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Abstract: Chemical investigation of the crude extract of the aerial part of Zygophyllum album L.
(Z. album) led to the isolation of a new saponin, Zygo-albuside A (7), together with seven known
compounds, one of them (caffeic acid, compound 4) is reported in the genus for the first time. NMR
(1D and 2D) and mass spectrometric analysis, including high-resolution mass spectrometry (HRMS),
were utilized to set up the chemical structures of these compounds. The present biological study
aimed to investigate the protective antioxidant, anti-inflammatory, and antiapoptotic activities of
the crude extract from the aerial part of Z. album and two of its isolated compounds, rutin and the
new saponin zygo-albuside A, against methotrexate (MTX)-induced testicular injury, considering
the role of miRNA-29a. In all groups except for the normal control group, which received a mixture
of distilled water and DMSO (2:1) as vehicle orally every day for ten days, testicular damage was
induced on the fifth day by intraperitoneal administration of MTX at a single dose of 20 mg/kg.
Histopathological examination showed that pre-treatment with the crude extract of Z. album, zygo-
albuside A, or rutin reversed the testicular damage induced by MTX. In addition, biochemical analysis
in the protected groups showed a decrease in malondialdehyde (MDA), interleukin-6 (IL-6) and
IL-1β, Bcl-2-associated-protein (Bax), and an increase in B-cell lymphoma 2 (Bcl-2) protein, catalase
(CAT), superoxide dismutase (SOD) in the testis, along with an increase in serum testosterone levels
compared with the unprotected (positive control) group. The mRNA expression levels of nuclear
factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), p53, and miRNA-29a were downregulated
in the testicular tissues of the protected groups compared with the unprotected group. In conclusion,
the study provides sufficient evidence that Z. album extract, and its isolated compounds, zygo-albuside
A and rutin, could alleviate testicular damage caused by the chemotherapeutic agent MTX.

Keywords: Zygophyllum album L.; saponins; antioxidant activity; antiapoptotic; testicular damage

1. Introduction

Methotrexate (MTX) is a folate antagonist that has been successfully used to treat
various types of malignant tumors as well as autoimmune diseases [1]. One of the main
obvious side effects of MTX cytotoxicity is damage to the testis, leading to sterility [2]. The
latter has been associated with oxidative stress, inflammatory cytokines, and apoptotic
cascades [3,4]. A close relationship has been established between MTX and oxidative stress,
leading not only to an increase in reactive oxygen species (ROS) but also to a decrease in
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antioxidant defense mechanisms such as antioxidant enzymes such as catalase (CAT) and
superoxide dismutase (SOD) and non-enzymatic antioxidants such as reduced glutathione
(GSH) [5–7]. Furthermore, inflammatory reactions in the male genital system are closely
related to oxidative stress [8]. The pathogenesis of MTX-induced testicular damage is also
associated with the production of proinflammatory cytokines such as interleukin-6 (IL-6)
and IL-1β and cell death via apoptotic cascades [3,6]. However, the exact processes that
cause MTX-induced testicular damage are still unknown.

MicroRNAs (miRNAs) are short, non-coding RNAs of about 22 nucleotides that
have been associated with the control of various physiological processes such as cell
proliferation, cell death, fibrosis, inflammation, and metabolism [9–11]. The family of
miRNA-29s consists of three members; miRNA-29a, miRNA-29b, and miRNA-29c. miRNA-
29a is an important member of the miRNA-29 family and has been shown to exhibit
proapoptotic activity [11,12]. Recently, administration of MTX showed upregulation of
testicular miRNA-29a expression, which is associated with apoptosis, oxidative stress, and
inflammation [13].

Several studies have proved that phytotherapeutic antioxidants are considered as
an auspicious strategy for attenuating chemotherapy-induced organ toxicities [14–23].
Additionally, numerous natural products have been reported for being beneficial in the
management of male reproductive problems [24] arising from environmental pollutants,
toxins and drugs [25]. Various plant extracts and natural products have been evidenced
to boost testosterone, improve the sperm quality, positively influence the androgen status,
semen parameters and fertility index [26–30] as well as counteracting the gonadotoxicity
induced by antineoplastic agents [13,24,25,31–33], D-galactose [34,35], heat [36,37] and
radiation [38]. Such protective effects of the extracts are attributed to their antioxidant and
anti-inflammatory components [13,24,25,31–38], most predominantly saponins [25,35–37].
Saponins are the most famous testosterone boosters that enhance testosterone production
or function as antiestrogenic agents via aromatase or estrogen receptors inhibition [30].
They are responsible for the androgenic effect of Tribulus terrestris (Zygophyllaceae) [28].
Furthermore, date palm pollen saponins increased the testosterone production via the
stimulation of Leydig cells of the testis [29]. The beneficial effects of ginseng on the male
reproductive system are attributed to its saponin components known as ginsenosides [39].
Moreover, steroidal saponins of Dioscorea Genus (Yam) are used in the manufacture of
steroidal hormones including sex hormones [40].

Zygophyllaceae (Caltrop family) comprises about 25 genera and 240 species among
which six genera viz. Tetradiclis, Seetzenia, Fagonia, Peganum, Tribulus and Zygophyllum
album (Z. album) are widespread in Egypt [41]. The genus Z. album is represented in
Egypt by nine species [42,43], which are characterized by being succulent plants that
resist drought and salt. These characters enable them to survive under drought, dry cli-
matic situations [44]. Plants of genus Zygophyllum are employed by traditional healers in
Egypt for the treatment of several ailments such as asthma, hypertension, diabetes, gout,
rheumatism, and dysmenorrhea. Moreover, several biological studies evidenced their
diverse pharmacological activities [43]. For instance, Z. album was reported to possess
promising antioxidant [45–48], antidiabetic [46,47,49–51], antihyperlipidemic [47,49,52],
anti-obesity [52], anti-acetylcholinesterase [52], antihypertensive [50], anticancer [47], car-
dioprotective and anti-inflammatory activities [53]. Z. album owes such pharmacological
effects to an assortment of phytochemicals. Chemical investigation of Z. album revealed that
the plant contains volatile oil [54] and accumulates triterpenes [43], saponins [43,55–58],
sterols [43,55], phenolic compounds predominantly flavonoids [43,47,52,57,59], as well as
few acids and their derivatives [52].

Based on the aforesaid considerations, besides that the impact of Z. album versus
MTX-induced testicular injury has not been explored yet, we continued our efforts in
discovering bioactive compounds from Egyptian folk medicine. Therefore, we investigated
the chemical constituents of Z. album aerial parts and then studied the potential protective
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effects of Z. album crude extract together with two of the isolated pure compounds against
methotrexate-induced testicular damage.

2. Results
2.1. Structure Elucidation of the Isolated Compounds

The chemical structures of compounds 1–6 and 8 were identified based on co-chromato-
graphy with the available authentic samples and were further confirmed by comparing their
1H NMR and 13C NMR spectra data (Figures S1–S12, S30 and S31) with those previously
reported in the literature. The chemical structures of the isolated compounds are displayed
in Figure 1. Compound 1 was identified as β-sitosterol [60]. Compounds 2 and 3 were found
to be triterpenes identified as β-amyrin and ursolic acid, respectively [61–63]. Compound 4
was characterized as caffeic acid [64]. Compounds 5, 6, and 8 were interpreted as flavonoids,
namely kaempferol [65], quercetin [65,66], and rutin [67], respectively.
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Figure 1. Chemical structures of the isolated compounds.

Compound 7 (Figures 1 and 2) was isolated as a white powder with a molecular
formula of C36H58O11S as deduced from its 1H and 13C NMR spectral data (Table 1) and
further confirmed by 2D NMR analysis and HRMS, which displayed a molecular ion peak
at m/z 697.2885 [M-H]− (Figure S13). The positive results of rhodizonate test indicated the
existence of a sulfate group [68–71].
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Table 1. 1H (500 MHz) and 13C (125 MHz) NMR spectroscopic data of compound 7 (MeOH, δ in
ppm, J in Hz).

