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Background: Lack of definitive evidence supports the putative hypothesis that gut
microbiota dysbiosis is associated with Barrett’s esophagus (BE). We conducted a
two-sample Mendelian randomization study to assess the associations of 21 genera of
human gut microbiota with BE.

Methods: We identified independent genetic instruments for 21 genera of gut microbiota
(including nine dominant genera, four core genera among individuals of European
ancestry, and eight esophagus-specific genera of gut microbiota) from MiBioGen (up
to 18,340 participants). We applied them to summary statistics from the largest publicly
available genome-wide association study on BE (9,680 cases and 31,211 controls). We
obtained the causal estimates of genetically predicted higher genera of gut microbiota and
BE using the inverse variance weighting method. Sensitivity analyses included weighted
median, MR-Egger, MR-RAPS, and MR-PRESSO.

Results: We found that genetically predicted higher Actinomyces (OR: 0.76 per unit
increase in log odds of having BE, 95% CI: 0.70–0.83) and higher Ruminiclostridium (OR:
0.75, 95% CI: 0.63–0.90) were significantly associated with a lower risk of BE. No
associations of other genera of gut microbiota with BE were noted, apart from
suggestive associations of higher Alistipes (OR: 0.77; 95% CI: 0.61–0.99), higher
Eubacterium (OR: 0.89; 95% CI: 0.80–0.99), and higher Veillonella (OR: 0.76; 95% CI:
0.56–1.02) with a lower risk of BE, and higher Faecalibacterium (OR: 1.15; 95% CI:
0.99–1.33) with a higher risk of BE.

Conclusion: This study suggests that higher Actinomyces and higher Ruminiclostridium
might protect against BE.
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INTRODUCTION

The International Agency for Research on Cancer reported that
around 15%–20% of cancer cases were attributable to
microbial, particularly commensal microbiota (IARC
Working Group on the Evaluation of Carcinogenic Risks to
Humans, 2012). The human gastrointestinal (GI) tract,
harboring up to ten thousand billion individual non–site-
specific bacteria and three million bacterial genes, has
recently become the focus of great interest as target
interventions to combat Barrett’s esophagus (BE) and
alleviate the side effects of therapeutics on GI cancer (Bhatt
et al., 2017; Gillespie et al., 2021). Generally, dysbiosis changing
the composition and function of gut microbiota appears to
manipulate the host immune system and produce metabolites,
which have been implicated in the development of BE and
esophageal adenocarcinoma (EAC) (Bhatt et al., 2017; Levy
et al., 2017). Several possible underlying mechanisms support
such a hypothesis, for example, the loss of tolerance by the host
immune system, modulating inflammation, inducing DNA
damage, producing metabolites involved in tumor initiation
and progression, and maladaptation of the host’s gut
environment (Turnbaugh et al., 2007; Tozun and Vardareli,
2016; Bhatt et al., 2017; Levy et al., 2017). However, randomized
controlled trials investigating the association of gut microbiota
with BE remain scarce.

Observationally, several gut microbiomes have been reported
to associate with BE. For example, a small-scale case-control
study (ten BE cases and ten controls) showed that a decreased
Streptococcus and increased Prevotella, Veillonella, and
Leptotrichia were associated with a high BE risk (Lopetuso
et al., 2020). The consistent result of a decreased
Streptococcus on BE risk was also observed by another small-
size study (Yang et al., 2009). In addition, increased
Proteobacteria, Enterobacteriaceae, and Akkermansia were
reported to associate with high-grade dysplasia risk (Snider
et al., 2019). However, these results are usually difficult to
interpret and cannot distinguish effects of changes in genera
of gut microbiota from effects of confounding (e.g., diet and
obesity), despite differences in sample collections, analysis
methods, and study populations.

