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Abstract: Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity
of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense
changes to the cardiac environment through chemical and mechanical cues that trigger changes
in cellular function. In recent years, mechanosensitive ion channels have been implicated as key
modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell
proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To
date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective
channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1
and KATP. This review will outline current knowledge of these mechanosensitive ion channels in
CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel
plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in
CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.

Keywords: ion channels; mechanical signalling; mechanosensation; cardiac fibroblasts; cardiac
remodelling; extracellular matrix; fibrosis; TRP channels; Piezo1; potassium channels

1. Introduction
1.1. The Heart and Its Cellular Constituents

Cardiac pathologies that arise from cardiac injury or dysfunction vastly increase
the probability of heart failure (HF) and are a leading cause of morbidity and mortal-
ity worldwide [1,2]. Many of those affected have fibrotic heart disease, which involves
over-production of extracellular matrix (ECM) proteins, particularly type I and II fibrillar
collagens, resulting in stiffening of the heart, with resultant impairment of cardiac con-
traction and relaxation, and interference of electrical signalling. Advancements in our
understanding of the complex cellular composition and communication within the heart,
and functionality and malleability of the phenotype of each cardiac cell subpopulation,
have highlighted the importance of cardiac cellular diversity in the maintenance of normal
cardiac function and in the response to pathology.

Cardiomyocytes (CM) are considered to be the primary regulators of cardiac function
and this cell type makes up between one-third and a half of the total cell population [3–6].
CM are excitable cells which form the cardiac muscle and are responsible for the contractile
forces of the heart. While much cardiac research has naturally been focused on CM, in
recent decades, the importance of non-myocyte cells within the heart has gained traction.
One of the most prevalent non-myocyte cell types in the heart is the cardiac fibroblast
(CF), accounting for an estimated 10–30% of total cells in the rodent and human heart [3–6],
although precise quantification is confounded by the heterogenous nature of this cell
population. The proportion of fibroblasts increases substantially in the pathologically
remodelling heart [6]. CF had once been considered a more passive cell type, functioning
only to regulate remodelling of the ECM [7]. However, in more recent years, an upsurge of
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interest in how fibroblasts influence the progression of cardiac pathologies has exemplified
the importance of CF in the response of the myocardium to pathological assault.

1.2. Cardiac Fibroblasts

Within normally functioning healthy hearts, CF are mostly quiescent and well embed-
ded within the structurally stable ECM [8]. However, during cardiac injury or pathological
progression, the phenotypical characteristics of CF become malleable, as they respond to
stress cues and adapt to the changing environment. Under pathological conditions fibrob-
lasts transdifferentiate into myofibroblasts (MF), developing more proliferative and migra-
tory capabilities, contractile qualities, and enhanced secretion of ECM proteins, growth
factors and cytokines in order to regulate the local cellular environment via paracrine
signalling [7]. A key characteristic of the MF phenotype is expression of alpha-smooth
muscle actin (α-SMA), a cytoskeletal protein which forms highly contractile microfilaments;
expression of which enables the contractile nature of MF [9]. The CF-to-MF response to
injury represents a protective and reparative mechanism which acts to preserve cardiac
function; and in the case of pressure-induced ventricular overload (pressure overload; PO),
prevents ventricular wall rupture through production of interstitial fibrosis and promotion
of CM hypertrophy [10,11].

Following myocardial infarction (MI), MF proliferate and migrate to the site of is-
chemic injury and regulate scar formation by reparative and replacement fibrosis; through
production of ECM proteins, particularly collagens type I and III and fibronectin [9], and
crosslinking of collagen fibres to generate stiffer matrices, which are less compliant to
applied forces and more resistant to deformation [8]. The fibrotic scar replaces damaged
and/or dying CM, maintaining the cardiac tissue integrity during the pathological assault.
MF further fine-tune ECM turnover through highly regulated secretion and activation of
ECM-degrading proteases such as matrix metalloproteinases (MMPs) and their endogenous
inhibitors, tissue inhibitors of metalloproteinases (TIMPs) [12].

1.3. Mechanical Activation of Cardiac Fibroblasts

The contractile nature of the heart exerts multiple forms of mechanical forces on the
cardiac cell population with every heartbeat. The routine contraction and filling of the
heart chambers induce three-dimensional and non-uniform deformation of the heart tissue,
causing mechanical strain and tensile forces as the tissue is stretched and compressed
(Figure 1A). Specific regions of the heart are also subjected to shearing forces due to friction
caused by filling and ejection of blood volume [8].

Under normal physiological conditions, the structural stability of the ECM is thought
to offer the CF a certain amount of protection from any substantial changes to the forces
of the beating heart [13]. However, during the progression of cardiac pathologies such as
PO and MI, the mechanical strain imposed on the ECM, CF, and CM prompts activation
of the ECM [8,13], as well as the CF population [8,13]. The interplay between the ECM
and CF in response to altered mechanical stimuli appears important for progression of the
fibrotic response to pathology. CF stimulate the initial breakdown of the ECM, resulting
in activation and release of profibrotic signalling molecules, such as transforming growth
factor β (TGF-β), and some extracellular damage-associated molecular patterns (DAMPs),
such as SLRPs, syndecans, glypicans and hyaluronic synthases [14–18]. While current
understanding of the initiating events of cardiac fibrosis suggests CF activation prompts
release of profibrotic signalling molecules from the ECM reservoir, Herum and colleagues
propose that some extracellular DAMPs are activated in response to a high level of me-
chanical strain on the cardiac ECM, and subsequently drive activation of CF [8]. The loss of
ECM structural protection potentially increases CF sensitivity to mechanical forces, further
promoting the MF phenotype through re-expression of foetal gene pathways, and driving
modulation of the cytoskeleton and surrounding ECM [19].
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Figure 1. The pathophysiological effect of mechanical forces on the heart. (A) The heart is subject
to mechanical forces such as stretch and compression as a consequence of the rhythmic beating
of the heart, shear stress due to blood flow, and tension due to the stiffening of tissues under
certain physiological and pathophysiological conditions. (B) Mechanical forces which occur during
pathophysiological conditions prompt cardiac fibrosis and cardiomyocyte hypertrophy, resulting in
stiffening and thickening of the muscular walls of the heart. (C) Cardiac fibroblasts are thought to be
sensitive to the changes in mechanical forces of the heart. In culture, cardiac fibroblasts are sensitive
to the stiffness of the culture surface and tensile forces, such as stretch and compression. In response
to tensile forces and surface stiffness, cardiac fibroblasts transdifferentiate into myofibroblasts and
proliferate more rapidly.

Once differentiated into the MF phenotype, MF initiate further remodelling of the
ECM, altering the composition and stiffness of the matrix. As part of such remodelling,
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an increase in fibrillary collagens (collagen type I and III) and crosslinking of collagen
fibres generate stiffer matrices that are less compliant to applied forces and more resistant
to deformation [20–22]. CF tethered to the ECM sense changes to the stiffness of the
ECM and adherence of fibroblasts to stiffer substrates further supports the profibrotic MF
phenotype [23].

1.4. Mechanical Forces Sensed by Cardiac Fibroblasts

In order to understand the mechanosensitivity of CF, it is important to recognise the
types of mechanical stimuli that CF respond to (Figure 1C). It is worth noting, however, that
our current understanding of CF responses to mechanical stimuli are limited by experimen-
tal parameters, and thus much of what is known in this regard is based on in vitro models.
In vitro, CF can respond to multiple types of mechanical forces, including mechanical
strain, which describes the deformation of the plasma membrane through stretch [24],
cyclic stretch [25] or compression [26,27]. Additionally, CF sense mechanical stimuli via
ECM contact with cell surface proteins, such as focal adhesion protein complexes, which
tether to the cytoskeleton [28]. CF can also sense cell traction forces from neighbouring
cells, via adhesion receptors, and through tension sensed by the phospholipid bilayer of
the plasma membrane [19].

Changes to the composition of the ECM alter how CF interact with the ECM, through
changes to the number of contact points, changes to integrin contacts with the ECM, and
the complex formation of focal adhesions [28], and may also drive changes to the shape of
the nucleus [29]. Alterations in the shape of the nucleus in response to CF adherence to a
stiff substrate can directly alter gene expression patterns [30,31].

Integrins are a family of heterodimeric proteins that act as primary regulators of
contact between cells and the ECM. Upon integrin binding to extracellular ligands, integrins
and integrin adhesome proteins cluster at sites of cell–ECM contacts, forming focal adhesion
complexes [32]. Integrins and their focal adhesion complexes have been well described
as important sensors of mechanical stimulation in CF, with extensive research outlining
the importance of these proteins in driving CF-to-MF transdifferentiation [33]. In non-
CF cell types, integrins have also been shown to interact with stretch-sensitive cation
channels [34,35], adding further dynamics to their ability to respond to mechanical stimuli.
Note that reference [34] is a pre-print and has not yet been peer-reviewed. Integrins may
further regulate the activation of CF via crosstalk with other signalling molecules, such as
TGF-β, membrane-bound receptors and tyrosine kinase receptors [33].

Deformation of the cell membrane also provides cues for cardiac fibrosis through
promoting cellular ion influx, in particularly influx of Ca2+ ions [36]. The pivotal role of such
mechanosensitive cation channels in altering CF function forms the topic of this review.