No. δC δH (Int., Mult., JHz) No. δC δH (Int., Mult., JHz)

1 39.0 1.10 (1H, m)
1.62 (1H, m) 19 38.6 1.11 (1H, m)

2 27.5 1.25 (1H, m)
1.42 (1H, m) 20 38.5 0.95 (1H, m)

3 74.9 3.64 (1H, dd, 5, 10) 21 30.8 1.02 (1H, m), 1.62 (1H, m)
4 38.9 - 22 37.7 1.41 (1H, m), 2.06 (1H, m)
5 55.6 0.95 (1H, m) 23 28.4 1.03 (3H, S)

6 19.9 0.95 (1H, m)
1.35 (1H, m) 24 19.9 0.93 (3H, S)

7 38.6 1.62 (1H, m)
1.73 (1H, m) 25 17.5 0.90 (3H, S)

8 40.4 - 26 19.9 1.00 (3H, S)
9 47.1 1.19 (1H, m) 27 13.6 1.10 (3H, S)
10 39.0 - 28 172.6 -
11 25.8 1.96 (1H, m), 2.15 (1H, m) 29 17.6 1.11 (1H, d, 10)
12 126.1 5.35 (1H, m) 30 21.4 0.94 (1H, d, 8)
13 138.5 - 1′ 86.8 4.75 (1H, d, 10)
14 57.1 - 2′ 78.5 4.07 (1H, dd, 5, 10)

15 28.4 1.03 (1H, m)
1.11 (1H, m) 3′ 73.3 3.89 (1H, t, 5)

16 25.8 1.39 (1H, m)
2.16 (1H, m) 4′ 68.9 4.08 (1H, m)

17 47.2 - 5′ 74.6 3.65 (1H, m)

18 54.8 1.79 (1H, m) 6′ 60.3 3.65 (1H, m)
3.89 (1H, m)

Extensive inspection of 1H NMR and 13C NMR data (Figures S14–S21) in addition to
HSQC (Figures S27–S29) allowed for the assignment of five tertiary methyls detected at
δH/C 0.90/17.5, 1.03/28.4, 1.00/19.9, 0.93/19.9 and 1.10/13.6 assignable for H3/C-25, 23,
26, 24 and 27, respectively. This assignment was confirmed from HMBC correlations. For
example, the signal detected a δH 0.93 assignable for H3-24 was correlated to the signal
resonated at δC 28.4, 55.6 and 74.9 assignable for C-23, C-5 and C-3, respectively. The
signal detected at δH 1.03 (for H3-23) was correlated to δC 38.9 and 55.6 assignable for
C4 and C-5. In addition, the singlet at δH 0.90 (H3-25) was linked in HMBC spectrum
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(Figures S25 and S26) to each of δC 39.0 and 47.1 assignable for C-1 and C-9, respectively.
Similarly, other selected correlations are indicated in Figure 2.

The two methyls displayed at δH/C 0.94 (d, J = 8.0 Hz)/21.4 and 1.11 (d, J = 10.0 Hz)/17.6 were
attributed to H3-30/C-30 and H3-29/C-29, respectively. Additionally, the oxygenated
methine proton detected at δH 3.64 (dd, J = 5, 10 Hz) together with its corresponding carbon
detected at δC 74.9 were assignable to H-3/C-3. The location of the hydroxyl group was
further confirmed from the correlation between the singlet resonating at δH 0.93 (for H3-24)
and the carbon signal detected at δC 74.9 (for C-3). Moreover, H-3 (δH 3.64) was linked to
H2-2 (δH 1.25 and 1.42) as shown from the COSY spectrum (Figures S23 and S24).

An olefin proton was detected at δH = 5.35 (m) attributed to H-12 with its correspond-
ing carbon at δC 126.1 (C-12). Another sp2 carbon resonated at δC138.5, and this confirmed
the classical double bond between C-12 and C-13. Another confirmation for the situation
of the double bond was obtained from the COSY spectrum that revealed the link between
H2-11 (δH 1.96 and 2.15) and H-12 (δH 5.35). Additionally, HMBC spectrum illustrated
correlation between C-13 (δC 138.5) and H-19 (δH 1.11).

The 13C NMR spectrum displayed resonances for characteristic signal at δC 172.6 for
a carbonyl functionality of an ester; this signal disclosed a long range coupling with H2-22
(δH 1.41 and 2.06) as exhibited by HMBC spectrum.

The DEPT-135 (Figure S22) allowed differentiation of the 36 carbon resonances into
7 methyl, 9 methylene, 7 methine, and 7 quaternary carbons attributed to the aglycon
moiety. These data indicated an ursane-type triterpene skeleton for the aglycon with
one carboxy group at C-28 [57,58,72]. The remaining six carbon signals were assigned
to the sugar moiety which was identified as galactose. 13C NMR spectra displayed the
characteristic signal of an anomeric carbon at δC 86.8, which appeared shielded due to the
presence of the -SO3H group at C-2′. The anomeric carbon for galactose usually appears
around 99.2 [73], but in the presence of the -SO3H group at C-2′, it moves up the field to
86.8 [72]. The remaining signals at δC 78.5, 73.3, 68.9, 74.6, and 60.3 indicate the presence of
a sugar part.

The anomeric proton exhibited a coupling constant at δH 4.75 (1H, d, J = 10.0 Hz, H-1′),
which is characteristic to the di-axial interaction between H-1′ and H-2′; this value, besides
the chemical shift of the anomeric carbon at δC 86.8, assured the β-configuration [74–76].

The situation of the sugar moiety was indicated from the long-range coupling between
the anomeric proton resonating at δH 4.75 and the carbonyl functionality detected at
δC 172.6 as revealed from the HMBC spectrum. To place emphasis on the structure of
compound 7, it was subjected to acid hydrolysis [77] followed by co-chromatography of the
resulted aglycone and sugar parts of compound 7 with authentic triterpenes and sugars,
respectively. The aglycone part was assured to be ursolic acid (compound 3) (Rf = 0.3,
0.64 and 0.71 mobile phase: benzene/toluene (1:4), toluene/EtOAc/AcOH (6:3:1) and
3% MeOH in CHCl3 [78–80]. The sugar moiety was authenticated to be galactose (Rf = 0.21,
0.38 and 0.39; mobile phase: n-butanol-benzene-pyridine-HO (5:1:3:3), PhOH satd. with
H2O and propanol-H2O (8.5:1.5), respectively) [81,82].

Based on the above including the 1H and 13C NMR data, which were compared with
those previously published for Zygophyllum saponins [57,58,83] and confirmed by HMBC
and COSY correlations (Figure 2), compound (7) was elucidated as a new compound
isolated for the first time from a natural source and given the name Zygo-albuside A.

2.2. In Vitro Antioxidant Assessment of Compound 7 (Zygo-Albuside A)

Plant antioxidants frame a wide assortment of phytochemicals that exert their antioxi-
dant action by various mechanisms such as including quenching of singlet oxygen, hydro-
gen convey, transport of electron in addition to reduction of metal and chelation [84,85].
Previous studies have proven the antioxidant activity of Z. album different extracts and
fractions [46,48,86,87]. This encouraged the inspection of the antioxidant efficacy of com-
pound 7 (Zygo-albuside A) in the current study by utilizing three indicative assays (DPPH,
H2O2, TAC).
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The DPPH radical has been frequently utilized to explore the neutralizing effects of
crude extracts or pure compounds. Antioxidants can pause the free radicals’ chain of
oxidation reactions via creating more stable radicals. Thus, they can scavenge the DPPH
radical through donation of hydrogen, giving rise to transformation of the purple-colored
DPPH radical into the yellow-colored DPPH-H [88,89].

In this study, the results depicted in Table 2 revealed that compound 7 possessed
promising radical scavenging ability with IC50 = 45.41 ± 2.65 µg/mL compared to ascorbic
acid as positive control (IC50 = 10.64 ± 0.82 µg/mL).

Table 2. In vitro antioxidant activities of compound 7 by DPPH, H2O2 and TAC assays.

Sample DPPH
(IC50 in µg/mL)

H2O2
(IC50 in µg/mL)

TAC
(mg GAE/g)

Compound 7 45.41 ± 2.65 65.16 ± 3.22 29.83 ± 2.19
Ascorbic acid 10.64 ± 0.82 NT 71.28 ± 4.34

NT, not tested. Data are expressed as mean ± SD of three independent values.

Furthermore, hydrogen peroxide (H2O2) is a powerful oxidant, playing a decisive role
in cell signaling pathways [89]. In biological systems, H2O2 is produced by a number of
oxidizing enzymes such as SOD [90]. However, the accumulation of H2O2 can cause oxida-
tive stress and inflammatory reactions [89,91,92]. Decomposition of H2O2 into the hydroxyl
radical (•OH) initiates lipid peroxidation and causes cellular components injury, giving
rise to several inflammatory conditions [93]. Accordingly, controlling H2O2 production
by natural antioxidants could be of great benefit [89]. Compound 7 exhibited good H2O2
quenching effect with an IC50 = 65.16 ± 3.22 (Table 2).