Mendelian randomization (MR) studies provide a valuable
framework to investigate their roles in BE as it resists
confounding by utilizing genetic variants randomly allocated
at conception to proxy the exposure of interest (Smith and
Ebrahim, 2003; Lawlor et al., 2008). More importantly, no MR
study has been conducted to assess the possible gut
microbiota–BE associations. To this end, we conducted a two-
sample MR study using summary statistics from the largest
publicly available genome-wide association study (GWAS) of
gut microbiota and BE (An et al., 2019; Kurilshikov et al.,
2021) in this study. We conducted a narrowed systematic
review (Pei et al., 2004; Zilberstein et al., 2007; Yang et al.,
2009; Blackett et al., 2013; Elliott et al., 2017; Dong et al.,
2018; Hughes et al., 2020; Peter et al., 2020) and considered
thirteen genera of human gut microbiota (i.e., Alistipes,
Bacteroides, Blautia, Dorea, Faecalibacterium,

Lachnoclostridium, Roseburia, Ruminococcus, Subdoligranulum,
Ruminiclostridium, Fusicatenibacter, Butyricicoccus, and
Eubacterium, in which Ruminiclostridium, Fusicatenibacter,
Butyricicoccus, and Eubacterium are the core genera in the
European descent) and eight esophagus-specific genera of gut
microbiota (i.e., Actinomyces, Bifidobacterium, Haemophilus,
Peptococcus, Lactobacillus, Prevotella, Streptococcus, and
Veillonella) as shown in Table 1.

METHODS

Study Design
This is a two-sample MR study that rests on three key
assumptions for inferring causality (Smith and Ebrahim, 2003;
Lawlor et al., 2008). First, the genetic instruments strongly predict
the exposure of interest (i.e., the relevance assumption). Second,
the genetic instruments are independent of confounders of the
exposure–outcome association (i.e., the independence
assumption). Third, the genetic instruments affect the outcome
only via the exposure of interest (i.e., the exclusion–restriction
assumption).

Exposure GWAS: 21 Genera of Gut
Microbiota
We extracted genetic instruments, i.e., single-nucleotide
polymorphism (SNP), for 21 genera of gut microbiota from
summary statistics in MiBioGen, which is the largest and latest
available 16S fecal microbiome data (up to 18,340 participants,
including 16,632 adolescents and 1,708 children) on gut
microbiota of individuals dominated by of European
descent (~72.3%, 13,266 participants) (Kurilshikov et al.,
2021). We selected instruments suggestively [i.e., p < 5 ×
10–6, which is commonly used to highlight “suggestive”
genetic variants (Manolio, 2010)] and independently (i.e., r2

< 0.01, based on the 1000G European population reference
panel) associated with each genus of gut microbiota. The
median age of participants in MiBioGen was ~46.5 years
(range: 4–89 years) with ~44.2% (~8,073 participants) of
males. The genetic effects on genera of gut microbiota were
meta-analyzed using either the abundance levels (mbQTL,
i.e., samples with zero abundance were truncated) or a
binary trait coding presence/absence (mbBTL, i.e., presence
versus absence of the bacterial genus), depending on their
absolute abundance levels across sub-cohorts. These
microbiome GWASs adjusted for age, sex, study-specific
covariates, and the top genetic principal components for
population stratification. Additional file 1: Supplementary
Table S1 shows the list of genetic instruments for genera of
gut microbiota included in this study.

Outcome GWAS: BE
We extracted summary statistics of BE from the most recent
meta-analyzed BE GWAS (access via study accession
GCST90000515 (Ong et al., 2021), including 3,513 cases and
14,052 controls in UK Biobank (An et al., 2019); and 6,167 cases
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and 17,159 controls in a sub-meta BE GWAS (Gharahkhani et al.,
2016)) based on the rs number of the identified genetic
instruments for 21 genera. Specifically, for UK Biobank, BE
and EAC diagnosed with ICD-10 codes (i.e., K22.7 for BE and
C15 for EAC) based on self-report and clinical diagnosis were
combined as one phenotype mainly because BE is the
premalignant precursor of EAC and has a very high genetic

correlation with EAC (An et al., 2019). For the sub-meta BE
GWAS of all individuals of European descent, patients with BE
were identified by the histopathological diagnosis of intestinal
metaplasia (Gharahkhani et al., 2016). The meta-analyzed BE
GWAS adjusted for age, sex, study-specific covariates, and the
first 10 principal components. Additional file 1: Supplementary
Table S1 shows the genetic instrument associations with BE.

TABLE 1 | Details for 21 genera of human gut microbiota included in this study.

