.94
6 #110 0.44 0.49 0.67 0.75 0.84 0.92
7 #94 0.45 0.58 0.64 0.78 0.85 0.93
8 #96 0.39 0.53 0.63 0.77 0.83 0.90
9 #109 0.39 0.54 0.64 0.78 0.84 0.94
10 #155 0.39 0.59 0.63 0.78 0.84 0.87

Group #2

1 #118 0.39 0.49 0.68 0.78 0.90 0.91
2 #106 0.39 0.49 0.65 0.77 0.85 0.93
3 #81 0.40 0.51 0.64 0.78 0.83 0.91
4 #71 0.45 0.50 0.62 0.75 0.87 0.93
5 #76 0.39 0.49 0.65 0.78 0.83 0.94
6 #87 0.40 0.51 0.66 0.75 0.89 0.91
7 #113 0.39 0.52 0.64 0.77 0.86 0.93
8 #120 0.42 0.58 0.65 0.76 0.81 0.93
9 #90 0.45 0.47 0.66 0.78 0.84 0.92
10 #179 0.43 0.46 0.64 0.77 0.85 0.92

Group #3

1 #129 0.37 0.49 0.66 0.79 0.84 0.91
2 #97 0.39 0.52 0.65 0.78 0.85 0.93
3 #92 0.42 0.54 0.66 0.74 0.83 0.89
4 #95 0.45 0.54 0.64 0.76 0.86 0.93
5 #87 0.39 0.52 0.62 0.75 0.84 0.92
6 #98 0.39 0.59 0.66 0.77 0.86 0.89
7 #102 0.38 0.48 0.65 0.75 0.84 0.94
8 #107 0.37 0.53 0.66 0.77 0.82 0.89
9 #100 0.37 0.47 0.66 0.74 0.84 0.93
10 #166 0.37 0.49 0.64 0.77 0.85 0.91

Group #4

1 #136 0.37 0.50 0.63 0.79 0.87 0.92
2 #86 0.38 0.48 0.65 0.78 0.84 0.92
3 #100 0.45 0.56 0.64 0.79 0.82 0.86
4 #77 0.39 0.58 0.63 0.76 0.88 0.93
5 #80 0.40 0.47 0.66 0.78 0.84 0.92
6 #92 0.46 0.57 0.65 0.77 0.87 0.92
7 #89 0.46 0.49 0.64 0.78 0.88 0.94
8 #114 0.45 0.57 0.63 0.79 0.86 0.87
9 #104 0.46 0.48 0.64 0.77 0.83 0.94
10 #171 0.38 0.47 0.65 0.78 0.86 0.92

Average – – 0.41 0.52 0.65 0.77 0.85 0.92
Fig. 15. Comparison of MSE values with the existing clustering algorithms and the proposed ADMFCA.
yields an average DSC value of 0.92, which is significantly
higher than the existing clustering methods. This high DSC
value indicates that the FCIs produced by the proposed
ADMFCA are identical to their respective ground truths.
22
• The JSC values for the existing competing methods and
the proposed ADMFCA are shown in Table 6. The proposed
ADMFCA obtains an average JSC value of 0.96 for the FCIs,
which is significantly higher than the existing clustering
methods. For the proposed ADMFCA, the high JSC value
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Table 6
Performance evaluation of existing clustering algorithms with the proposed ADMFCA with respect to JSC for
clustering the CT scan images of COVID-19.
Group Label CT scan image

(preprocessed)
KMC FCM GFCM IIFCM NEBCA ADMFCA

Group #1

1 #142 0.48 0.54 0.69 0.82 0.86 0.94
2 #94 0.44 0.55 0.70 0.80 0.85 0.95
3 #105 0.41 0.58 0.72 0.81 0.87 0.93
4 #85 0.43 0.56 0.69 0.82 0.88 0.97
5 #100 0.44 0.57 0.67 0.81 0.87 0.98
6 #110 0.48 0.53 0.71 0.79 0.88 0.96
7 #94 0.49 0.62 0.68 0.82 0.89 0.97
8 #96 0.43 0.57 0.67 0.81 0.87 0.94
9 #109 0.43 0.58 0.68 0.82 0.88 0.98
10 #155 0.43 0.63 0.67 0.82 0.88 0.91