The in vitro total antioxidant capacity (TAC) of compound 7 was assessed by appli-
cation of phosphomolybdate assay, which depends on the generation of a green phos-
phate/MoV complex. This complex is created due to the reduction of phosphomolybdate
ion by the compound with an antioxidant effect [84]. Results were expressed as milligram
of gallic acid equivalent per gram of dry extract (mg GAE/g).

Accordingly, compound 7 exhibited noteworthy TAC (29.83 ± 2.19 mg GAE/g)
matched with ascorbic acid (the positive control; 71.28 ± 4.34 mg GAE/g) pointing to
its potent capacity to remove free radicals by an electron transfer mechanism (Table 2).

2.3. In Vivo Evaluation of Z. album Extract, Compound 7 (Zygo-Albuside A) and
Compound 8 (Rutin)
2.3.1. Effect on Liver and Kidney Function Markers (Preliminary Study)

In order to assess the possible toxicity of the administered compounds on the liver
and kidney, a preliminary study was conducted to determine the serum levels of the
liver enzymes alanine aminotransferase (ALT), and aspartate aminotransferase (AST),
and the kidney markers urea and creatinine in mice that received only Z. album extract
(100 mg/kg), zygo-albuside A (10 mg/kg) and rutin (10 mg/kg). No significant differences
were observed in the levels of both liver and kidney function markers in any of the treated
groups relative to the negative control mice (Table S1), indicating that the investigated
doses had no detected toxicity on either the liver or the kidney (Table S1). No other toxic
effects were detected in the experimental mice. There were also no observed changes in the
behavior of the treated mice nor a marked increase in their mortality rates.

2.3.2. Reversing Serum Testosterone Levels in the MTX-Administrated Mice

The results in Figure 3A show that administration of MTX in the principle investigative
study was associated with a significant 73% decrease in serum testosterone levels compared
with the normal control (NC) group. MTX-injected mice pretreated with either the crude
extract of Z. album, zygo-albuside A, or rutin showed a significant increase in serum
testosterone levels by 33%, 42.8%, and 47.8% compared to the untreated MTX (positive
control) group.
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Figure 3. Effect of administration of Z. album crude extract, zygo-albuside A and rutin on serum
levels of (A) testosterone, and testicular levels of (B) MDA, (C) CAT and (D) SOD in MTX-induced
testicular injury mice. Statistical analysis was performed using ANOVA followed by Tukey’s post hoc
test. Values are expressed as mean ± SD (n = 8). A statistically significant difference was assumed
at p < 0.01 and denoted by * vs. NC; # vs. MTX. MDA; malondialdehyde, CAT; catalase, SOD;
superoxide dismutase.

2.3.3. Restoring the Antioxidant Activity in the MTX-Administrated Mice

As shown in Figure 3B, testicular malondialdehyde (MDA) levels were significantly
increased by 80.6% in the MTX group compared with the NC group. Co-administration
of Z. album crude extract, zygo-albuside A, or rutin with MTX significantly decreased
testicular tissue MDA levels by 31.6%, 36.7%, and 46.9%, respectively, compared with the
MTX positive control group.

Compared with NC, a significant decrease in the activities of CAT and SOD (73.5% and
81.4%, respectively) was observed after exposure to MTX. Concurrent treatment with
Z. album crude extract, zygo-albuside A, or rutin showed significant restoration of the levels
of these testicular antioxidants compared with mice injected with MTX alone (Figure 3C,D).

2.3.4. Reduction of Inflammation in the MTX-Administrated Mice

MTX administration was associated with significant inflammatory changes in testicular
tissue, as indicated by significant increases in the expression levels of nuclear factor-kappa B
(NF-κB), tumor necrosis factor-α (TNF-α) by 8.9- and 9.2-fold, respectively, and a significant
increase in IL-1β and IL-6 levels by 80.7%, and 81.7%, respectively, compared with the NC
group (Figure 4A–D).
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Figure 4. Testicular gene expression of (A) NF-κB, (B) TNF-α and tissue levels of (C) IL1-β and
(D) IL-6 in the normal control (NC) group and experimental groups (MTX, crude extract + MTX,
zygo-albuside A + MTX, rutin + MTX). Statistical analysis was performed using ANOVA followed by
Tukey’s post hoc test. Values are expressed as mean ± SD (n = 8). A statistically significant difference
was assumed at p < 0.01 and denoted by * vs. NC; # vs. MTX. NF-κB; nuclear factor kappa B, TNF-α;
tumor necrosis factor-α, IL-1β; interleukin-1β, IL-6; interleukin-6.

MTX-injected mice pretreated with either Z. album crude extract, zygo-albuside A, or
rutin showed significant decreases in NF-κB expression levels by 5.2-, 4.5-, and 4.4-fold,
respectively, and in TNF-α expression levels by 5.8-, 5.4-, and 5-fold, respectively, compared
with the unprotected (positive control) group. Apparently, the isolated compounds also
had a significant effect on IL-1β and IL-6 levels by decreasing them compared to the
MTX positive control group. Z. album crude extract, zygo-albuside A, or rutin exhibited
a significant decrease in IL-1β levels by 53.3%, 59.1%, and 64.6%, respectively, and in IL-6
levels by 49.3%, 53.9%, and 58.4%, respectively (Figure 4A–D).

2.3.5. Prevention of Apoptosis in the MTX-Administrated Mice

In response to cellular stress, the tumor suppressor p53 leads to cell cycle arrest and
apoptosis [94]. In this context, administration of MTX resulted in a significant 8.5-fold in-
crease in p53 expression in the testis compared to the NC group. This effect was attenuated
by pre-administration of Z. album crude extract, zygo-albuside A, or rutin by 4.9-, 3.7-, and
3.3-fold, respectively, compared to the MTX positive control group (Figure 5A).
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Figure 5. Effect of administration of crude extract, zygo-albuside A, or rutin on testicular expression
of (A) p53, (B) miRNA-29a, mRNA and testicular levels of (C) Bax and (D) Bcl-2 in mice with MTX-
induced testicular injury. Statistical analysis was performed using ANOVA followed by Tukey’s post
hoc test. Values are expressed as mean± SD (n = 8). A statistically significant difference was assumed
at p < 0.01 and denoted by * vs. NC; # vs. MTX.

Members of the Bcl-2 family play an important role in testicular cell survival by
regulating both caspase-dependent and caspase-independent cell death. Bcl-2 is an anti-
apoptotic protein belonging to the family of apoptosis-regulating proteins [95]. The current
results showed that only MTX-injected mice had 83.9% lower Bcl-2 levels than the NC
group. Mice pretreated with Z. album crude extract, zygo-albuside A or rutin had 62%,
67% and 72% higher Bcl-2 levels, respectively, compared to the MTX positive control group
(Figure 5B).

Furthermore, Bax levels were significantly increased by 81% in mice administered
MTX only compared with the NC group. Pretreatment with Z. album crude extract reduced
Bax levels by 24% compared with untreated mice. Stronger effects were apparently caused
by zygo-albuside A or rutin, which reduced Bax levels by 47% and 45%, respectively,
compared with the MTX positive control group (Figure 5C).

2.3.6. Inhibition of mi-RNA 29a Expression in MTX-Administrated Mice

The expression of mi-RNA 29a was significantly increased by 10.9-fold in MTX-injected
mice relative to the NC group. Oral administration of Z. album crude extract, Zygo-
albuside A, or rutin significantly decreased mi-RNA 29a expression by 54%, 61%, and 64%,
respectively, compared with the MTX positive control group (Figure 5D).
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2.3.7. Improvement of the Histological Damage in the Testis

As shown in Figure 6, a normal structure was observed in the testis of the control
mice, and the mice receiving zygo-albuside A and rutin exhibited normal architecture of
the testicular tubules with complete spermatogenesis. In contrast, the group injected with
MTX (positive control group) showed hyalinized tubules with a significant decrease in
spermatogenesis compared to the NC group. In addition, a significant decrease in Johnsen
score in the group injected with MTX was observed compared to the normal testicular parts.
Treatment with Z. album crude extract improved the Johnsen score nine-fold compared
with the unprotected group. Maximum protection was achieved by zygo-albuside A and
rutin compounds, which brought the score to normal.
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Figure 6. Representative photomicrographs of testis from control and experimentally treated mice.
Testicular tissue sections stained with hematoxylin and eosin (40×) and scored by Johnsen. The
normal control group (NC) showed complete spermatogenesis (black arrow) in all tubules, up to
the sperm count (score 10). In the MTX group, some tubules are hyalinized, while other tubules
show a marked reduction in spermatogenesis with few spermatocytes (black arrows) (score 2). The
Crude extract + MTX group showed tubules with complete spermatogenesis (black arrows) and
slightly impaired spermatogenic cells (score 9). The Zygo-albuside A + MTX group showed the most
pronounced effect; complete spermatogenesis is evident in all tubules up to spermatids (black arrow)
(score 10). The Rutin + MTX group also showed complete spermatogenesis in all tubules, up to the
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spermatids (black arrow) (score 10). Scores are expressed as mean ± SD (n = 8). Statistical analysis
was performed by one-way analysis ANOVA followed by Tukey’s post hoc test. A statistically
significant difference was assumed at p < 0.01 and marked with * vs. NC; # vs. MTX.