1.5. Cardiac Fibroblasts in Culture

Studies which strive to understand how biomechanical forces influence the CF pheno-
type and functionality have been complicated by the sensitivity of CF to many aspects of
the artificial in vitro environment [37–49]. CF are highly sensitive to tissue stiffness and
elasticity and spontaneously transdifferentiate into proto-myofibroblasts when grown in
culture [23]. The stiffness of a substrate can be described using Young’s modulus (mea-
sured in Pascals, Pa), which quantifies the resistance of a material to deformation when
under stress [50]. Under normal physiological conditions, tissue of the heart has a Young’s
modulus of ~10 kPa, but under fibrotic pathophysiological conditions this increases to
20–100 kPa [51]. Conventional polystyrene tissue culture plates have a Young’s modulus of
around 1 million kPa, representing a vastly elevated substrate stiffness compared to that
encountered in the heart. To maintain the fibroblast phenotype in tissue culture, CF can be
grown on softer substrates, such as hydrogels [8].

Many studies have attempted to recapitulate the cardiac environment in vitro through
use of tissue culture models, which combine multidimensional characteristics of the heart;
such as specific tissue culture matrix composition and stiffness, cyclic stretch, and bio-
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chemical modulators of CF [25,52–55]. In vitro analysis of cells cultured in systems which
generate cyclic stretch has revealed that CF respond differently according to the strength
of the stretch, the duration, and other modifications to the cellular environment (i.e.,
substrate/matrix composition and stiffness, and oxygenation) [25,52–55]. Given these
observations, it is important to consider the nature of the cell culture environment when
evaluating mechanosignalling research in CF.

1.6. Mechanosensitive Cation Channels in Cardiac Fibroblasts

CF express multiple cation channels that enable fluxes of cations (predominantly Ca2+,
Mg2+, Na+ and K+) across the cell membrane. In vitro analysis of rat CF has demonstrated
that these cells are not electrically excitable [56], but instead experience mechanically-
induced membrane potential oscillations [26]. In situ CF cation conductance is sensitive
to the heartbeat, with atrial relaxation prompting hyperpolarization of CF membrane
potential, and atrial contraction driving depolarization [26,57–61]. Mechanosensitive ion
channels are capable of responding to mechanical stress imposed on the cell; for example,
alterations in membrane curvature and thickness, and in-plane membrane tension [62].
Such forces can occur as a consequence of shear fluid force, osmotic swelling of the cell,
surface tension (through matrix–protein interaction), and compression of the cell [62].
Activation of such channels enables ion flux and subsequent changes to cellular activity,
eliciting the cells ability to respond and adapt to their environment through prompting
changes in gene expression and cellular remodelling [62].

There are numerous cation channels expressed in the heart, but only a small number
are considered to be mechanically gated and functional within CF, indicating a potential
role for ion conductance in response to mechanical stimuli. These channels include cation
non-selective channels (TRPC6, TRPM7, TRPV1, TRPV4, and Piezo1), as well as potassium-
selective channels (TREK-1 and KATP). However, it should be noted that the concept
of TRP channels acting as primary sensors of mechano-stimuli is the subject of much
debate [63]. While ample evidence exists supporting their function in cellular responses
to mechano-stimulation [64], more recent studies suggest TRP channels may not function
as direct sensors of mechano-stimuli [65], but rather act downstream of other primary
sensors of mechanical stimulation [66,67]. While these seven channels have been selected
due to evidence supporting their direct mechanosensitivity, it should also be noted that
large-conductance, Ca2+ and voltage-activated potassium (BKCa) channels have also been
described to be important in CF biology [68,69] and may also respond to membrane stretch.
Expression of stretch-activated BKCa channels has been detected at low levels in atrial
fibroblasts, however, patch clamp measurements of the stretch-induced currents in these
cells were found to be largely dependent on Piezo1 activity [69]. For other isoforms of
BKCa channels, their response to stretch has been demonstrated to be indirect and instead
driven by stretch-evoked increase in intracellular Ca2+ levels [62,69,70]; a concept further
supported by selective chemical inhibition of BKCa channels which failed to modify stretch
evoked currents in vagal mechanically-sensitive afferents in guinea-pig oesophagus [71].
Thus, BKCa will not be described in detail within this review.

These five non-selective ion channels and two potassium-selective channels will
form the basis of this review and will be discussed in subsequent sections initially in
general terms, with emphasis on evidence outlining the mechanosensitivity of each channel
(Table 1), before exploring their function in fibrotic cardiac remodelling and ultimately
their known role in CF.
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Table 1. Summary of electrophysiological detection of ion channel mechanosensitivity.

Measurements of Mechanosensitivity in Cation Channels

Channel Model Used for
Electrophysiological Reading Nature of the Intervention Channel Specific

Signal Confirmed
Type of

Mechanical Stimuli

TRPC6

Cell-attached patch [65,72] Pipette applied negative pressure No [65] Yes [72]

25% tonic mechanical
stretch; membrane stretch

Osmotic swelling;
membrane stretch

Excised patch readings of
protein reconstituted in

liposome [65,73]
Pipette applied negative pressure Yes (spontaneously active but

not stretch responsive)

Whole-cell patch [74] Hypo-osmotic treatment Yes, confirmed with inhibitor:
SKF-96365

TRPM7
Excised inside-out patch [75] Pipette applied negative pressure;

suction; osmotic swelling;
perfusion-induced mechanical stress

Yes, confirmed in TRPM7 null
cells; inhibitor: 2-APB;

functional KO

Osmotic swelling;
membrane stretchWhole-cell patch [76]

TRPV1 Cell-attached patch [65] Pipette applied negative pressure
(not responsive) No response detected Osmotic swelling;

membrane stretch

TRPV4

Cell-attached patch [65] Pipette applied negative pressure
(not responsive) No response detected

Osmotic swelling;
membrane stretch

Whole cell [77] Cell indentation with glass rod (no
loss of reading with Trpv4 KO)

Yes, confirmed in cells isolated
from Trpv4 KO mice +/−

Outside-out patch [77] High-speed pressure clamp (no loss
of reading with Trpv4 KO)

Yes, confirmed in cells isolated
from Trpv4 KO mice +/−

TRPV4 agonist

Piezo1
Whole cell [78] Cell indentation with glass rod Yes, confirmed with

siRNA knockdown
Membrane stretch

Outside-out patch [79] High-speed pressure clamp applied
positive pressure

Yes, confirmed with
siRNA knockdown

TREK-1

Inside-out patch; outside
out; cell attached [80]

Pipette applied negative pressure
(No effect)

Yes (TREK-1 over expressed in
COS cells)

Membrane stretch;
cell swelling

Inside-out patch of protein
reconstituted in liposomes

(channel spontaneously
active) [81]

Pipette applied positive
pressure (inactivates)

Yes, confirmed with TREK-1
inserted in liposome

KATP

Cell-attached; inside-out;
excised-patch; perforated

patch whole cell [82]

Negative pressure applied;
hypotonic osmotic swelling

Yes, mechanosensitivity
dependent on SUR subunit

Membrane stretch;
cell swelling

2. Transient Receptor Potential (TRP) Channels

TRP channels are widely expressed integral membrane proteins that are responsive
to many different types of stimuli such as light, heat, mechanical stress, and a number of
different chemical ligands [83]. There are 28 known TRP-related genes in mammals, which
can be grouped into six families: TRPA (ankyrin), TRPC (canonical), TRPM (melastatin),
TRPML (mucolipin), TRPP (polycystin or polycystic kidney disease) and TRPV (vanilloid).
The specific cations that a channel permeates differs depending on the specific type of TRP
channel [83]. The majority of the mammalian expressed TRP channels regulate Ca2+ influx,
with their activity influencing microdomain signalling and endoplasmic reticulum Ca2+

store reloading; with the exception of TRPM4 and TPRM5 which are activated by Ca2+, but
are not Ca2+-permeable [84]. The TRP family of ion channels has been suggested to function
in transduction of mechanosignalling in flies, worms, and mammals [85]. As previously
mentioned, more recent studies have called into question whether the TRP family of
cation channels are truly mechanosensitive. For example, single-channel conductance
measurements of the mammalian TRP ion channels, using patch clamping applied pipette
pressure, revealed that none of the TRP channels are stretch sensitive within a heterologous
expression system [65]. An up-to-date and detailed overview of our current understanding
of TRP channels is available in other recent review articles [83,86].
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2.1. Canonical Family of Transient Receptor Potential (TRPC) Channels

The TRPC family comprises seven members that are widely expressed in most types
of cardiac cells, although it should be noted that TRPC2 is expressed in mice but not
humans [87]. TRPC channels appear to be important during cardiac dysfunction, with
almost all TRPC channels (excluding TRPC2 and TRPC7) upregulated during HF in hu-
mans [88,89]. All TRPC channels are regulated by phospholipase C (PLC), and are grouped
into two subfamilies based on structural and functional similarities: TRPC3/6/7, which
co-ordinate in response to the secondary lipid messenger, diacylglycerol (DAG) [90,91]; and
TRPC1/4/5, which are insensitive to DAG [92]. TRPC3, 6 and 7 are involved in receptor-
mediated Ca2+ entry, while TRPC1, 4 and 5 regulate store-operated Ca2+ entry [93–95].