Genus Id in
MiBioGen

N/N of non-
zeros

Abundance
(per 10 K)

Typea # Candidate
SNPs

Ranges
of F

statistics

R2,b

(%)

Gut (multi-ancestry) Hughes et al. (2020) — — — — — — —

Alistipes Id.968 18,340/
17,571

301.36 mbQTL 15 18.04–23.37 0.94

Bacteroides Id.918 18,302/
18,302

1865.24 mbQTL 12 20.04–16.18 0.52

Blautia Id.1992 18,340/
18,276

334.91 mbQTL 13 18.59–25.28 0.82

Dorea Id.1997 18,340/
17,610

79.98 mbQTL 12 19.50–25.11 1.10

Faecalibacterium Id.2057 18,340/
18,087

652.09 mbQTL 13 18.30–33.45 0.66

Lachnoclostridium Id.11308 18,340/
17,922

70.59 mbQTL 15 17.05–16.96 0.49

Roseburia Id.2012 18,340/
17,854

128.65 mbQTL 18 18.67 to
26.01

0.90

Ruminococcus Id.11373 18,340/
16,607

119.15 mbQTL/
mbBTL

14 19.03–33.84 0.58

Subdoligranulum Id.2070 18,340/
17,591

256.78 mbQTL 14 19.49–26.36 1.15

Gut (European ancestry) Hughes et al. (2020) — — — — — — —

Butyricicoccus Id.2055 18,340/
17,136

33.70 mbQTL 9 19.59–24.47 0.80

Fusicatenibacter Id.11305 18,340/
17,384

99.64 mbQTL 20 19.26–24.24 1.11

Ruminiclostridium Id.11355 18,340/
17,389

37.58 mbQTL 15 18.53–24.12 0.97

Eubacterium Id.11340 18,340/
7,739

76.70 mbQTL/
mbBTL

19 19.17–24.98 2.95

Esophagus (multi-ancestry) — — — — — — —

Actinomyces Yang et al. (2009), Blackett et al. (2013) Id.423 16,762/
7,468

3.33 mbQTL 8 19.51–22.24 0.82

Bifidobacterium Blackett et al. (2013) Id.436 18,340/
17,571

224.06 mbQTL/
mbBTL

18 19.70–88.43 0.74

Haemophilus Yang et al. (2009) Id.3698 18,430/
9,119

29.22 mbQTL/
mbBTL

14 19.25–29.34 1.74

Lactobacillus Zilberstein et al. (2007), Peter et al. (2020) Id.1837 18,340/
6,958

22.57 mbQTL/
mbBTL

12 20.28–23.49 1.36

Peptococcus Zilberstein et al. (2007) Id.2037 17,243/
5,657

9.65 mbQTL/
mbBTL

17 19.51–32.26 2.36

Prevotella Pei et al. (2004), Yang et al. (2009), Blackett
et al. (2013), Dong et al. (2018), Peter et al. (2020)

id.11183 18,340/
10,271

787.49 mbQTL/
mbBTL

20 19.35–24.23 2.53

Streptococcus Yang et al. (2009), Blackett et al. (2013),
Dong et al. (2018), Peter et al. (2020)

Id.1853 18,340/
16,387

56.80 mbQTL/
mbBTL

18 19.32–36.57 0.40

Veillonella Pei et al. (2004), Yang et al. (2009), Elliott et al.
(2017), Dong et al. (2018)

Id.2198 18,340/
9,291

21.34 mbQTL/
mbBTL

11 19.90–23.18 0.71

aOnly the taxa with 10%+ of the samples were analyzed as a continuous variable (i.e., mbQTL), whereas taxa present between 10% and 90% of the samples were analyzed as a binary
variable (i.e., mbBTL). Specifically, study-specific cutoff for mbQTL analysis was conducted with effective samples being 3,000+ and the presence in at least three cohorts; for mbBTL was
conducted among taxa with the mean abundance higher than 1% of in the taxon-positive samples.
bR2: the variance of each gut microbiota genus explained by the selected genetic instruments.
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Pleiotropic Effects
Given that previous studies (including MR and systematic
reviews) showed potential roles of obesity (Thrift et al.,
2014), depression (Ong et al., 2021), years of schooling (Ong
et al., 2021), and cigarette smoking (Andrici et al., 2013; Cook
et al., 2012), we further explored associations of the genetic
instruments strongly predicted genera of gut microbiota in
respective GWASs with obesity proxied by the waist–hip
ratio (GIANT and UK Biobank, n = 697,924 participants)
(Pulit et al., 2019), cigarette smoking proxied by cigarettes
smoked per day (a meta-analyzed GWAS, n = 337,334
participants) (Liu et al., 2019), depression (a meta-analyzed
GWAS, n = 246,363 cases and 561,191 controls) (Howard et al.,
2019), and years of schooling (SSGAC, up to 1,131,881
participants) (Lee et al., 2018). Details about study
participants included in these GWASs are presented in
Additional file 1: Supplementary Table S2. We excluded the
instrument associated with any of these phenotypes
aforementioned at genome-wide significance (p < 5 × 10−8)
to reduce the possibility of pleiotropy. Here, we did not consider
the potential pleiotropic effects of GERD on BE because they
shared considerable genetic variants, responding for ~91% (An
et al., 2019). In addition, we cross-checked the associations of
the selected instruments with any causes of death using the
comprehensively genotype-to-phenotype cross-reference
PhenoScanner at p < 5 × 10−8 to reduce other sources of
pleiotropy and the risk of selection bias (Kamat et al., 2019;
Schooling et al., 2020; Yang et al., 2021). Additional file 1:
Supplementary Table S3 shows the excluded instruments and
the corresponding pleiotropic effects.