3. Discussion

Chemotherapeutic drugs have always been associated with persistent azoospermia
and infertility in men. MTX can damage testicular tubules, reduce sperm count, and cause
genetic abnormalities [96]. Consistent with previous studies, the present study found that
a single i.p. dose of 20 mg/kg MTX can cause testicular damage. In this context, great
attention should be paid to these side effects, and new natural products should be sought
to counteract MTX-induced testicular damage.

Our histological findings showed damage to testicular tissue with hyalinized testicular
tubules and a significant decrease in the Johnsen score for spermatogenesis after injection
of MTX compared with NC. Consequently, MTX resulted in a significant decrease in
testosterone levels compared with NC. Several research papers supported our findings
demonstrating the reproductive toxicity of MTX [13,34,96].

It is reported that the toxicity of MTX is triggered by several mechanisms, includ-
ing oxidative stress, inflammation, and apoptosis [35,55,97]. Exposure to X-rays, toxins,
and chemicals in the environment, as well as certain physical disorders such as varico-
cele, can increase oxidative stress and promote germ cell death and thus spermatogene-
sis [98]. Sperm abnormalities and infertility are caused by uncontrolled ROS production
and oxygen-induced lipid peroxidation of the abundant polyunsaturated fatty acids in
the sperm membrane [99,100]. In this regard, tissue levels of MDA, a marker of lipid
peroxidation [5], were increased in the MTX group compared to NC. In addition, the MTX
group showed a significant decrease in testicular levels of the antioxidant enzymes SOD
and CAT compared to NC; similar results were previously observed [13,96,97]. The body’s
ability to produce antioxidants under normal circumstances to counteract the negative
effects of oxidative stress is influenced by metabolic processes and genetic structure. In
addition, environmental variables such as diet, pollution, and chemicals can affect this
ability. As a result, the body’s antioxidant system cannot neutralize all free radicals and
prevent the harmful effects of oxidative stress alone [98].

Furthermore, previous studies have shown that MTX- induced testicular injury is
associated with a marked increase in pro-inflammatory cytokines [3,6,101,102]. An increase
in TNF-α and/or IL-1β following testicular injury activates the JNK pathway, a stress-
related kinase that plays an important role in inflammatory diseases [103] and controls the
maturation and function of T cells as well as the production of ROS and pro-inflammatory
cytokines such as IL-6 and TNF-α [101]. Moreover, binding of TNF to TNFR1 induces
degradation of IκBα, triggering the canonical NF-κB signaling mechanism that activates
proinflammatory cytokine genes such as IL-6 and IL-1β [104]. In this regard, previous
studies have shown that NF-κB can be stimulated by TNF-α in Sertoli cells [101]. In
agreement with previous studies, our results have shown that injection of MTX led to
a significant increase in testicular levels of IL-6 and IL-1β, which may be reflected by
the upregulation of NF-κB and an increase in TNF-α expression in the testis, compared
with NC.

Apoptosis has also been implicated in the pathophysiology of MTX-induced gonado-
toxicity [4]. Apoptosis is triggered by either the receptor-mediated extrinsic pathway
or the mitochondria-dependent intrinsic mechanism. The extrinsic pathway is activated
when extracellular apoptosis-inducing stimuli such as TNF-α dock to death receptors and
activate the initiator caspase 8. Members of the Bcl-2 family with anti- or pro-apoptotic
activities, such as Bcl-2 and Bax, control the mitochondria-dependent intrinsic pathway.
Bcl-2 can prevent cell death by preserving the integrity of the mitochondrial membrane
and blocking cytochrome c release. Bax furthermore translocates into mitochondria and
promotes the release of cytochrome c, eventually leading to the activation of initiator cas-
pase 9. Both initiator caspases can then activate executioner caspase 3, leading to apoptotic
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cell death [105]. Sheikhbahaei et al. [4] found that DNA damage induced after injection of
MTX activates the p53 gene, which in turn enhances Bax expression. Consistent with the
previous studies [4,13,106], the present study demonstrated significantly decreased Bcl-2
levels in MTX-treated mice compared with the NC group. In addition, the expression of
p53 and Bax levels were significantly increased in the testicular tissues of the MTX-group
compared with the NC group.

Upregulation of miRNA-29 family expression, particularly miRNA-29a, was reported
in testis by injection of estradiol benzoate and doxorubicin, both of which promote germ cell
apoptosis [107]. Members of the miRNA-29 family have been shown to induce apoptosis in
a p53-dependent manner [108]. The present study agrees with the study by Sherif et al. [13]
in which the group treated with MTX showed significant miRNA-29a expression compared
to NC. Other previous studies have identified a molecular pathway linking miRNA-29a
overexpression to oxidative stress activation via increased MDA and decreased SOD lev-
els [12]. Moreover, overexpression of miR-29a increased the production of IL-6 and IL-1 as
well as NF-κB activation [109].

Considering that oxidative stress, inflammation, and apoptosis caused by MTX are
serious problems that lead to organ failure and have been shown to damage the male repro-
ductive system, the present study aimed to investigate whether oral treatment with Z. album
extract and two of its isolated compounds can alleviate testicular damage induced by MTX
in mice. We investigated a new natural product isolated from Z. album, zygo-albuside
A, which showed promising protective effects against MTX-induced testicular damage.
In addition, various protective effects of Z. album crude extract or rutin against testicular
damage were observed. In the groups injected with MTX and pretreated with Z. album
crude extract, zygo-albuside A, or rutin, histopathological examination showed complete
spermatogenesis in all tubules compared to the positive control MTX-injected mice.

The present study revealed the structural characterization of the new compound zygo-
albuside A obtained from Z. album. Zygo-albuside A is a saponin consisting of a sugar
moiety glycosidically linked to a hydrophobic aglycone. Saponin is one of the most popular
structures among natural products used in traditional medicine against various disease
mechanisms. In this context, saponin from Agave brittoniana Trel subspecies brachypus
showed anti-inflammatory activity [110]. Moreover, a previous study elucidated the anti-
inflammatory effect of saponins from the roots of Impatiens parviflora DC [111]. In the
present study, histopathological improvement of testicular tissue and increases in testos-
terone levels were associated with significant downregulation of NF-κB and TNF-α mRNA
and decreases in testicular levels of IL-1β and IL-6 in the zygo-albuside A-treated group.
Similar histopathological improvements and anti-inflammatory effects were observed in
the groups treated with the crude extract of Z. album and rutin. The anti-inflammatory
properties of Z. album have been previously described as cardioprotective, and hepato-
protective [55] effects were previously reported, mainly through suppressing the NF-κB
pathway. Moreover, rutin was postulated to exert anti-inflammatory effects via inhibition
of the NF-κB signaling pathway [112]. Based on the current results, we propose that the
Z. album crude extract, zygo-albuside A, and rutin may have anti-inflammatory effects by
suppressing the activation of NF-κB along with the pro-inflammatory cytokines IL-1β, IL-6,
and TNF-α.