The TRPC3/6/7 channels form hetero-tetramer channels [90,91] that are permeable
to Na+, and thus are important for signalling during depolarization. The channels also
form pores which are moderately permeable to Ca2+ under normal physiological con-
ditions [96], and more highly permeable to Ca2+ under pathophysiological conditions,
and are important mediators during fibrosis [96]. In addition to DAG, TRPC3/6/7 are
activated by a number of other mechanisms, including binding of specific lipid molecules
and PLC through Gαq/11 protein-coupled receptors, interaction with receptor tyrosine
kinases, and by the vasoconstrictors noradrenaline and Arg8-vasopressin. TRPC3/6/7
are also important in responding to mechanical stimuli such as stretch, flow and osmotic
pressure [97].

While all TRPC channels are expressed in the heart, only TRPC1 and TRPC6 have
been reported to be mechanosensitive. As TRPC1 expression is not detected in CF [98], the
following section will focus on TRPC6 (Figure 2A). For a more detailed review of all TRPC
channels, please refer to [99].

Transgenic mouse models have highlighted the importance of TRPC6 for sensations
linked to neuronal mechanotransduction; such as touch and hearing [74]. In vitro evi-
dence has further supported the notion of TRPC6 mechanosensitivity, with over-expression
of TRPC6 in a heterologous system activating in response to membrane thinning and
stretch [72] (Table 1). However, such findings have been subsequently contradicted [65,66],
calling into question the true mechanosensitivity of these channels. Nikolaev et al. reported
that TRPC6 does not respond directly to stretching of the membrane itself, but rather re-
sponds to tension generated by cytoplasmic tethers, thus acting as a downstream mediator
in response to mechanical stimulation [65]. Further studies have suggested that TRPC6
becomes mechanosensitive once active, and that the channel may require activation of
the PLA2/ω-hydroxylase metabolite 20-HETE pathway to participate in the response to
mechano-stimuli [100]. Taken together, it can be considered that TRPC channels do not act
as primary sensors of mechano-stimuli, but are still important in the cellular response to
such stimuli.

2.1.1. TRPC6 and Cardiac Remodelling

The function of the cardiac TRPC6 channel is complex, and while TRPC6 function may
protect against cardiac injury, it also correlated with an increase in inflammation, fibrosis,
and poor prognosis following cardiac injury and PO [101–104].

TRPC6 promotes wound healing and prevents rupture of the ventricular wall during
PO [101]. Global TRPC6 knockout (KO) mice had reduced LV fractional shortening and
increased LV end diastolic dimensions following MI compared to WT littermates, resulting
in reduced cardiac function. Further to this, global TRPC6 KO mice had reduced survival
following right ventricle PO due to an increased risk of ventricle wall rupture [101]. How-
ever, TRPC6 global KO mice that survived LV PO had smaller scar sizes and reduced
fibrosis when compared to their WT littermates [101]. Conversely, Oda et al. demonstrated
that global deletion of TRPC6 in mice had no impact on PO following transverse aortic
constriction (TAC) surgery, despite loss of TRPC6 leading to a reduction in interstitial
fibrosis [90]. TRPC6 KO had little effect on production of ROS and expression of fibrotic
markers at the mRNA level, but did lead to an increase in inflammatory cytokines [90].
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Ca2+ entry is coupled to cardiac myofibroblast differentiation via activation of the calcineurin–NFAT signalling pathway.
See main text for details.

Chemical inhibition of TRPC6 by BI 749327 in mice that have undergone TAC also
led to a reduction in cardiac fibrosis, but did not impact on cardiac hypertrophy [105].
Oda et al. hypothesised that TRPC6 depletion in mouse CF may be beneficial in reducing
PO-induced fibrosis, but inhibition of TRPC6 expression in CM may exasperate cardiac
dysfunction after PO [90]. The differential roles of TRPC6 in different cardiac cells may
therefore complicate pharmacological targeting of this channel in the heart.

Over-expression of TRPC6 in mice, under the α-MHC promoter, prompts an increase
in TRPC6 expression that signals through a calcineurin–NFAT signalling module and
increases sensitivity to stress, pathological cardiac growth, and susceptibility to HF [104].
TRPC6 is upregulated in Wistar rat hearts by high-salt diet-induced inflammation and is
associated with the increase in fibrosis and hypertension as a result of excessive salt con-
sumption [102]. Mouse cardiac TRPC6 is also upregulated in the whole heart in response
to STZ-induced hyperglycaemia, which destabilised the formation of a TRPC3-Nox2 com-
plex, counteracting STZ-induced oxidative stress [90]. Moreover, co-genetic depletion of
TRPC3 and TRPC6, but not TRPC6 alone, greatly improved outcomes following LV PO
in mice [106]. It is therefore evident that TRPC6 plays a complex but important role in
cardiopathology, and that expanding current understanding of the role TRPC6 plays in
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each type of cardiac cell population would be essential for delineating the function of the
channel in HF progression.

In summary, the role of TRPC6 in regulating myocardial remodelling can be largely
viewed as being profibrotic, but whether this is beneficial or detrimental depends on the
particular pathology studied. The heteromeric nature of TRPC channels makes interpreta-
tion of the role of TRPC6 in isolation difficult to evaluate.

2.1.2. TRPC6 in Cardiac Fibroblasts

The concept that TRPC6 promotes cardiac fibrosis during cardiac dysfunction is
strongly supported by in vitro analysis of cultured CF [101,103,104]. A genome-wide
screen identified TRPC6 expression as being required for MF differentiation, with treat-
ment of cultured rat CF with TGF-β or Ang II inducing a concentration-dependent increase
in TRPC6 expression [101]. Overexpression of the channel prompted spontaneous differ-
entiation of fibroblasts to MF, while TRPC6 KO attenuated MF differentiation induced by
TGF-β (in mouse dermal fibroblasts) and Ang II (in rat CF) [101]. However, it should be
noted that all TRPC channels have lately been described as being dispensable for Ang
II-evoked Ca2+ entry in CF, with the CRAC channel Orai1 driving the pathological Ca2+

in response to Ang II stimulation [107]. This suggests the correlation between TRPC6
upregulation may occur as a consequence of pathological rises in intracellular Ca2+, but is
likely not the driver of Ca2+ influx.

In rodents, TRPC6 further promoted CF differentiation via a TGF-β/p38 MAPK/TRPC6/
calcineurin–NFAT signalling pathway [101]. TGF-β induced p38 MAPK activation and
upregulated TRPC6 through driving serum response factor transcriptional regulation of
the TRPC6 promoter region, and subsequent upregulation of TRPC6 gene expression [101].
TGF-β/p38 MAPK-driven TRPC6 activation and increased Ca2+ permeability in cultured
rat CF induced MF transformation via calcineurin–NFAT signalling [101]. This signalling
module has been further demonstrated to drive fibrosis during right ventricular PO, in an
endoglin-dependent mechanism [103].

Together, these over-expression and KO studies suggest that TRPC6 is important for
differentiation of CF to MF (Figure 2B). Whether TRPC6 is acting as a primary mechanosen-
sor, or is upregulated as a consequence of Ca2+ entry via other channels (e.g., Orai), requires
more focused exploration.

2.2. Melastatin Family of Transient Receptor Potential (TRPM) Channels

The TRPM subfamily comprises eight channels (TRPM1–TRPM8) expressed in mam-
mals. These channels differ in tissue distribution, cation selectivity, and activating mech-
anisms, and have been implicated in a diverse array of cellular functions, including cell
proliferation, cell invasion, temperature sensing, magnesium homeostasis and taste [86,108].
Dysregulation of some TRPM channels contributes to cancer promotion, cerebral ischemia-
reperfusion injury and cardiac fibrosis [108–113]. Within the heart, transcriptomic analysis
of mouse cardiac tissue has identified only TRPM4 and TRPM7 as being expressed within
the atrial myocardium, while TRPM1, 3, 4, 6 and 7 are expressed within the ventricular
myocardium [114]. Expression of both TRPM2 and TRPM7 has been detected in CF, despite
an apparent lack of expression of the former in mouse myocardium [115,116]. However,
TRPM2 is not a mechanosensitive ion channel, but is activated by ADP-ribose binding [117].

2.2.1. TRPM7

TRPM7 (Figure 3A) is a ubiquitously expressed cation channel permeable to Mg2+,
Ca2+ and Zn2+ under physiological conditions, with permeation of Mg2+ acting as a
negative feedback mechanism [118]. The C-terminus of TRPM7 acts as an α-kinase, and
as such has been referred to as a “chanzyme” due to its function as a cation channel
with enzymatic kinase activity. The cytoplasmic C-terminus is rich in serine/threonine
residues and is capable of auto-phosphorylation and phosphorylation of downstream
targets [119,120].
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Figure 3. Schematic diagram of TRPM7 structure and cardiac fibroblast signalling. (A) Basic structure of alpha subunit
of TRPM7. Each TRPM7 alpha subunit is comprised of six transmembrane-spanning domains (S1–S6), with a pore loop
between S5 and S6, melastatin homology domains (MHD) at the amino termini, and a TRP-box (TRP), a coiled-coil domain
(CCD), and an atypical α-type serine/threonine protein kinase domain (α-kinase) at the carboxyl termini. (B) Known
TRPM7 homotetrameric ion channel signalling in cardiac fibroblasts. Ang II drives activation of TRPM7 and is coupled to
increased nuclear activity of Ki-67 and proliferating cell nuclear antigen (PCNA), as well as upregulation of markers of
fibrosis including connective tissue growth factor (CTGF). H2O2 activates TRPM7 and promotes MF differentiation and
ECM remodelling via the ERK-1/2 MAP kinase pathway. TGF-β1 and isoproterenol treatment both induce upregulation
of TRPM7 expression and Ca2+ influx leading to myofibroblast differentiation. TRPM7 expression can be inhibited by
miR-135a expression. See main text for details.