Statistical Analysis
We assessed the instrument strength using the F statistic, whose
value less than 10 indicated a higher likelihood of weak
instrument bias (Bowden et al., 2016a). We used the
multiplicative random-effects inverse-variance weighted
method to estimate the association of genetically predicted
higher genus of gut microbiota on BE by pooling the Wald
estimator [i.e., the ratio between the SNP-outcome effect and
the SNP-exposure effect with its standard error being
approximated using the first-order weights (Bowden et al.,
2017)] of each SNP. We reported the heterogeneity of the
Wald estimator using the Cochrane Q statistics (Bowden et al.,
2017), with the potential directional pleiotropy indicated by
p<0.05 for MR-Egger intercept (Bowden et al., 2015).

We also conducted the sensitivity analysis using a
weighted median estimator (Bowden et al., 2016b), MR-
Egger (Bowden et al., 2015; Burgess and Thompson, 2017),
MR-PRESSO (Verbanck et al., 2018), and MR robust adjusted
profile score (MR-RAPS) (Zhao et al., 2020). Specifically, the
weighted median method allows for up to 50% of weights
from invalid instruments and produces a consistent causal
estimate (Bowden et al., 2016b). MR-Egger detects the
directional pleiotropy using the p value for the intercept
and provides causal estimates after adjusting for
pleiotropic effects with an additional assumption about the
instrument strength independent of the dependent effect

(i.e., InSIDE assumption) (Bowden et al., 2015; Burgess
and Thompson, 2017). The MR-PRESSO detects the
outlying instruments and provides consistent causal
estimates after removing possible outliers with an
additional assumption of no invalid instruments (Verbanck
et al., 2018). The MR-RAPS allows the inclusion of weak
instruments and the presence of systematic and idiosyncratic
pleiotropy and provides consistent causal estimates using an
adjusted profile likelihood estimator (Zhao et al., 2020).

Power Analysis
We approximated the variance of each genus of gut microbiota
explained by the included instruments using well-established
methods for continuous and binary exposures (Lee et al., 2012;
Yarmolinsky et al., 2018). We assessed the power of our MR
analyses using the online calculator mRnd (https://shiny.
cnsgenomics.com/mRnd/) (Brion et al., 2013). Additional file
1: Supplementary Table S1 presents the estimated variance of
each genus explained by the instruments. Additional file:
Supplementary Table S4 shows the power of the estimated
gut microbiota–BE associations.

All analyses were performed using R Version 3.6.2 (R Core
Team (2019). R: A language and environment for statistical
computing (R Foundation for Statistical Computing, Vienna,
Austria. https://www.R-project.org/), with the R package
“TwoSampleMR” (Hemani et al., 2018). We reported a two-
sided p value at the Bonferroni-corrected threshold of 0.05/22 = 0.
002, and the p value between 0.002 and 0.05 was considered
suggestive of causation. We adhere to STROBE-MR: Guidelines
for strengthening the reporting of observational studies in
epidemiological studies using Mendelian randomization for
reporting our results (Skrivankova et al., 2021).

Ethics Approval
This analysis of publicly available data does not require ethical
approval.