Saponins that protect against oxidative stress have received increased attention. It is
known from the literature that Notoginsenoside R1 may be able to repair cell damage in
neurons by suppressing ROS [113]. Moreover, ginsenoside Rg1 protected human neuroblas-
toma cells from hydrogen peroxide-induced damage [114]. Consistent with these findings,
the present study showed that the saponin zygo-albuside A reduced MTX-induced testicu-
lar damage by restoring normal levels of testicular antioxidant enzymes such as SOD and
CAT and by decreasing testicular MDA levels compared with the MTX positive control
group. The same results were obtained for rutin and the crude extract of Z. album. These
results agree with previous reports on Z. album [55]. This could be due to its flavonoid
content. Vardi et al. [5] reported the effect of flavonoids on lowering serum MDA and NO
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and increasing SOD and CAT. Rutin specifically was reported to protect against testicu-
lar ischemia–reperfusion-induced oxidative stress in rats through decreasing MDA and
increasing SOD and CAT activities [115]. The study by Alsharif et al. [116] reported that
inhibition of the action of TNF-α ameliorated dexamethasone-induced oxidative stress in
mice. Therefore, we hypothesize a relationship between the anti-inflammatory effect of
Z. album extracts and their antioxidant capacity.

Furthermore, ginsenoside Rb1 showed an anti-apoptotic effect in Rattus pancreatic
β-cells via decreasing caspase-3 gene expression [117]. In addition, the high flavonoid
content of some natural products contributes to their anti MTX effect by suppressing various
apoptotic pathways and DNA damage [4,5,34]. In the current study, the zygo-albuside A
saponin as well as the rutin flavonoid showed anti-apoptotic effect by significantly reducing
p53 mRNA expression in the testis with concomitant reduction in Bax and an increase in
Bcl-2 levels. More to the point, a previous study showed that TNF-α and IL-6 levels are
inversely correlated with Bcl-2 expression [118]. Moreover, antioxidants inhibit apoptosis
by downregulating p53 and caspase enzymes [119]. Consequently, the current results
suggest that the anti-inflammatory effect of the isolated compounds of Z. album is not only
related to their antioxidant activity, but also to their anti-apoptotic effect in the treatment of
testicular damage caused by MTX.

Several natural products have been shown to be highly effective drugs for treatment of
a variety of clinical conditions through their influence on miRNA expression [120,121]. Con-
sistent with previous findings, oral administration of the crude extract of Z. album, the new
natural product zygoalbusid A, or rutin attenuated testicular damage caused by injection
of MTX by downregulating testicular miRNA-29a whose anti-inflammatory, antioxidant,
and anti-apoptotic effects have been demonstrated in previous studies [99,122,123].

Overall, Figure 7 summarizes the mechanisms of the protection provided by the new
saponin zygo-albuside A against MTX-induced testicular injury.
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Figure 7. Protective mechanism of zygo-albuside A against methotrexate-induced testicular damage.
Red arrows indicate the effects of MTX injection. Green arrows indicate the effects of zygo-albuside A
administration. MTX; methotrexate, NF-κB; nuclear factor kappa B, TNF- α; tumor necrosis factor-α,
IL-1β; interleukin 1β, IL-6; interleukin-6, SOD; superoxide dismutase, ROS; reactive oxygen species,
MDA; malondialdehyde, Cyt C; cytochrome C, Casp; caspase.
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4. Materials and Methods
4.1. General Experimental Procedures

First, 1D and 2D NMR spectra (chemical shifts in ppm, coupling constants in Hz) were
reported using Bruker Avance DRX 500 MHz spectrometers (Billerica, MA, USA). HRMS
were measured through direct injection by Thermo Scientific UPLC RS Ultimate 3000-Q
Exactive (Thermo Fisher Scientific, Waltham, MA, USA) hybrid quadrupole-Orbitrap mass
spectrometer combined with high-performance quadrupole precursor selection with high
resolution, accurate mass Orbitrap™ detection. Detection was performed in both negative
and positive modes. Chromatographic separation was performed using columns packed
with Sephadex LH-20 (0.25–0.1 mm, Pharmacia, Sigma-Aldrich, St. Louis, MI, USA) and
silica gel 60 (0.04–0.063 mm). Precoated TLC plates (with silica gel 60 F254, 0.2 mm, Merck,
Kenilworth, NJ, USA) and Whatman™ Grade 1 Chr Cellulose Chromatography Paper
(Sigma-Aldrich, St. Louis, MI, USA) were used for detection of the chemical components.
Spots were visualized using UV absorption at λ of 255 and 366 nm, in addition to spraying
with p-anisaldehyde/H2SO4. Aniline phthalate reagent was used for visualization of sugar
spots. Reference standards of β sitosterol (≥95%), β amyrin (phyproof®, ≥90%), ursolic
acid (≥90), caffeic acid (≥98%), kaempferol (≥97%), quercetin (≥95%), rutin (phyproof®,
≥95%), D-glucose (≥99.5%), D-galactose (≥99%) were purchased from (Sigma-Aldrich,
St. Louis, MI, USA).

4.2. Plant Material

Z. album was collected from Marsa Matrouh at the Northern Coast of the Mediter-
ranean in Egypt during May 2019. It was identified at the Faculty of Science, Alexandria
University. A voucher specimen was kept under registration number ZA-2019 in the
herbarium of Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University,
Ismailia, Egypt.

4.3. Extraction and Isolation

First, 1.8 kg of the chopped small pieces of aerial parts of plant Z. album was extracted
with methanol (3 × 2 L) at room temperature. The combined extract was concentrated
under reduced pressure to give brownish green viscous crude extract (50 g).

The crude extract (45 g, suspended in 1 L. distilled water) was partitioned using
n-hexane, CHCl3, EtOAc and n-BuOH to give five fractions (ZA-1–ZA-5) that were con-
centrated under reduced pressure. Fraction ZA-1 (100% n-hexane) (5 g) was applied on
a silica gel column, 100% n-hexane was used for elution then gradient systems of n-hexane:
EtOAc: MeOH, until reaching EtOAc: MeOH (50:50) to give ten subfractions (ZA-1-a to
ZA-1-j). Subfraction (ZA-1-b) (610 mg) was chromatographed on silica gel and eluted by
EtOAc: hexane starting with 5% EtOAc in hexane to 100% EtOAc followed by a Sephadex
LH-20 column using CHCl3: MeOH (1:1) to finally acquire compound 1 (6.5 mg, white
waxy substance). Subfraction (ZA-1-f) (550 mg) was similarly chromatographed on silica
gel (the eluting system was EtOAc in hexane; 5% EtOAc in hexane to finally 100% EtOAc).
Sephadex LH-20 column was applied for final purification using isocratic elution (CHCl3:
MeOH; 1:1) to obtain compound 2 (3 mg, white powder).

Fraction ZA-2 (100% CHCl3) (6 g) was partitioned on a silica gel column and eluted
with 10% EtOAc in n-hexane and then by gradient systems of n-hexane, EtOAc and MeOH
until reaching 50% EtOAc in MeOH. This yielded nine subfractions (ZA-2-a to ZA-2-i).
Subfraction (ZA-2-c) (990 mg) was applied on silica gel using gradient systems of EtOAc in
hexane starting with 10% EtOAc in hexane to 100% EtOAc. Sephadex LH-20 column (with
eluting mixture CHCl3: MeOH; 1:1) was set for final purification to acquire compound 3
(7 mg, creamy-white powder).

Fraction ZA-3 (100% EtOAc) (10 g) was added on a silica gel column, eluted with
100% CHCl3 and then by gradient systems (CHCl3 and MeOH until 50% MeOH in CHCl3);
four subfractions (ZA-3-a to ZA-3-d) were obtained. Subfraction (ZA-3-a) (1.3 g) was
purified on silica gel using elution by 100% CHCl3 then CHCl3: MeOH until 50% MeOH



Int. J. Mol. Sci. 2022, 23, 10799 15 of 26

in CHCl3. This afforded three subfractions (ZA-3-a-1 to ZA-3-a-3). Subfraction (ZA-3-
a-2) (250 mg) was treated similarly on silica gel (gradient systems: 100% CHCl3 then
CHCl3: MeOH until 100% MeOH). Final purification was performed using Sephadex
LH-20 column and CHCl3: MeOH (1:1) for isocratic elution to afford compound 4 (18 mg,
colorless gum substance).

Subfraction (ZA-3-b) (1 g) was fractionated on silica gel column, eluted by gradi-
ent systems of 100% CHCl3 and MeOH until 50% MeOH in CHCl3. This afforded four
subfractions (ZA-3-b-1 to ZA-3-b-4). Subfraction (ZA-3-b-1) (270 mg) was purified using
silica gel and gradient systems of CHCl3: MeOH starting with 10% MeOH in CHCl3 until
100% MeOH. The purification was completed by a Sephadex LH-20 column and CHCl3:
MeOH (1:1) for isocratic elution to obtain compound 5 (5 mg, yellowish powder).