TRPM7 forms tetrameric channels which are either homomeric, or heteromultimeric
with TRPM6, with each type of channel configuration having distinct functions. Both
TRPM6 and TRPM7 channels are vital for Mg2+ homeostasis [118].

TRPM7 can be regulated through multiple mechanisms that influence cardiac func-
tion. PIP2 has been implicated as an endogenous inhibitor of TRPM7 in rat CM and CF
following receptor-mediated PLC activation [121]. Although the patch clamp-detected
currents were attributed to TRPM7, this was not confirmed, for example using TRPM7-
deficient cells [121]. Aldosterone treatment of TRPM7-expressing HEK 293 cells increased
expression and plasma membrane localization of TRPM7 [122]. In human and rat vascular
SMC, bradykinin treatment increased phosphorylation of serine/threonine residues on
the TRPM7 C-terminus and increased TRPM7-dependent Mg2+ influx [123]. However, it
should be noted that mutations in TRPM7 residues in either the channel or kinase domain
do not influence the activity of one another, and thus the two likely function independently
of one another [124].
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TRPM7 is responsive to membrane stretch and shear flow in various exogenous and
endogenous expression systems [75,76,125–128]. For example, heterologously expressed
TRPM7 is responsive to membrane stretch (suction) and osmotic swelling in HeLa cells [75]
and osmotic swelling in HEK 293 cells [76] (Table 1). Changes to TRPM7 single-channel
activity were detected using cell free patch (excised inside-out) and whole cell patch [76].
Within MDA-MB-231 breast adenocarcinoma and HT1080 fibrosarcoma cells, TRPM7 acts
as a mechanosensor of hydraulic resistance, which drives Ca2+ influx; a function which is
abolished by TRPM7 inhibition or functional TRPM7 KO [127].

In each example of TRPM7 mechanosensitivity, the TRPM7-driven increase in intracel-
lular Ca2+ was abolished by depletion of extracellular Ca2+ [75,76,125,127]. Thus, evidence
supporting TRPM7 as being responsive to mechanical stress is robust, however it does not
confirm that TRPM7 is inherently mechanosensitive, as the mechano-response of TRPM7
has not been demonstrated independently of other cellular components.

2.2.2. TRPM7 and Cardiac Remodelling

The role of TRPM7 in the heart is complex; within rodent models the activity of TRPM7
has been described to act both in promoting pathological signalling mechanisms [112],
as well as in cardioprotective mechanisms [129,130]. In relation to the heart, TRPM7
expression in humans, rodents, and zebra fish has been detected in myocytes, the sinus
node, and both atrial and ventricular fibroblasts [109,121,131,132], as well as infiltrating
immune cells in mice [129]. TRPM7’s cardioprotective function may principally be due
to homeostatic regulation of cellular Mg2+ rather than Ca2+ levels [130]; while TRPM7
regulation of Ca2+ levels have been implicated in cardiac fibrosis [109–111,133].

Rio et al. reported that the kinase domain of TRPM7 is important for opposing cardiac
fibrosis in mice [129]. Mice with global TRPM7 deficiency, or TRPM7 kinase domain dele-
tion (TRPM7+/∆kinase mice), were significantly more prone to cardiac hypertrophy, fibrosis,
and inflammation [129]. Expression of many markers of cardiac fibrosis and inflammation
were strongly upregulated in the TRPM7+/∆kinase mice, including expression of profibrotic
molecules, structural ECM proteins and inflammatory cytokines [129]. Interestingly, this
cardioprotective role of TRPM7 kinase domain was attributed to TRPM7 function within
infiltrating macrophage cells rather than CF [129].

Conversely, Lu et al. suggest TRPM7 expression is associated with an increase in
hypoxia-induced fibrosis [112]. The expression levels of TRPM7 in CF isolated from
neonatal Sprague Dawley rat hearts, detected at the protein level, appeared to be slightly
upregulated during hypoxia-induced cardiac fibrosis [112]. Whole-cell patch recording
of isolated rat CF exposed to hypoxia, indicated an increase in whole-cell currents [112].
However, it should be noted that other mechanosensitive cation channels (e.g., Piezo1—see
Section 3) [134] are also expressed in CF, so this should be taken into consideration when
interpreting the changes in whole-cell patch recordings. The upregulation of TRPM7 in CF,
due to hypoxia, correlated with an increase in cardiac fibrosis [112].

In summary, the overall role of TRPM7 in cardiac remodelling is complicated by the
different functional coupling of Ca2+ and Mg2+ ions, and the expression of the channel
in multiple cardiac and immune cell types. Thus, TRPM7 may differentially influence
cardiac pathology, depending on which cell type has functionally active TRPM7, and the
environmental differences underlying channel functionality.

2.2.3. TRPM7 in Cardiac Fibroblasts

Current research indicates that TRPM7 expression promotes CF proliferation and
differentiation. TGF-β1 in human CF, [109] and Ang II, hydrogen peroxide, hypoxia,
and isoproterenol treatment in rat hearts [110–113] all promote TRPM7 activation and
subsequent increases in α-SMA and collagen synthesis in CF. However, TRPM7 has yet to
be demonstrated to respond to mechanical stimuli in driving the MF phenotype.

In mediating CF responses to Ang II in rats, TRPM7 is potentially important in perpetu-
ating a pathological phenotype [110,135]. Ang II-driven TRPM7 activation, and subsequent
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CF proliferation, evoked increases in cell cycle-related regulatory protein Ki-67 and prolif-
erating cell nuclear antigen (PCNA), as well as markers of fibrosis including α-SMA and
collagens type I and III [110]. SiRNA knockdown of TRPM7 reduced Ang II-evoked ex-
pression of Ki-67, PCNA and α-SMA, while also attenuating Ang II-driven TRPM7-evoked
currents, detected using whole-cell patch clamping [110]. In further support of a role
for TRPM7 in Ang II signalling, Ang II treatment of mouse CF increased TRPM7 protein
expression [133]. Yang et al. reported that TRPM7-induced Ca2+ and Mg2+ influx was
required for Ang II-driven CF proliferation and upregulation of markers of fibrosis [133].
Treatment of cultured mouse CF with the TRPM7 inhibitor 2-aminoethoxydiphenylborate
(2-APB) attenuated Ang II-induced upregulation of connective tissue growth factor (CTGF)
and α-SMA, and inhibited CF proliferation [133]. However, it should be noted that 2-APB
also activates other mechanosensitive ion channels, including K2P channels [136] and other
TRP channels [137].

To further implicate fibroblast TRPM7 function in pathological cardiac remodelling,
TRPM7 upregulation correlated with TGF-β1 stimulation in cultured human atrial fibrob-
lasts, leading to an increase in Ca2+ influx and MF differentiation [109]. H2O2-induced
TRPM7 activity promoted MF differentiation through increasing intracellular Ca2+ and
activation of the ERK-1/2 MAP Kinase signalling pathway in rats [111]. In vitro chemi-
cal and genetic inhibition of rat TRPM7 with 2-APB and shRNA, respectively, inhibited
H2O2-induced Ca2+ influx and ERK-1/2 phosphorylation, and attenuated the increased
expression of fibrotic markers including collagen type I, fibronectin, α-SMA, CTGF, and
TGF-β1 [111]. Further to this, TRPM7 was upregulated in rat CF following subcutaneous
administration of isoproterenol treatment, also resulting in upregulation of α-SMA and
collagen type 1 [113]. Interestingly, the expression of TRPM7 has been shown to be in-
versely correlated with miRNA-135a expression; increasing levels of TRPM7 expression
in rat CF corresponded to decreased levels of miRNA-135a, while the over-expression of
miRNA-135a led to a marked decrease in TRPM7 [113,138]. In vitro inhibition of TRPM7,
through either siRNA knockdown or miRNA-135a mimetics, attenuated the increase in
α-SMA and collagen type 1 [113,138].

Taken together, these studies reveal a clear consensus that TRPM7 drives numerous
profibrotic changes at the level of the CF, including cell proliferation, MF differentiation,
ECM protein synthesis and profibrotic paracrine signalling (Figure 3B), which likely under-
lie several of the pathological effects of this channel in cardiac remodelling. However, it
should be noted that there is currently no evidence that mechanical stimulation of TRPM7
can induce such changes in CF.

2.3. Vanilloid Family of Transient Receptor Potential (TRPV) Channels

The TRP Vanilloid family comprises 6 channels (TRPV1-6) that are primarily associated
with sensitivity to noxious temperature [93], although TRPV channels have also been
described to respond to chemical ligands, osmotic stress, and mechanical force [93]. TRPV1,
2, 3 and 4 are all expressed in the mammalian myocardium [139]. However, neither TRPV2
nor TRPV3 are functional within CF [140,141].