RESULTS

Up to 15 genetic instruments for Alistipes, 12 instruments for
Bacteroides, 13 instruments for Blautia, 12 instruments forDorea,
13 instruments for Faecalibacterium, 15 instruments for
Lachnoclostridium, 18 instruments for Roseburia, 14
instruments for Ruminococcus, 14 instruments for
Subdoligranulum, 9 instruments for Butyricicoccus, 20
instruments for Fusicatenibacter, 15 instruments for
Ruminiclostridium, 19 instruments for Eubacterium, 8
instruments for Actinomyces, 18 instruments for
Bifidobacterium, 14 instruments for Haemophilus, 12
instruments for Lactobacillus, 17 instruments for Peptococcus,
20 instruments for Prevotella, 18 instruments for Streptococcus,
and 11 instruments for Veillonella were used in this study, as
shown in Table 1. All instruments had F statistics (ranging from
17.0 to 88.4) greater than 10, implying a less likely weak
instrument bias. Two genetic instruments associated with
obesity (rs182549) and depression (rs17708276) were identified
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and excluded from the MR analysis (Additional file 1:
Supplementary Table S3).

Figure 1 shows the associations of genetically predicted genera
of gut microbiota with BE, with complete results presented in
Additional file 1: Supplementary Table S4. No genera of gut
microbiota–BE associations were observed after adjusting for
multiplicity. However, suggestive associations of genetically
predicted higher Alistipes with a lower BE risk and higher
Faecalibacterium with a higher BE risk were noted, with no
heterogeneity identified by the Cochran’s Q statistics test. The
MR-Egger intercept indicated no horizontal pleiotropy.

Furthermore, MR analyses had adequate power (i.e., 80%) to
detect a significant association of a genus with BE at α = 0.05 level,
given the true association exists. However, the corresponding
estimates from MR-Egger regression were not always consistent
with the main results, with wide confidence intervals and even
reversed causal directions.

Figure 2 shows the associations of genetically predicted genera
of gut microbiota dominated among individuals from European
ancestry with BE, with complete results presented in Additional
file 1: Supplementary Table S4. Genetically predicted higher
Ruminiclostridium was significantly associated with a lower BE

FIGURE 1 | Associations of genetically predicted genera of gut microbiota on Barrett’s esophagus using Mendelian randomization. IVW: inverse variance weighted
method with multiplicative random-effects; WM: weighted median estimator.

FIGURE 2 | Associations of genetically predicted genera of gut microbiota dominated among individuals of European ancestry on Barrett’s esophagus. IVW:
inverse variance weighted method with multiplicative random effects expect for Butyricicoccus using the fixed-effect inverse variance weighted method due to the
inclusion of two genetic instruments; WM: weighted median estimator.
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risk. The Cochran’s Q statistics test indicated no heterogeneity,
and the MR Egger intercept suggested no horizontal pleiotropy.
Similarly, higher Eubacterium was suggestively associated with a
lower BE risk, with no identified heterogeneity and horizontal
pleiotropy. Consistent results were also noted from sensitivity
analyses, although not reach the Bonferroni-corrected
significance.

Figure 3 shows the associations of genetically predicted
esophagus-specific genera of gut microbiota with BE, with
complete results presented in Additional file 1: Supplementary
Table S4. Genetically predicted higher Actinomyces was
significantly associated with lower BE risk, with no
heterogeneity and horizontal pleiotropy but adequate power.
In addition, higher Veillonella was suggestively associated with
lower BE risk, with no heterogeneity and horizontal pleiotropy.
Though sensitivity analyses yield similar results, none of them
reached the Bonferroni-corrected significance.

DISCUSSION

Principal Findings
This MR study, taking advantage of the largest publicly available
GWAS on gut microbiota and BE, was the first extensive analysis
investigating the potential roles of a broad range of the dominant
genera of human gut microbiota in BE. Our study found that
genetically predicted higher Actinomyces and higher
Ruminiclostridium appeared to protect against BE. Our study
also found that genetically predicted higher Alistipes, higher
Eubacterium, and higher Veillonella were suggestively

associated with lower BE risk, while higher Faecalibacterium
was associated with higher BE risk.

Comparison With Other Studies
In particular, there was no evidence supporting an association of
Streptococcus with BE in our study, in which Streptococcus was
thought to be the dominant BE-specific microbiota (Yang et al.,
2009; Gall et al., 2015). This finding is inconsistent with that of
previous observational studies showing that higher Streptococcus
was positively associated with BE (Lopetuso et al., 2020).
However, the discrepancies between previous findings and our
study may be due to the chance finding caused by the small
sample size and the unmeasured confounding caused by other
factors, such as obesity and health status.