Subfraction (ZA-3-c) (1 g) was treated in a similar was using silica gel column, eluted
initially by 100% CHCl3, followed by gradient systems of CHCl3: MeOH until (1:1)
CHCl3: MeOH to yield three subfractions (ZA-3-c-1 to ZA-3-c-3). Subfraction (ZA-3-
c-3) (320 mg) was added on silica gel where gradient systems of CHCl3: MeOH were
applied. (10% MeOH in CHCl3 until 100% MeOH). The last step in purification was per-
formed using Sephadex LH-20 column and CHCl3:MeOH (1:1) to yield compound 6 (3 mg,
yellowish powder).

Subfraction (ZA-3-d) (2.5 g) was chromatographed on silica gel using initially
100% CHCl3 and then with gradient systems of CHCl3:MeOH until (1:1) CHCl3:MeOH,
which yielded four subfractions (ZA-3-d-1 to ZA-3-d-4). Subfraction (ZA-3-d-1) (350 mg)
was added on silica gel using gradient systems (CHCl3:MeOH starting with 10% MeOH
in CHCl3 until 100% MeOH), where two subfractions (ZA-3-d-1-a and ZA-3-d-1-b) were
obtained. Subfraction (ZA-3-d-1-b) (180 mg) was purified on silica gel using gradient
systems of CHCl3: MeOH starting with 10% MeOH in CHCl3 until 100% MeOH, and then,
a Sephadex LH-20 column was applied for final purification using CHCl3:MeOH (1:1) to
obtain compound 7 (65 mg, white powder).

Subfraction (ZA-3-d-4) (670 mg) was purified similarly using silica gel column and
CHCl3 with gradual increase in MeOH (10% MeOH in CHCl3 until 100% MeOH); followed
by a Sephadex LH-20 column using CHCl3: MeOH (1:1) to obtain pure compound 8 (60 mg,
yellowish powder).

4.4. Acid Hydrolysis of Compound 7

Following the method described in [77], a quantity of 5 mg of compound 7 was
hydrolyzed by 2 N HCl (1 mL) at 95 ◦C. The reaction mixture was then diluted with
water and then extracted with CHCl3, and the recovered aglycone was subjected to PC
and TLC co-chromatography with compound (3) and a standard sample of ursolic acid
using benzene/toluene (1:4) [78], toluene/EtOAc/AcOH (6:3:1) [79] and 3% methanol in
CHCl3 [80] as mobile phases.

The aqueous phase after usual work-up procedure yielded D-galactose identified
by comparison with authentic sugars using silica gel TLC and propanol-H2O (8.5:1.5) as
a developer [81], as well as PC applying n-butanol-benzene-pyridine-H2O (5:1:3:3) and
PhOH satd. with H2O as mobile phases [82]. Sugar spots were visualized by aniline
phthalate reagent.

4.5. Detection of the Sulfate Group

As described in [68], 5 mg of compound 7 was refluxed with 5 mL of HCl (2N) for 2 h
and then neutralized with dil NaOH. The reaction mixture was then dried under vacuum.
The residue was subjected to paper chromatography using 90% MeOH dried in air then
sprayed with BaCl2 solution (100 mg in 50 mL of 70% MeOH), The paper was then air
dried and finally sprayed with potassium rhodizoate solution (10 mg dissolved in 50 mL of
50% MeOH). A yellow color indicated the presence of sulfate group.
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4.6. Spectroscopic Data of the Isolated Compounds
4.6.1. Compound (1) (Rf = 0.25, 0.41 and 0.83; Mobile Phase: 25% EtOAc in Hexane,
CHCl3/MeOH/AcOH (97:2:1) and Petroleum Ether/CHCl3/MeOH (49:50:1),
Respectively [80,124,125]

1H NMR (C5D5N, 500 MHz): δH 1.01 (H-1a, m, H-1), 1.83 (H1b, m, H-1), 1.46 (2H, m, H-2),
3.52 (1H, dd, 5, 10, H-3), 2.21 (H-4a, m, H-4), 2.31 (H4b, m, H-4), 5.35 (1H, m, H-6), 1.85 (2H,
m, H-7), 1.35 (1H, m, H-8), 0.85 (1H, m, H-9), 1.44 (H-11a, m, H-11), 1.49 (H11b, m, H-11),
1.13 (H-12a, m, H-12), 1.95 (H12b, m, H-12), 1.07 (1H, m, H-14), 1.18 (H-15a, m, H-15),
1.23 (H15b, m, H-15), 1.16 (2H, m, H-16), 1.00 (1H, m, H-17), 0.68 (3H, s, H-18), 0.92 (3H,
s, H-19), 1.32 (1H, m, H-20), 0.84 (3H, d, J = 6.6, H-21), 1.28 (H-22a, m, H-22), 1.07 (H22b,
m, H-22), 1.53 (2H, m, H-23), 1.53 (2H, m, H-23), 0.85 (1H, m, H-24), 1.64 (1H, m, H-25),
0.80 (3H, d, J = 6.6, H-26), 0.84 (3H, d, J = 7.2,H-27), 1.18 (H-28a, m, H-28), 1.23 (H28b, m,
H-28), 0.80 (3H, t, J = 7.2, H-29).

13C NMR (MeOD, 125 MHz): δC 11.9 (C-29), 12.0 (C-24), 18.8 (C-28), 19.4 (C-19), 19.9 (C-27),
21.1 (C-11, C-26), 23.1 (C-23), 24.3 (C-15), 26.0 (C-21), 28.3 (C-16), 29.1 (C-25), 31.9 (C-2, C-7,
C-8), 33.9 (C-20), 36.2 (C-18), 36.5 (C-10), 37.3 (C-1, C-12), 42.2 (C-13), 42.5 (C-4), 45.8 (C-22),
50.1 (C-9), 56.0 (C-17), 56.8 (C-14), 71.8 (C-3), 121.7 (C-6), 140.7 (C-5).

4.6.2. Compound (2) (Rf = 0.39, 0.57 and 0.58; Mobile Phase: 25% EtOAc in Hexane,
CHCl3/MeOH (97:3) and Toluene/MeOH (9:1) and, Respectively [80,126,127]

1H NMR (CDCl3, 300 MHZ) at δ; 0.69, 0.76, 0.85, 0.87, 0.90, 0.95, 1.16, 1.19 (each 3H, s, C-25,
C-23, C-30, C-29, C-24, C-26, C-27, C-28), 3.62 (dd, J = 10, 5 Hz, H-3) 5.73 (d, J = 7.2 Hz, H-12).

13C NMR (CDCl3, 125 MHz): δC 14.4 (C-24), 14.4 (C-25), 17.3 (C-26), 17.4 (C-6), 20.0 (C-
11), 22.7 (C-30), 22.7 (C-27), 24.5 (C-16), 25.6 (C-15), 26.3 (C-2), 27.0 (C-23), 28.6 (C-28),
29.9 (C-20), 31.8 (C-7), 33.3 (C-17), 33.2 (C-29), 34.4 (C-21), 35.3 (C-10), 35.2 (C-22), 37.1 (C-4),
37.5 (C-1), 39.9 (C-8), 41.8 (C-14), 47.3 (C-9), 48.5 (C-19), 49.5 (C-18), 54.5 (C-5), 78.2 (C-3),
122.9 (C-12), 145.9 (C-13).

4.6.3. Compound (3) (Rf = 0.30, 0.64 and 0.71; Mobile Phase: Benzene/Toluene (1:4),
Toluene/EtOAc/AcOH (6:3:1) and 3% MeOH in CHCl3, Respectively [78–80]

1H NMR (C5D5N, 500 MHz): δH 1.03 (H-1a, m, H-1), 1.57 (H1b, m, H-1), 1.81 (2H, m,
H-2), 3.44 (1H, dd, 5, 10, H-3), 0.87 (1H, m, H-5), 1.36 (H-1a, m, H-6), 1.57 (H1b, m, H-6),
1.36 (H-1a, m, H-7), 1.57 (H1b, m, H-7), 1.67 (1H, m, H-9), 1.96 (2H, m, H-11), 5.48 (1H, s,
H-12), 1.27 (H-1a, m, H-15), 2.13 (H1b, t, 10, H-15), 2.14 (1H, t, 10, H-16), 2.02 (1Hb, m,
H-16), 2.63 (1H, d, 10, H-18), 1.47 (1H, m, H-19), 1.05 (1H, m, H-20), 1.44 (1Ha, m, H-21),
1.52 (1Hb, m, H21), 1.94 (2H, m, H-22), 1.28 (3H, s, H-23), 1.03 (3H, s, H-24), 0.94 (3H, s,
H-25), 1.05 (3H, s, H-26), 1.27 (3H, s, H-27), 1.03 (3H, s, H-29), 0.97 (3H, d, 10, H-30).