Group #2

1 #118 0.43 0.53 0.72 0.82 0.94 0.95
2 #106 0.43 0.53 0.69 0.81 0.89 0.97
3 #81 0.40 0.51 0.64 0.78 0.83 0.91
4 #71 0.49 0.54 0.66 0.79 0.91 0.97
5 #76 0.43 0.53 0.69 0.82 0.87 0.98
6 #87 0.44 0.55 0.70 0.79 0.93 0.95
7 #113 0.43 0.56 0.68 0.81 0.90 0.97
8 #120 0.46 0.62 0.69 0.80 0.85 0.97
9 #90 0.49 0.51 0.70 0.82 0.88 0.96
10 #179 0.47 0.50 0.68 0.81 0.89 0.96

Group #3

1 #129 0.41 0.53 0.70 0.83 0.88 0.95
2 #97 0.43 0.56 0.69 0.82 0.89 0.97
3 #92 0.46 0.58 0.70 0.78 0.87 0.93
4 #95 0.49 0.58 0.68 0.80 0.90 0.97
5 #87 0.43 0.56 0.66 0.79 0.88 0.96
6 #98 0.43 0.63 0.70 0.81 0.90 0.93
7 #102 0.42 0.52 0.69 0.79 0.88 0.98
8 #107 0.41 0.57 0.70 0.81 0.86 0.93
9 #100 0.41 0.51 0.70 0.78 0.88 0.97
10 #166 0.41 0.53 0.68 0.81 0.89 0.95

Group #4

1 #136 0.41 0.54 0.67 0.83 0.91 0.96
2 #86 0.42 0.52 0.69 0.82 0.88 0.96
3 #100 0.49 0.60 0.68 0.83 0.86 0.90
4 #77 0.43 0.62 0.67 0.80 0.92 0.97
5 #80 0.44 0.51 0.70 0.82 0.88 0.96
6 #92 0.50 0.61 0.69 0.81 0.91 0.96
7 #89 0.50 0.53 0.68 0.82 0.92 0.98
8 #114 0.50 0.53 0.68 0.82 0.92 0.98
9 #104 0.50 0.52 0.68 0.81 0.87 0.98
10 #171 0.42 0.51 0.69 0.82 0.90 0.96

Average – – 0.45 0.56 0.69 0.81 0.89 0.96
Fig. 16. Comparison of PSNR values with the existing clustering algorithms and the proposed ADMFCA.
indicates that the regions of interest of the FCIs are almost
identical to their respective ground truths.

• Table 7 summarizes the CC values obtained from existing
methods and the proposed ADMFCA. The average CC values
for KMC, FCM, GFCM, IIFCM, NEBCA and the proposed ADM-
FCA are 0.46, 0.57, 0.70, 0.82, 0.90 and 0.97, respectively.
This CC value of the proposed ADMFCA suggests that the
23
clustered grayscale values of the FCIs are strongly similar to
their respective ground truths.

Comparison curves for various MSE, PSNR, DSC, JSC and CC
(listed in Tables 3–7) are plotted and shown in Figs. 15–19,
respectively. These comparison curves show that the proposed
ADMFCA outperforms the existing clustering methods (i.e., KMC,
FCM, GFCM, IIFCM and NEBCA) in terms of MSE, PSNR, DSC,
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Table 7
Performance evaluation of existing clustering algorithms with the proposed ADMFCA with respect to CC for clustering
the CT scan images of COVID-19.
Group Label CT scan image

(preprocessed)
KMC FCM GFCM IIFCM NEBCA ADMFCA

Group #1

1 #142 0.49 0.55 0.70 0.83 0.87 0.95
2 #94 0.45 0.56 0.71 0.81 0.86 0.96
3 #105 0.42 0.59 0.73 0.82 0.88 0.94
4 #85 0.44 0.57 0.70 0.83 0.89 0.98
5 #100 0.45 0.58 0.68 0.82 0.88 0.99
6 #110 0.49 0.54 0.72 0.80 0.89 0.97
7 #94 0.50 0.63 0.69 0.83 0.90 0.98
8 #96 0.44 0.58 0.68 0.82 0.88 0.95
9 #109 0.44 0.59 0.69 0.83 0.89 0.99
10 #155 0.44 0.64 0.68 0.83 0.89 0.92

Group #2

1 #118 0.44 0.54 0.73 0.83 0.95 0.96
2 #106 0.44 0.54 0.70 0.82 0.90 0.98
3 #81 0.45 0.56 0.69 0.83 0.88 0.96
4 #71 0.50 0.55 0.67 0.80 0.92 0.98
5 #76 0.44 0.54 0.70 0.83 0.88 0.99
6 #87 0.45 0.56 0.71 0.80 0.94 0.96
7 #113 0.44 0.57 0.69 0.82 0.91 0.98
8 #120 0.47 0.63 0.70 0.81 0.86 0.98
9 #90 0.50 0.52 0.71 0.83 0.89 0.97
10 #179 0.48 0.51 0.69 0.82 0.90 0.97