2.3.1. TRPV1

TRPV1 (Figure 4A) is considered to be the most widely studied of the TRPV family and
in mammals is primarily expressed in sensory nerve fibres whereby cation influx stimulates
action potentials and neurotransmitter release [142,143]. TRPV1 is a non-selective cation
channel, which enables movement of monovalent cations, with a ten-fold preference for
Ca2+ [142]. With respect to the heart, TRPV1 expression has been detected in a range of
cells isolated from mouse hearts, including afferent fibres [144], myocytes [145], endothelial
cells (EC) and SMC [146], as well as fibroblasts [147].
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Figure 4. Schematic diagram of TRPV1 and TRPV4 structure and cardiac fibroblast signalling. (A) Basic structure of alpha
subunit of TRPV1. (B) Basic structure of alpha subunit of TRPV4. (A-B) Each TRPV1 and TRPV4 alpha subunit is comprised
of six transmembrane-spanning domains (S1–S6), with a pore loop between S5 and S6, ankyrin repeats (AnkR) at the amino
terminus, and a TRP-box at the carboxyl terminus. (C) Known TRPV1 and TRPV4 homotetrameric ion channel signalling
in cardiac fibroblasts. Capsaicin activates TRPV1 and inhibits Ang II-induced cell proliferation. TRPV1 activation also
inhibits isoproterenol-induced cell proliferation, and attenuates isoproterenol-induced ECM synthesis, cell proliferation
and myofibroblast differentiation by blocking downregulation of p-Akt, p-eNOS, NO and cGMP. TGF-β activates TRPV4,
inducing Ca2+ influx and promoting RhoA signalling, upregulation of MRTF-A transcription factor, and myofibroblast
differentiation. See main text for details.

TRPV1 is activated, or sensitised to activation, by the binding of the vanilloid capsaicin,
and various lipids including arachidonic acid metabolites such as 12(S)-hydroxyglutaric
acid, 12-hydroxyhexanedienic acid and 20-hydroxyeicosatetraenoic acid (20-HETE) [146].
TRPV1 may also become active in response to nociceptive thermal stimulation and low
pH [148]. TRPV1 functionality is regulated by PIP2 and PLC; with the binding of TRPV1 to
PIP2 holding the channel within an inactive state, that can be released by PLC-mediated
PIP2 hydrolysis [148].

In mammals, TRPV1 acts as a mechanosensor in response to multiple forms of mechan-
ical stimuli. For example, TRPV1 acts as an osmoreceptor in response to hypotonicity [149],
a thermo-sensor [148], and as an intravascular mechanosensor for changes in blood pres-
sure [150], and in the bladder and digestive system [151–154].

Despite overwhelming evidence of TRPV1’s ability to activate in response to mechan-
ical stimulation, it may not directly detect mechanical stretch of the membrane. Single-
channel conductance measurements of mammalian TRPV1, using patch clamping applied
pipette pressure, failed to detect TRPV1 channel generated currents, suggesting the chan-
nel is not stretch sensitive when over-expressed in HEK 293 cells [65] (Table 1). In male
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Sprague Dawley rats, the ability of TRPV1 to induce modulation to intraluminal pressure
has been suggested to be dependent on the accumulation of the arachidonic acid metabolite
20-HETE, prior to channel activation [155]. Interestingly, Borbiro et al. found TRPV1 inhib-
ited Piezo1 function in mouse dorsal root ganglion neurons, through depleting membrane
phosphoinositides [156]. Together, these data suggest an important, but indirect, role for
TRPV1 in modifying the cellular response to membrane stretch. A more comprehensive
review of TRPV1 can be found in [142].

2.3.2. TRPV1 and Cardiac Remodelling

TRPV1 functionality within the heart is primarily thought to protect against car-
diac dysfunction and adverse remodelling. For example, TRPV1 is important for pre-
conditioning protection against MI in rodents [157–160]. Moreover, in rodent models of
MI, TRPV1 may act in suppressing the inflammatory and pathological cardiac remod-
elling response in the infarct region following ischemic injury [161,162]. Mice with global
TRPV1 depletion exhibited an increase in infarct size and mortality after LAD coronary
ligation, with a significantly higher level of MF infiltration, capillary density and collagen
content [162]. Depletion of TRPV1 in mice also increased TGF-β, Smad2, VEGF and MMP2
expression [162] and significantly reduced expression of the cardioprotective protein cal-
citonin gene-related peptide (CGRP) and substance P within the myocardium [160,161].
Downregulation of TRPV1, CGRP and substance P in the whole heart of diabetic rats has
been implicated in loss of cardioprotection during the progression of diabetes [160].

Studies employing the TAC model of LV PO have further confirmed the protective
role of TRPV1 during adverse cardiac remodelling and fibrosis [163,164]. TRPV1 global
KO mice which had undergone TAC experienced an increase in hypertrophy, collagen
deposition and infiltration of immune cells compared to WT animals [163,164]. In further
support of the cardioprotective role for TRPV1, mice fed chow containing the TRPV1
agonist capsaicin experienced less adverse effects of PO, including reduced cardiac hy-
pertrophy and fibrosis, compared with mice fed regular chow [147]. Moreover, long-term
dietary intake of capsaicin also protected against high salt diet-induced adverse cardiac
remodelling; a protective effect that was not detected in TRPV1 KO mice [145,165].

Given that TRPV1 is expressed in many different cell types within the heart, and
functions in response to a diverse array of stimuli, studies of whole hearts can mask
how the channel functions within individual cell types during the progression of cardiac
dysfunction. This concept is supported by a recent study in a transgenic mouse model with
TRPV1 depleted specifically in afferent neurons, identifying activation of TRPV1 within
afferent neurons as promoting fibrosis and adverse cardiac remodelling following MI [166].

In summary, there is good evidence that TRPV1 activity is protective for cardiac
remodelling. However, characterization of cell type-specific TRPV1 (potentially through
targeted inducible transgenic mouse models) will be necessary to gain a more complete
understanding of how this channel acts at the cellular level to regulate cardiac dysfunction.

2.3.3. TRPV1 in Cardiac Fibroblasts

The majority of studies aimed at understanding the function of TRPV1 within the
heart have analysed whole-heart TRPV1 channel activity, and KO mouse models have
mostly been global deletions of TRPV1; thus little is known of how TRPV1 influences CF
function specifically in vivo. However, Wang et al. reported that murine CF express func-
tional TRPV1 channels, as CF were sensitive to the TRPV1 channel agonist, capsaicin [147].
In vitro analysis of cultured CF indicated capsaicin mitigates Ang II-induced CF prolifera-
tion in cells from WT mice but not TRPV1 KO mice; suggesting TRPV1 is functional within
CF, and coupled to inhibition of fibroblast proliferation [147]. Furthermore, cultured CF
isolated from transgenic mice overexpressing TRPV1 are resistant to isoproterenol-induced
MF differentiation [167]. Over-expression of TRPV1 suppressed isoproterenol-induced
proliferation and attenuated isoproterenol-induced increases in expression of collagen type
1, collagen type 3 and fibronectin, while partially blocking downregulation of p-Akt and
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p-eNOS, and the decrease in NO and cGMP in mouse CF [167]. The TRPV1-dependent
inhibition of the MF phenotype was reversed by treatment of cells with the eNOS inhibitor
L-NAME, which prevented the TRPV1-stimulated increase in NO and cGMP [167]. In
rodents, eNOS has cardioprotective effects following MI, via suppression of ROS formation
and subsequent oxidative stress-induced TGF-β expression [168–170]. Hence, Wang et al.
suggested that CF TRPV1 function opposes fibrosis through enabling Ca2+ influx and
subsequent regulation of the eNOS/NO pathway [167].

In summary, the specific effects of TRPV1 on CF indicate that many of its protective
effects on myocardial remodelling may be due to inhibition of specific CF functions,
including cell proliferation, MF differentiation and ECM protein synthesis via activation of
an eNOS/NO/cGMP-dependent pathway (Figure 4C).

2.4. TRPV4

TRPV4 (Figure 4B) is a Ca2+- and Mg2+-permeable channel that is activated in response
to heat, osmotic swelling, mechanical force, binding of the arachidonic acid metabolite
5′,6′-epoxyeicosatrienoic acid, and phorbol ester compounds [65,77,171]. Whether TRPV4
is truly mechanosensitive is uncertain, and complicated through conflicting reports that
describe a functional role for TRPV4 in some forms of mechanosensing. Single-channel
conductance measurements of mammalian TRPV4, using patch clamping applied pipette
pressure, determined that TRPV4 channels were not stretch sensitive when over-expressed
in HEK293 cells [65] (Table 1). Servin-Vences and colleagues also found TRPV4 in murine
chondrocytes was not activated by membrane stretch; however, application of mechani-
cal force at points of contact between cells, and the ECM, appeared to generate TRPV4-
dependent electrical currents [67].

Some of these effects may be due to TRPV4 acting downstream of other mechanosen-
sitive channels, such as Piezo1 (see Section 3) [77,172]. For example, Swain and colleagues
reported that Piezo1 and TRPV4 act in concert to initiate and sustain Ca2+ influx in re-
sponse to mechanical stimulation in human pancreatic acinar cells [77] and in response to
shear fluid stress in human EC [172], with activation of Piezo1 prompting TRPV4 activity.
TRPV4 knockdown also diminished Piezo1 sensitivity to Piezo1-specific agonists [77], thus
indicating that the channels may act in concert to confer mechanical signalling, with Piezo1
acting as the mechanical force sensor [77,172].