13C NMR (C5D5N, 125 MHz): δC 15.5 (C25), 16.4 (C24), 17.2 (C26, C29), 18.6 (C-6), 21.2 (C30),
23.6 (C27), 23.7 (C-11), 28.1 (C-2), 28.5 (C23), 28.6 (C-15), 32.9 (C21), 33.1 (C-7), 37.0 (C22),
37.1 (C-10), 38.7 (C20), 39.2 (C-1, C19), 39.5 (C-4), 41.8 (C-8), 42.3 (C-14), 47.1 (C-16),
47.8 (C17), 47.9 (C-9), 53.3 (C18), 55.6 (C-5), 77.9 (C-3), 122.3 (C-12), 144.6 (C-13), 179.9 (C28).

4.6.4. Compound (4) (Rf = 0.35, 0.79 and 0.96; Mobile Phase: Toluene/EtOAc/HCOOH
(6:3:1), n-Butanol/AcOH/H2O (4:1:5) and EtOAc/AcOH/HCOOH/H2O (100:11:11:26),
Respectively [79,82,128]

1H NMR (MeOD, 500 MHz): δH 7.45 (1H, d, J = 16.0 Hz, H-7), 6.94 (1H, d, J = 1.5 Hz, H-2),
6.85 (1H, dd, J = 8.0, 1.5 Hz, H-6), 6.69 (1H, d, J = 8.0 Hz, H-5), 6.14 (1H, d, J = 16.0 Hz, H-8).
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13C NMR (MeOD, 125 MHz): δC 126.4 (C-1), 114.2 (C-2), 145.6 (C-3), 148.1 (C-4), 115.1 (C-5),
121.5 (C-6), 145.4 (C-7), 113.7 (C-8), 169.7 (C-9).

4.6.5. Compound (5) (Rf = 0.26, 0.55 and 0.58; Mobile Phase: Toluene/EtOAc/HCOOH
(7:3:0.1), Forestal = conc. HCl/AcOH/H2O (3:30:10) and PhOH/H2O (3:1),
Respectively [82,129]

1H NMR (DMSO-d6, 500 MHz): δH 6.18 (1H, d, J = 2 Hz, H-6), 6.44 (1H, s), 8.04 (1H, dd,
J = 2.8, 8.5 Hz, H-2′), 6.94 (1H, dd, J = 2.7, 10 Hz, H-5′), 8.04 (1H, dd, J = 2.7, 11.6 Hz, H-6′),
6.94 (1H, dd,2.7, 8.5, H-3′).

13C NMR (DMSO-d6, 125 MHz): δC 147.2 (C-2), 136.1 (C-3), 176.3 (C-4), 161.2 (C-5), 98.7
(C-6), 164.4 (C-7), 93.9 (C-8), 156.6 (C-9), 103.5 (C-10), 122.1 (C-1′), 129.9 (C-2′), 115.9 (C-3′),
159.6 (C-4′), 115.9 (C-5′), 129.9 (C-6′).

4.6.6. Compound (6) (Rf = 0.29, 0.41 and 0.9; Mobile Phase: PhOH/H2O (3:1),
Forestal = conc. HCl/AcOH/H2O (3:30:10) and EtOAc/AcOH/H2O (7.5:1.5:1.5),
Respectively [80,130]

1H NMR (DMSO-d6, 500 MHz): δH 6.20 (1H, d, J = 2 Hz, H-6), 6.42 (1H, d, J = 2 Hz, H-8),
7.70 (1H, d, J = 2.2 Hz, H-2′), 6.90 (1H, d, J = 8.5 Hz, H-5′), 7.56 (1H, dd, J = 8.5, 2.2 Hz, H-6′),
9.41 (1H, s, H-4′), 9.35 (1H, s, H-3′), 12.49 (1H, s, H-3), 12.52 (1H, s, H-5), 12.49 (1H, s, H-7).

13C NMR (DMSO-d6, 125 MHz): δC 147.2 (C-2), 136.2 (C-3), 176.2 (C-4), 156.6 (C-5),
98.7 (C-6), 164.3 (C-7), 93.8 (C-8), 161.6 (C-9), 103.5 (C-10), 122.5 (C-1′), 116.0 (C-2′), 145.5 (C-3′),
148.1 (C-4′), 115.5 (C-5′), 120.8 (C-6′).

4.6.7. Compound (7) (Rf for the aglycone (Rf = 0.30, 0.64 and 0.71 Mobile Phase:
Benzene/Toluene (1:4), Toluene/EtOAc/AcOH (6:3:1) and 3% MeOH in CHCl3,
Respectively. [78–80]. Rf for the Sugar Part = 0.21 0.38 and 0.39; Mobile Phase:
n-Butanol/Benzene/Pyridine/H2O (5:1:3:3), PhOH satd. with H2O and Propanol/H2O
(8.5:1.5), respectively) [79,80]

White powder; HRMS: m/z 697.2885 [M-H]−; 1H NMR (MeOH, 500 MHz) and 13C
NMR (MeOH, 125 MHz) spectral data, see Table 1.

4.6.8. Compound (8) (Rf = 0.24, 0.28 and 0.45; Mobile Phase:
EtOAc/AcOH/HCOOH/H2O (100:10:10:18), EtOAc/AcOH/H2O (7.5:1.5:1.5) and
EtOAc/AcOH/HCOOH/H2O (100:11:11:26) [130–132]

1H NMR (DMSO-d6, 500 MHz): δH 6.20 (1H, d, J = 2 Hz, C6-H), 6.40 (1H, d, J = 2 Hz, C8-H),
7.55 (1H, s, C2′-H), 6.87 (1H, d, J = 8.5 Hz, C5′-H), 7.55 (1H, s, C6′-H), 12.59 (1H, s, C5-OH),
5.35 (1H, s, H1′′), 3.40 (1H, m, H2′′, H5′′), 3.30* (1H, m, H3′′), 3.28* (1H, m, H4′′), 3.41* (1H,
m, H6′′), 3.84 (1H, m, H6′′), 5.15 (1H, d, J = 1.9, H1′′′), 3.62* (1H, m, 2′′′), 3.60* (1H, m, 3′′′),
3.30* (1H, m, 4′′′), 3.42* (1H, m, 5′′′), 1.00 (3H, d, J = 6.1, CH3-6′′′).

13C NMR (DMSO-d6, 125 MHz): 18.2 (C6′′′), 67.4 (C6′′), 68.7 (C5′′′), 70.4 (C4′′′), 70.8 (C2′′′),
71.0 (C3′′′), 72.3 (C4′′), 74.5 (C2′′), 76.3 (C5′′), 76.8 (C3′′), 94.1 (C-8), 99.2 (C-6), 101.2 (C1′′′),
101.6 (C1′′), 104.4 (C-10), 115.7 (C-2′), 116.7 (C-5′), 121.6 (C-6′), 122.1 (C-1′), 133.7 (C-3),
145.2 (C-3′), 148.8 (C-4′), 157.1 (C-2, C-5), 161.6 (C-9), 164.5 (C-7), 177.9 (C-4).

4.7. In Vitro Antioxidant Assay of Compound 7
4.7.1. DPPH Radical Scavenging Activity

The method was applied as previously published [133]. The measurements proceeded
as the average of triplicates. The percentage of inhibition (PI) of the DPPH radical was
deemed based on the formula:

PI = [{(AC − AT)/AC} × 100] (1)



Int. J. Mol. Sci. 2022, 23, 10799 18 of 26

where AC = absorbance of the control at t = 0 min, and AT = absorbance of the compound
7 + DPPH at t = 16 min.

IC50 is the concentration needed to 50%; DPPH radical scavenging activity was cal-
culated from graphic plots of the dose response curve using Graphpad Prism software
(San Diego, CA, USA) [134].

4.7.2. Hydrogen Peroxide Radical (H2O2) Scavenging Activity

The test was performed based on the previously published procedure [135]. BHT
was the reference standard. The H2O2 radical scavenging percentage of compound 7 was
estimated by the following equation:

H2O2 radical scavenging percentage = [(Ablank − Asample)/Ablank] × 100 g extract

IC50 was estimated from graphic plots of the dose–response curve using Graphpad
Prism software (San Diego, CA, USA).