Group #3

1 #129 0.42 0.54 0.71 0.84 0.89 0.96
2 #97 0.44 0.57 0.70 0.83 0.90 0.98
3 #92 0.47 0.59 0.71 0.79 0.88 0.94
4 #95 0.50 0.59 0.69 0.81 0.91 0.98
5 #87 0.44 0.57 0.67 0.80 0.89 0.97
6 #98 0.44 0.64 0.71 0.82 0.91 0.94
7 #102 0.43 0.53 0.70 0.80 0.89 0.99
8 #107 0.42 0.58 0.71 0.82 0.87 0.94
9 #100 0.42 0.52 0.71 0.79 0.89 0.98
10 #166 0.42 0.54 0.69 0.82 0.90 0.96

Group #4

1 #136 0.42 0.55 0.68 0.84 0.92 0.97
2 #86 0.43 0.53 0.70 0.83 0.89 0.97
3 #100 0.50 0.61 0.69 0.84 0.87 0.91
4 #77 0.44 0.63 0.68 0.81 0.93 0.98
5 #80 0.45 0.52 0.71 0.83 0.89 0.97
6 #92 0.51 0.62 0.70 0.82 0.92 0.97
7 #89 0.51 0.54 0.69 0.83 0.93 0.99
8 #114 0.50 0.62 0.68 0.84 0.91 0.92
9 #104 0.51 0.53 0.69 0.82 0.88 0.99
10 #171 0.43 0.52 0.70 0.83 0.91 0.97

Average – – 0.46 0.57 0.70 0.82 0.90 0.97
Fig. 17. Comparison of DSC values with the existing clustering algorithms and the proposed ADMFCA.
SC and CC for clustering the CT scan images of COVID-19 pa-
ients. Consequently, the proposed ADMFCA is highly effective at
orming clusters of pixels associated with infected regions.

. Conclusions and future directions

In this study, ambiguous set theory was discussed, which was
ecently proposed to address inherent uncertainties of events.
24
The ambiguous set theory can be considered as an extension
of three existing theories, viz., fuzzy set, intuitionistic fuzzy set
and neutrosophic set. The main robustness of this theory was its
ability to represent the ambiguity of an uncertain event with four
distinct degree of memberships, called true, false, true-ambiguous
and false-ambiguous. To endorse this theory, various definitions,
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Fig. 18. Comparison of JSC values with the existing clustering algorithms and the proposed ADMFCA.
Fig. 19. Comparison of CC values with the existing clustering algorithms and the proposed ADMFCA.
formulas and properties were discussed in this study. The main
contributions of this study are summarized as:

• To measure the ambiguity associated with four degree of
memberships, four different entropies were defined, called
TE, FE, TAE and FAE.

• This study proposed a new image clustering algorithm using
the concepts of ambiguous set, entropies (TE, FE, TAE and
FAE) and image fusion, called ADMFCA.

• The primary application of the proposed ADMFCA was il-
lustrated in the clustering of chest CT images of COVID-19
patients. This algorithm was allowed to generate four differ-
ent clustered images based on specified number of clusters.
These four clustered images were referred to as TECI, FECI,
TAECI and FAECI. Finally, FCIs were generated by combining
TECI, FECI, TAECI and FAECI using the image fusion opera-
tion. The main purpose of image fusion was to include the
best features of TECI, FECI, TAECI and FAECI into FCIs.

• The performance of the proposed ADMFCA was compared
against existing clustering methods, including KMC, FCM,
FCM, FCM and NEBCA. Various performance evaluation met-
rics, such as MSE, PSNR, DSC, JSC and CC indicated that
the proposed ADFMCA outperformed the existing clustering
methods.

It can be concluded that the proposed ADMFCA was proven to
be effective in clustering CT scan images of COVID-19 patients.
Therefore, the proposed ADMFCA can be considered as a new
promising diagnostic method for health professionals. The main
limitation of the study was that the proposed ADMFCA was
validated only on chest CT scan images of COVID-19 patients. In
the future, the proposed ADMFCA can be verified and validated
25
with other forms of digital images, such as X-rays, MRIs [40],
remotely sensed high-resolution satellite images [48], and so on.
Additionally, the proposed ADMFCA can be used to cluster a
variety of numerical data, including meteorological data, financial
data, stock market data, and so on.
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