With this in mind, the following discussion of TRPV4 function in cardiac and CF
biology should be interpreted with consideration for the types of chemical and mechanical
forces the channel is known to respond to, in addition to other proteins that may act in
concert with TRPV4 in generating a response.

2.4.1. TRPV4 and Cardiac Remodelling

TRPV4 is expressed within all mammals [173] and has been detected in multiple
cardiac cell types, including fibroblasts, EC [174] and CM [175–178]. Murine global TRPV4
deletion improves survival rates and preserves ejection fraction in mice that have under-
gone TAC or MI surgery [179]. TRPV4 KO mice also had significantly less cardiac fibrosis
post TAC or MI surgery, with reduced expression of profibrotic markers Col1a2, α-SMA,
N-FAT, TGF-β1, and the mechanosensitive transcription factor MRTF-A in whole-heart
tissue [179]. TRPV4 global KO have also been shown to exhibit decreased CM hypertrophy
and CF differentiation 28-days post TAC surgery [180]. Moreover, oral treatment of TRPV4
KO mice with the TRPV4 antagonist, GSK2193874, further confirmed the cardioprotective
effect of TRPV4 inhibition [181]. It should also be noted that a preceding study from the
same research group attributed some of the pathological cardiac functions of TRPV4 to
endothelial-specific TRPV4 activity [182].

Cardiac TRPV4 is upregulated in the myocardium of diabetic rats and has been
implicated in driving diabetes-induced cardiac fibrosis [183]. In vivo chemical inhibition
of TRPV4 in cultured diabetic rat CF, with the antagonist HC067047, reduced expression
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of markers of MF differentiation and attenuated increases in TGF-β1 levels, while also
reducing phosphorylation of Smad3 [183].

Taken together, these studies indicate that TRPV4 plays an important role in inducing
pathological myocardial remodelling, including cardiac hypertrophy and fibrosis.

2.4.2. TRPV4 in Cardiac Fibroblasts

CF undergo Ca2+ influx in response to the TRPV4-specific agonist 4α-phorbol 12, 13-
didecanoate [184]. In vitro analysis of mouse CF, isolated from TRPV4 KO mice, indicated
TRPV4 activates in response to TGF-β1, and drives RhoA signalling and an increase in
expression of the mechanosensitive transcription factor MRTF-A [180]. Within the same
study, it was demonstrated that inhibition of MRTF-A attenuates TGF-β1-induced CF
differentiation. Moreover, cultured CF isolated from Sprague Dawley rats and treated with
TRPV4-targeting siRNA, or CF isolated from TRPV4 KO mice, did not differentiate into MF
following TGF-β1 treatment [185,186]. Importantly, CF isolated from TRPV4 KO mice were
resistant to differentiation in response to high-stiffness ECM gels and hypotonicity-induced
Ca2+ influx; and the attenuation of differentiation was not reversed by saturating amounts
of TGF-β1 [186].

Together, these studies suggest a key role for TRPV4 in coupling mechanical stimula-
tion and TGF-β1 signalling to adoption of the fibrotic MF phenotype through a RhoA/MRTF-
A and Smad3 signalling mechanism (Figure 4C).

3. Piezo1 Channel

The field of mechanosensitive ion channels has been revolutionised by the recent discov-
ery of Piezo1 and Piezo2 non-selective cation channels that are inherently mechanosensitive
and act as primary force sensors in a wide range of mammalian cells and tissues [187–189].
The Piezo1 ion pore is selective for divalent (Ba2+, Ca2+, Mg2+ and Mn2+) and monovalent
(K+, Na+, Cs+ and Li+) cations [190]. In contrast to Piezo2 channels that are primarily
expressed in sensory tissues, Piezo1 is widely expressed in cells and tissues responsible
for regulating many aspects of the cardiovascular system [191]. For example, endothelial
Piezo1 acts as a sensor of shear stress, and is required for formation and regulation of
vascular structure in developmental and adult physiology [192–195], and as an important
regulator in sensing blood pressure and the baroreceptor reflex [196]. Within the heart,
Piezo1 is expressed in both myocytes and fibroblasts, and is essential for cardiac outflow
tract and aortic valve development [197,198], the response to cyclic stretch [199], and
for mediating homeostatic cardiac mechano-chemical transduction [200]. Furthermore,
Piezo1 expression in arterial SMC influences remodelling of small arteries during hyper-
tension [201]. For a more in-depth review of Piezo1 in cardiovascular health and disease,
please refer to this recent article [191].

The unique structure of the Piezo channels (Figure 5A) enables them to directly sense
membrane tension [78,202] (Table 1). The Piezo1 channel comprises three Piezo1 proteins
arranged to form a trimer, or triskelion shape [202–206], with three propeller blade-like
structures projecting outward from a central pore, formed at the C-terminus of each
protein [207]. The central pore constitutes the non-selective cation channel [207], with an
alpha helix beam connecting each propeller-like blade structure to the central pore [203,208].
Piezo1 has a curved structure, creating a dome shape in the membrane [204] which extends
beyond the radius of Piezo1 [208]. Flattening of the dome shape, via mechanical tension,
has been hypothesised to provide the energy requirement for mechanical activation of the
channel [208].
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Figure 5. Schematic diagram of Piezo1 structure and cardiac fibroblast signalling. (A) Predicted basic alpha subunit structure
of mammalian Piezo1. Piezo1 is predicted to have a peripheral transmembrane segment comprised of nine transmembrane
helical units (THU1-THU9), an anchor domain (α1-3), C-terminal extracellular domain (CED), C-terminal domain (CTD),
and a beam-like structure facing the intracellular surface. (B) Known Piezo1 homotrimeric ion channel signalling in cardiac
fibroblasts. Mechanical stretch and Yoda1 both activate Piezo1 in cardiac fibroblasts. Mechanical stimulation of Piezo1
activates the potassium-selective Ca2+-activated channel of large conductance (BKCa). Yoda1 activation of Piezo1 activates
the p38αMAPK pathway and stimulates IL-6 gene expression and protein secretion. See main text for details.

Piezo1 responds to a number of different types of mechanical stimuli in tissue cul-
ture, including lateral membrane tension [79,202,209], compression [210,211], osmotic
swelling [212], and rhythmic mechanical stimulus [213], including 24-h cyclic stretch [214].
However, it should be noted that Piezo1 responsiveness to cyclic-stretch appears to be cell
type-specific [34]. Substrate stiffness can also modulate Piezo1 activity in vitro; an increase
in substrate stiffness reduced Piezo1 channel activation in HEK 293T cells transiently
transfected with human Piezo1 [215]. Conversely, a reduction in the density of contact
points between a cell and the external substrate, represented as roughness of the sub-
strate, increased Piezo1 channel activity in HEK 293T cells expressing human Piezo1 [215].
Bavi and colleagues suggested that the responsiveness of Piezo1 to substrate stiffness and
roughness indicates a synergistic mechanism between force sensed by the phospholipids
and the actin cytoskeleton in HEK 293T cells expressing human Piezo1 [215], a concept
further supported by evidence that Piezo1 acts as a novel component of integrin-based
adhesions [34]. It should be noted that the latter reference [34] is a pre-print that has not
yet been peer-reviewed. Together, studies elucidating the activation mechanisms of Piezo1
suggest the channel is involved in integration of many forces that influence the tension of
the plasma membrane and external environment surrounding the cell. Piezo1 can also be
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activated by the synthetic small molecule Yoda1 [216], which serves as a useful tool for
chemical activation of the channel in in vitro experiments.

Following channel activation, Piezo channels can rapidly enter a non-conducting state
to become inactivated [78]. Lewis and Grandl established that Piezo1 can be inactivated
by resting membrane tension [79]. The resting force of the plasma membrane may be
enough to drive channel inactivation and prevent reactivation of Piezo1, indicating a
highly sensitive tuning mechanism for Piezo1 in response to membrane tension [79]. The
inactivation state of Piezo1 may also be influenced by divalent ion concentration [217], fatty
acid composition within the plasma membrane [218], and protonation of the channel [219].

3.1. Piezo1 and Cardiac Remodelling

Surprisingly little is known about Piezo1 function in the heart, likely reflecting the
relatively recent identification of this channel. Nonetheless, Piezo1 has been shown to be
expressed in several cardiac cell types, including CM, CF and EC, in both humans and
mice [134], with higher expression in fibroblasts than myocytes [134,220].

Piezo1 was shown to be upregulated in the hearts of male Sprague Dawley rats
following experimental MI, and in vitro studies indicated upregulation of Piezo1 via an
Ang II-ERK1/2-dependent pathway in CM [221]. However, whether the observed in-
crease in Piezo1 expression in the heart occurred within the myocyte or non-myocyte
cell population was not evaluated. Furthermore, the significance of the increase in car-
diac Piezo1 expression was not explored, for example using genetic Piezo1 KO. Very
recently, a more comprehensive study has suggested a key role for myocyte Piezo1 in
regulating homeostatic mechano-chemical signalling in the heart [200]. Murine studies
revealed that cardiac-specific Piezo1 deletion led to impaired heart pump function, whereas
cardiac-specific overexpression of Piezo1 led to severe HF and arrhythmia; together indi-
cating an essential role for myocyte Piezo1 in maintaining normal cardiac function [200].
Doxorubicin-induced dilated cardiomyopathy induced an increase in Piezo1 expression in
CM, and clinical data revealed increased Piezo1 expression in heart biopsies from patients
with hypertrophic cardiomyopathy [200].