4.7.3. Total Antioxidant Capacity (TAC)

Total antioxidant capacity of compound 7 was evaluated by the phosphomolybdate
complex method [136]. TAC was measured (as mg equivalents gallic per 100 g compound
7) using the standard gallic graph.

4.8. In Vivo Investigation of the Protective Effects of Z. album Extract, Compound 7 and
Compound 8 against MTX-Induced Testicular Injury
4.8.1. Preliminary Assessment of the Liver and Kidney Toxicity

A total of 20 mice (20–30 g) were randomly divided into 4 groups (5 mice each). The
first group received the vehicle (distilled water:DMSO (2:1)) and was considered the normal
group. The other three groups received Z. album extract (100 mg/kg), zygo-albuside A
(10 mg/kg) and rutin (10 mg/kg), respectively. The determined doses were administered
orally for 7 consecutive days. Blood samples were collected from the mice after 7 days
and serum was separated. Serum levels of the liver function enzymes ALT and AST were
assessed by colorimetric kits; AL1031 and AS1061, respectively (Biodiagnostic, Giza, Egypt).
Similarly, the serum levels of the kidney markers urea and creatinine were also determined
calorimetrically; UR2110 and CR1250, respectively (Biodiagnostic, Giza, Egypt).

4.8.2. Animals and Treatment (the Principle In Vivo Study)

The current in vivo investigative study was performed on 40 male Swiss albino mice of
the same age with an initial average body weight of approximately 20–30 g. The minimum
number of animals required to achieve statistical significance was used, and every effort
was made to minimize animal suffering. These mice were bred at the “Animal Sector” of the
Egyptian Biological Products and Vaccines Organization (Vacsera, Giza, Egypt). The mice
were kept in aluminum cages at controlled room temperature (25 ◦C). All animal handling
was approved by the Ethical Committee of the Faculty of Pharmacy, Suez Canal University
(202010PHDA1). After a two-week acclimation period, the animals were randomly divided
into five groups (8 mice each). The mice in the first group received a mixture of distilled
water and DMSO (2:1) as vehicle orally every day for ten days and served as the NC
group (Group I). In the remaining mice, testicular damage was induced on the fifth day
by a single intraperitoneal (i.p.) dose of 20 mg/kg methotrexate (MTX) [137]. These mice
were randomly divided into four groups: Group II (MTX positive control group): Mice
received only MTX; Group III (crude extract + MTX): Mice were received 100 mg/kg crude
extract of Z. album [138]; Group IV (Zygo-albuside A + MTX): Mice received 10 mg/kg
zygo-albuside A [139]; Group V (Rutin + MTX): Mice received 10 mg/kg rutin [140].

Z. album crude extract, zygo-albuside A, and rutin were administered daily by oral
gavage for the total period of the experiment (i.e., 10 days).
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4.8.3. Tissue Collection

Mice were sacrificed by decapitation under ketamine anesthesia at the end of the
10-day treatment. Blood samples were collected for serum separation in plain vacutainers.
Testis were removed, weighed, and decapsulated, and a portion of the tissue was stored at
−80 ◦C for biochemical analysis. Another part of the testis was placed in formalin solution
(10%) for histopathological studies.

4.8.4. Biochemical Analysis
Measurement of Testosterone

The level of testosterone levels (cat. no. MBS263193) was determined in serum by
ELISA kit (MyBioSource, San Diego, CA, USA).

Determination of the Level of Oxidative Stress in the Testis

One gram of testis was homogenized in 2 mL of ice-cold phosphate-buffered
saline (PBS) lyses buffer (pH = 7.4) using a disintegrator (Ultra-Turrax homogenizer,
Darmstadt, Germany). The homogenate was then centrifuged at 3000× g for 15 min, and
the supernatant obtained was frozen in aliquots at −80 ◦C until analysis. The levels
of MDA, SOD, and CAT in the testis were determined using mice-specific ELISA kits
(San Diego, CA, USA; Cat. No. MBS741034, MBS034842, and MBS160589, respectively).

Determination of Testicular Inflammation and Apoptosis Mediators

Levels of IL-1β, IL-6, Bax, and Bcl-2 were determined in the homogenate samples
of testicular tissue by mice-specific ELISA kits according to the manufacturer’s instruc-
tions ELISA kit (MyBioSource, San Diego, CA, USA; cat. no. MBS701092, MBS762321,
MBS763832-, and MBS2512543, respectively).

Determination of Testicular Expression of NF-κB, TNF-α, p53, and miR-29a by Quantitative
Real-Time Polymerase Chain Reaction

The Qiagen miRNeasy Mini Kit (cat. no. 217004) was used to separate total RNA,
including miRNA, from testicular tissue (Qiagen, Hilden, Germany). NanoDrop spec-
trophotometer was used to determine the concentration and purity of the extracted RNA
(Thermo Fisher Scientific, Waltham, MA, USA).

Expression levels of NF-κB, TNF-α, p53, and miR-29a were measured in testicular
tissue using GoTaq® 1-Step RT-qPCR technology (Promega, Madison, WI, USA). The en-
dogenous control for NF-κB, TNF-α, and p53 was β-Actin, whereas miR-29a was controlled
by small nuclear RNA U6B (RNU6B). The primers and annealing temperatures are listed
in (Table S2). For the experiment, 4 µL of RNA template, 0.4 µL of GoScriptTM RT mix
for 1-step RT-qPCR, 1 µL of forward and reverse primers, 10 µL of GoTaq® qPCR master
mix, 0.31 µL of additional CXR reference dye, and 3.29 µL of nuclease-free water were used.
Cycles included 15 min of reverse transcription at 37 ◦C, 10 min of reverse transcriptase
enzyme inactivation at 95 ◦C, and 40 cycles of denaturation at 95 ◦C for 10 s, annealing for
30 s, and extension at 72 ◦C for 30 s. The StepOnePlusTMReal-Time PCR Thermal Cycler
was used for all real-time PCR experiments (Applied Biosystems, Waltham, MA, USA). The
∆∆Ct and fold change values were determined, and the results were expressed as the mean
fold change compared with the NC group.

4.8.5. Histological Analysis

For histological examination, testicular tissue was cut into tiny slices and fixed in
10% buffered formalin before being treated with a graded ethanol series, embedded in
kerosene, and finally cut into 2–3 m thick slices. Hematoxylin and eosin (H&E) stains
were used for regular histological assessment. An Olympus microscope (Shinjuku, Japan)
equipped with a spot digital camera and MATLAB software computer program was used
for observation, and specimens were photographed. To evaluate the histopathological
changes, the Johnsen scoring system was used to calculate the degree of seminiferous
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tubules. Depending on the presence of spermatogenic cells, the system was scored as
the followings: 1, absence of seminiferous epithelium; 2, no germinal cells; 3, only sper-
matogonia; 4, there are no spermatozoa or spermatids and only a few spermatocytes;
5, no spermatozoa or spermatids, but many spermatocytes; 6, there are no spermatozoa,
no late spermatids, and only a few early spermatids; 7, no spermatozoa, no late sper-
matids, but plenty of early spermatids; 8, spermatozoa per tubule, with few late spermatids;
9, somewhat disrupted spermatogenesis, several late spermatids, and disordered epithe-
lium; 10, full spermatogenesis [98].

4.8.6. Statistical Analysis

Data were analyzed using Statistical Package for Social Sciences (SPSS) software,
version 17 (Chicago, IL, USA) SPSS. Results were presented as mean ± SD. Significant
differences between treatment effects were determined by one-way analysis of variance
(ANOVA) followed by Bonferroni’s post hoc multiple comparison test, with statistical
significance level set at <0.01.

5. Conclusions

The current study afforded the isolation and structure elucidation of a new saponin;
zygo-albuside A, along with seven known compounds from Z. album areal parts. The study
demonstrated for the first time that administration of isolated Z. album crude extract and its
isolated compounds, zygo-albuside A and rutin, significantly attenuated testicular damage
through suppressing apoptosis via inhibition of the p53 pathway and downregulation of
miRNA-29a. The investigated Z. album extract and its isolated compounds zygo-albuside
A and rutin also reduced inflammation via downregulation of NF-κB and reduction of
proinflammatory cytokines and enhanced the antioxidant capacity by increasing SOD and
CAT. The current study provides a new promising natural product, zygo-albuside A, as
a potential counteracting agent against MTX side effects on testis. Complete assessment of
the toxicity profile of the newly isolated compound zygo-albuside A is required in future
studies to indicate its therapeutic index.
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