In summary, a small number of studies are now suggesting that Piezo1 acts as a novel
mechanosensor in the heart, and that its expression is increased in cardiac pathologies.
More studies are eagerly anticipated to further define the role of Piezo1 in myocardial
remodelling.

3.2. Piezo1 in Cardiac Fibroblasts

We recently reported that Piezo1 is expressed and functionally active in human and
mouse CF [134]. Cell-attached patch clamp recordings established that human CF (specif-
ically atrial fibroblasts) contain pressure-induced mechanically activated ion channels
whose activity was reduced by Piezo1 siRNA knockdown. Moreover, the Piezo1 agonist
Yoda1 stimulated Ca2+ entry in mouse and human CF, which was inhibited by pharma-
cological Piezo1 blockers, Piezo1 gene silencing or Piezo1 KO [134]. Piezo1 activation
by Yoda1 was coupled to activation of the p38α MAPK pathway and IL-6 gene expres-
sion and protein secretion [134]. Furthermore, basal IL-6 production in CF cultured on
softer collagen-coated substrates was reduced by Piezo1 siRNA knockdown, suggesting
culture conditions (matrix composition and stiffness) may alter Piezo1 signalling in vitro.
Increased circulating IL-6 concentrations have been associated with cardiac fibrosis and
promotion of hypertension [222–224]. Within the heart, IL-6 may influence regulation of
the ratio of cell populations, composition of the ECM, and cell–cell interactions including
crosstalk between myocytes and fibroblasts [225]. Indeed, IL-6 may be important as a
paracrine signalling molecule released from CF to induce CM hypertrophy [226]. The p38α
pathway in fibroblasts is emerging as a critical regulator of cardiac remodelling [224] and
fibroblast-specific p38α KO mouse models have revealed important roles for this kinase in
driving both cardiac hypertrophy [226] and fibrosis [227].
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In a very recent pre-print report [69], and in agreement with our study [134], mechano-
activation of Piezo1 was confirmed in human atrial fibroblasts via cell-attached patch clamp
recordings following application of negative pressure. Interestingly, CF isolated from atrial
fibrillation patients expressed a higher level of Piezo1 expression and exhibited an increase
in Piezo1 activity when compared to cells from sinus rhythm patients [69], indicating a
potentially important role in atrial fibrillation and remodelling. Mechanical stimulation
also activated the potassium-selective Ca2+-activated channel of large conductance (BKCa)
in these cells. While Piezo1 was directly activated by stretch, mechanical induction of
BKCa activity was secondary to calcium influx via Piezo1, suggesting interplay between
these channels in human atrial fibroblasts [69]. Another recent report from the same
group described a role for Piezo1 in increasing atrial fibroblast cell stiffness in response to
increased ECM stiffness [228]. Over-expression and siRNA studies revealed that Piezo1
positively affected stiffness of a human atrial fibroblast cell line, including increasing
the amount, thickness and organization of the F-actin network. Moreover, Piezo1 over-
expressing cells could confer increased stiffness to neighbouring non-transfected cells
through a paracrine IL-6 signalling mechanism [228]; similar to that identified in our recent
study [134].

Together, these recent in vitro studies highlight the emerging significance of Piezo1
function in CF (Figure 5B). Future studies to address mechanical signalling, and to evaluate
the role of fibroblast-specific Piezo1 in modulating cardiac physiology and pathologi-
cal cardiac remodelling in vivo, will be important to more clearly define its function in
the heart.

4. TWIK-Related Potassium Channel-1 (TREK-1)

TREK-1 channels (Figure 6A) are one of fifteen types of two-pore domain potas-
sium channels (K2P) expressed in human cells [229]. K2P are classed as background, or
leak, transmembrane K+ channels and are associated with maintaining resting membrane
potential and reducing action potential firing through cellular potassium regulation in
mammals [230,231]. K2P channels may also act as counterparts to Piezo1’s non-selective
ion channel depolarization activity, enabling fine-tuning of mechanosensation [232]. Of the
fifteen different types of K2P channels, only TWIK-related K1 (TREK-1), TWIK-related K2
(TREK-2) and TWIK-related arachidonic acid-activated K+ channel (TRAAK) have been
described as mechanosensitive ion channels [233]. However, to date, only TREK-1 has been
identified as expressed and functional in CF [234].

In contractile tissues and organs in mammals, TREK-1’s function in cellular hyper-
polarization may reduce cellular contraction in response to mechanical forces [232]. K2P
channels lack a voltage sensing domain. However, TREK-1 has been described as volt-
age responsive due to an ion-flux gating mechanism [235]. The voltage dependency of
TREK-1 is activated by the bio-active lipids arachidonic acid and PIP2 [235–237]. TREK-1
can be activated by membrane receptor-coupled second messengers, heat, intracellular
acidosis and volatile anaesthetics, and can be rapidly activated in response to forces sensed
by the lipid bilayer of the plasma membrane, such as mechanical stretch and/or cell
swelling [81,230,235,238–240]. Conversely, TREK-1 gating is inhibited by protein kinase A
and protein kinase C phosphorylation pathways [235,236]. For a more in-depth review of
K2P channels, please refer to these recent review articles [231,232].

Mice with a genetic ablation of TREK-1 have heightened sensitivity to pain and
heat, indicating that loss of TREK-1 enhances sensitivity to mechanical force [241–243],
potentially due to TREK-1’s function in counteracting the activity of stretch-activated
non-selective ion channels such as Piezo1 [232]. TREK-1 is inherently mechanosensitive, as
patch clamp recordings of TREK-1 channels reconstituted in liposomes verified that it can
activate in response to intrinsic tension of the membrane, in the absence of other proteins
and cytoplasmic tethers [80,81] (Table 1). Changes to the lipid composition of the bilayer,
which can alter fluidity and potentially curvature, can influence the activation energy
threshold required to induce opening of the TREK-1 channel [233]. Arachidonic acid in
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particular has been identified as a lipid capable of modifying TREK-1 ion channel activity
via modulation of membrane properties [230,244,245]. It has been proposed that within
the lipid membrane, increased polyunsaturated fatty acids, such as arachidonic acid, may
lower the lipid deformability barrier and promote an open state of this stretch-sensitive
channel [233].
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forming P-loops (P1-P2). (B) Predicted basic alpha subunit structure of KATP. Each KATP alpha subunit consists of one ABC
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and KATP tetrameric ion channel signalling in cardiac fibroblasts. Cardiac fibroblast TREK-1 activation promotes cardiac
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KATP gene expression is upregulated during cardiac fibroblast to myofibroblast transdifferentiation. Once active, KATP

attenuates Ang II-induced proliferation and endothelin-1 expression, while also inhibiting myofibroblast differentiation.
See main text for details.

4.1. TREK-1 and Cardiac Remodelling

While TREK-1 functionality has predominantly been studied in the nervous system,
this potassium channel has also been shown to be expressed and functional within the
myocytes of rodents, pigs and humans [234,246,247], and fibroblasts of mouse hearts [234].
TREK-1 signalling plays an important role in normal sinoatrial node cell excitability [248].
It is also well established that cardiac TREK-1 dysregulation promotes development of AF,
ventricular arrhythmias and HF [232,234,249–252].

In AF and HF patients, TREK-1 mRNA expression is strongly reduced in the atria [251].
Recapitulation of TREK-1 depletion, in a porcine model, further demonstrated a correla-
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tion between propensity towards AF and HF with TREK-1 depletion [251]. However, it
should be noted that during a large scale analysis of TREK-1 expression in AF patients,
Schmidt et al. only observed a non-significant trend in downregulation of TREK-1 expres-
sion [253].

Abraham et al. identified TREK-1 as a cardiomyopathy-related gene whose expression
was increased in mouse hearts, including fibroblasts, following LV PO [234]. TREK-1
expression was also significantly increased during hypertrophy in the LV endocardium of
rats following isoproterenol treatment [254]. However, isoproterenol is a known inhibitor
of TREK-1, thus it is possible that the increase in TREK-1 expression was a compensatory
mechanism due to chemical inhibition [254].

TREK-1 function within the heart has also been shown to protect against experimental
MI-induced injury [252]. Permanent coronary artery ligation in mice lacking global TREK-1
expression developed larger-sized infarcts, greater LV diameter, and thinner posterior
walls, indicating that TREK-1 function may protect against cardiac dysfunction during
MI [252].

In summary, cardiac TREK-1 appears to play a homeostatic role in terms of electrical
signalling, but may also influence pathological cardiac remodelling.

4.2. TREK-1 in Cardiac Fibroblasts

Through in vivo transgenic mouse studies, utilising global and inducible cell type-
specific deletion of TREK-1, Abraham and colleagues were able to demonstrate that TREK-1
is an important modulator of cardiac hypertrophy, diastolic function and fibrosis in mouse
hearts; with differential influence on cardiac dysfunction when TREK-1 is expressed in
myocytes compared to fibroblasts [234]. Mouse models with global or CF-specific (Tcf21
promoter-driven) TREK-1 deletion had greatly reduced cardiac fibrosis following TAC,
although there was no apparent effect on CF-to-MF differentiation [234]. Preservation
of cardiac function and chamber size with reduced interstitial fibrosis observed in the
global TREK-1 KO was phenocopied in the CF-specific TREK-1 KO mice, but not the WT
or myocyte-specific TREK-1 KO mice, indicating that the cardioprotective effect of global
TREK-1 deletion was due to loss of TREK-1 expression specifically in fibroblasts [234].
Interestingly, stretch-induced, TGF-β- or EGF-treated ex vivo CF isolated from mice with
global TREK-1 KO, had a significant reduction in JNK and c-Jun phosphorylation when
compared to CF isolated from WT mice, whereas ERK1/2 and p38 signalling was unaf-
fected [234]. This implicates TREK-1-mediated JNK signalling as being important in the
hypertrophic and fibrotic response to PO.

In summary, although there is very little known about TREK-1 in CF, it appears that
this potassium channel is an important regulator of CF function that underlies its role in
cardiac remodelling (Figure 6C).

5. ATP-Sensitive Potassium Channels (KATP)

KATP channels (Figure 6B) are hetero-octameric transmembrane channels that are
inhibited by the intracellular nucleotides ATP and ADP [255]. It has been hypothesised
that activation of KATP channels acts to reduce contractility of excitable cells during ATP
depletion, as a means of preserving ATP bioavailability [256]. In addition to nucleotide
depletion, KATP channels also activate in response to disruption of the F-actin cortical
network [257,258] and mechanical stretch of the membrane [82].

KATP channels are formed by four pore-forming subunits: Kir6.1, Kir6.2, SUR1 and
SUR2. RNA splicing of SUR2 subunits also give rise to further variants—SUR2A and
SUR2B. Kir6.1 and Kir6.2 form the membrane-spanning regions responsible for the K+

inwardly rectifying channel and SUR1, SUR2A, or SUR2B subunits form the regulatory
sulfonylurea receptor [255]. The assembly of subunits which form the K+ channel differs
between cell types, and may confer different functional and pharmacological properties
depending on which subunits are present [255]. Due to differences in KATP subunit expres-
sion and assembly between species, the efficacy of KATP agonists may also differ between
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species [259]. For this reason, a number of different agonists and antagonists, which each
target different KATP subunits, have been utilised to study differential KATP channel as-
sembly and function. For further general information on KATP channels please refer to the
following review article [255].

Van Wagoner and colleagues first identified KATP as mechano-gated ion channels
through negative pressure applied cell-attached and inside-out excised-patch recordings
in neonatal and adult rat atrial myocytes. Single-channel KATP currents were detected
as having a conductance of 52 pS in symmetric potassium solutions [82] (Table 1). They
further demonstrated the mechanosensitivity of KATP channels through perforated patch
whole-cell recordings of atrial myocytes, during hypotonic osmotic swelling of cells [82].
Negative pressure applied patch activation of KATP is dependent on the presence of the
SUR subunit, suggesting this subunit is necessary for channel mechanosensitivity [260].

5.1. KATP and Cardiac Remodelling

There are three known subtypes of KATP channels found within the heart: cardiac
mitochondria KATP (mKATP), cardiac sarcolemma KATP (sKATP), and plasma membrane
KATP (pKATP), with mKATP being 2000-fold more sensitive to the KATP agonist diazoxide
than the other two [261,262]. Within mouse and rat hearts, KATP channels have been shown
to be expressed in CM, CF, and in the SMC and EC of coronary arteries [262,263]. In rodents,
KATP channels are expressed in CF isolated from normal heart tissue [264], but may not be
functional under physiological conditions [265]. Within rats, the function of fibroblast KATP
channels contribute towards cardiac remodelling and electrophysiology within the scar
border zone following MI [265]. Using whole-cell patch clamp analysis of KATP current
density, Benamer and colleagues were unable to detect KATP currents in CF isolated from
normal rat heart tissue and tissue sampled from regions remote from the infarct zone [265].
However, KATP currents were detectable in CF isolated from the scar and border zone
of an infarct scar [265], indicating that the KATP channel may only become active under
pathological conditions.

In whole-heart analysis of both dogs and guinea pigs, the ability for KATP to shorten
action potentials and reduce refractory periods was identified as having a pro-arrhythmic ef-
fects and promoted ischemic ventricular arrhythmias [266–268]. Despite the pro-arrhythmic
effect of the channel, KATP functionality within the heart of guinea pigs has been sug-
gested to protect against tissue damage as a result of reduced blood flow during is-
chemia/reperfusion injury [269]. Interestingly, ventricular CM isolated from Kir6.2 KO
mice lose patch clamp-detected KATP currents, suggesting the Kir subunit is responsible for
channel mechanosensitivity. Importantly, hearts from Kir6.2 KO mice were susceptible to
more severe PO following TAC, with exaggerated fibrotic myocardial hypertrophy [270].

In summary, cardiac KATP channels play an important role in the heart. While
functionality of KATP may provide cardioprotection against tissue damage caused by
ischemia/reperfusion injury, it also appears to contribute to a pro-arrhythmic mechanism.

5.2. KATP in Cardiac Fibroblasts

KATP expression is increased in rat CF as they transdifferentiate into the MF phenotype,
with KATP expression correlating with an increase in αSMA expression [265]. The increase
in CF KATP expression, and functionality within the border region of an infarct scar, was
postulated to contribute towards CF electrophysiological signalling in rat hearts; which
occurred in response to reinfarction (the reoccurrence of symptoms of ischemia in patients
or animals with a previous diagnosis of MI), and may have decreased the depolarising
effect enacted on CM by CF [265].

Despite this descriptive evidence that KATP channel activity and expression correlate
with development of the MF phenotype, numerous studies in both rodent and human CF,
which utilise pharmacological modulators of KATP channels, indicate that CF KATP activity
more likely opposes transdifferentiation of CF to MF [262,271,272]. Within cultured rat
CF, KATP expression has been associated with MF maturation. Treatment of CF with the
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KATP activators diazoxide and pinacidil delayed MF maturation, while the KATP inhibitor
glibenclamide increased MF maturation [262]. Schultz and co-workers found treatment
of cultured human foetal CF with ursodeoxycholic acid hyperpolarised cells, downreg-
ulated αSMA expression, and prevented CF-to-MF differentiation [272]. This effect was
attributed to an increase in KATP activity, as the hyperpolarising effect of ursodeoxycholic
acid treatment was inhibited by glibenclamide [272]. In cultured rat CF, the KATP activator
nicorandil attenuated Ang II-induced proliferation and endothelin-1 expression, an effect
that was reversed by treatment of CF with glibenclamide, further indicating that KATP
channels act to oppose the MF phenotype [271]. Rat CF mKATP, but not pKATP, have also
been reported to prevent transdifferentiation of CF to MF in ischemia pre-conditioned CF,
following simulated ischemia-reperfusion injury [262]. Ischemic pre-conditioning reduced
the rate of CF-to-MF differentiation in rats; a protective mechanism that was recapitu-
lated by treatment of cells with the mKATP activator diazoxide, but not pinacidil, and was
abolished by treatment of CF with the KATP inhibitor glibenclamide [262].

In summary, while CF KATP channels may act in reducing MF maturation and op-
pose pathological cardiac remodelling (Figure 6C), the mechanisms by which fibroblast
KATP channels contribute to cardiac pathology require further investigation, and may be
complicated by the intricacies of KATP subunit formation and distribution within the cell.
Furthermore, it is currently unknown whether the mechanosensitivity of KATP channels
contribute towards their function in CF biology. Thus, more nuanced genetic deletion
models are required to fully understand the role of fibroblast KATP function in the heart.

6. Summary and Future Perspective

The complex regulation of mechanical ion channel signalling at the level of the CF
is gradually being unravelled, with at least seven distinct mechanically activated cation
channels identified that can modulate CF function at the levels of cell proliferation, MF
differentiation, ECM turnover and paracrine signalling. While all these channels are
activated in response to mechanical stimuli, only a small number (i.e., Piezo1 and TREK-
1) are thought to be primary mechanosensors that detect mechanical stimulation in the
absence of other cofactors. It is also important to consider that the net effect of mechanical
stimulation on the CF cell will involve integrated (and sometimes opposing) signalling, not
only from these ion channels, but also other cellular components including focal adhesion
complexes and integrins, as well as surrounding ECM proteins. Moreover, the nature of the
mechanical stimulus at the cellular level (e.g., stretch, compression, stiffness) adds a further
layer of complexity. Thus, predicting the outcomes of CF mechanical signalling on cardiac
physiology and various forms of pathological remodelling is far from straightforward. It
must also be kept in mind that most cell culture studies are performed under conditions
of high mechanical stiffness, due to the inherent rigidity of cell culture plasticware. This
can have profound effects on CF function and may confound our ability to translate
in vitro findings to the in vivo setting. Hence, to truly evaluate the physiological and
pathophysiological roles of mechanically activated cation channels in CF in situ, it will be
important to establish fibroblast-specific KO mice in which such channels are ablated, and
then to assess the impact on normal cardiac physiology, as well as pathological cardiac
remodelling. In recent years, several Cre-lox mouse models have been developed to enable
fibroblast-targeted (e.g., Col1a2-Cre [273], Tcf21-Cre [274]) and MF-targeted (e.g., Postn-
MCM [275]) KO of a variety of genes. Successful application of these approaches to study
mechanosensitive ion channels in CF in vivo will help the field advance further and may
reveal important therapeutic targets for reducing adverse cardiac remodelling. In doing
so, we hope to be able to “channel the force to reprogram the matrix” and develop novel
therapies for patients with fibrotic heart disease.
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