Our findings were consistent with those of previous studies
showing that higher Actinomyces and higher Veillonella were
inversely associated with BE (Elliott et al., 2017; Snider et al.,
2019; Zhou et al., 2020), although the Veillonella-BE association
became less evident after adjusting for multiplicity. However, our
findings did not show any association of Prevotella with BE risk,
which was inconsistent with previous observational studies
showing a possible association of Prevotella with BE/EAC
(Elliott et al., 2017; Snider et al., 2019; Lopetuso et al., 2020).
Such discrepancies may be the consequence of confounding bias
in observational studies arising from the diet, environmental
factors, or medication (Rothschild et al., 2018; Hills et al.,
2019), which were thought to shape the composition and
abundance of genera of gut microbiota in humans in real-
time, probably through mediations of metabolites and
inflammatory cytokines (e.g., IL-8) (Munch et al., 2019).

FIGURE 3 | Associations of genetically predicted esophagus-specific genera of gut microbiota on Barrett’s esophagus. IVW: inverse variance weighted method
with multiplicative random-effects; WM: weighted median estimator. Notably, the corresponding estimates fromMR-Egger regression for Actinomyces, Streptococcus,
and Veillonella were not showed herein due to the wide confidence intervals.
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Our findings also suggested that higher Alistipes appeared to
protect against BE, which was not reported in previous studies.
Nevertheless, from a biological perspective, higher Alistipes (i.e., a
recently discovered gram-negative and anaerobic genus of the
Bacteroidetes phylum in mostly healthy human GI tract) acts as a
potential pathogen, contributing to the beneficial
immunomodulation in cancer [e.g., colorectal cancer
(Moschen et al., 2016)]. Second, Alistipes has been reported to
modulate the tumor microenvironment and gut inflammation
(Parker et al., 2020), and thus might have a role in cancer
immunotherapy. For instance, manipulating the tumor
microenvironment by reducing tumor necrosis factor
produced myeloid cells using antibiotics appeared to decrease
the tumor eradication rate (Iida et al., 2013). Furthermore,
patients with non–small-cell lung cancer who responded to
nivolumab (a checkpoint inhibitor for PD-1) tended to have
an elevated Alistipes (Jin et al., 2019). Third, Alistipes-related
dysbiosis has already been implicated in several other diseases
(e.g., liver fibrosis (Rau et al., 2018), cardiovascular diseases (Zuo
et al., 2019), and mood disorder (Bangsgaard Bendtsen et al.,
2012)), possibly via inflammation.

In addition, our findings suggested that higher Faecalibacterium
[i.e., a gram-positive and anaerobic bacterium that is one of themost
abundant and critical commensal bacteria of human gut microbiota
in the intestine (Miquel et al., 2013; Bag et al., 2017)] appeared to
increase BE, possibly due to its role in boosting the immune system
(Miquel et al., 2013) and improving gut barrier function (Stenman
et al., 2016). Similar effects were also reported in Crohn’s disease
(Wright et al., 2015). Finally, our findings suggested that higher
Eubacterium (a gram-positive genus of the Eubacteriaceae family)
and higher Ruminiclostridium may also have roles in reducing BE
risk. However, further research studies using randomized controlled
trials remain required to verify such findings.

Limitations
Although MR provides less confounded estimates of the gut
microbiota–BE associations, limitations still exist. First, MR
estimates rest on stringent assumptions (e.g., the independence
and exclusion–restriction assumptions), which are always
untestable (Glymour et al., 2012). However, in this study, we
selected genetic instruments that strongly predicted gut
microbiota from the largest publicly available GWAS, with an
F statistic being greater than 10 to reduce the possibility of weak
instrument bias (Bowden et al., 2016a). Furthermore, we selected
valid genetic instruments at a “suggestive” threshold of p < 5 ×
10–6, instead of the traditional genome-wide significance (i.e., p <
5 × 10–8), which may induce weak instrument bias. However, the
sensitivity analyses, particularly MR-RAPS allowing the inclusion
of weak genetic instruments (Zhao et al., 2020), yielded consistent
results, indicating a less likely weak instrument bias. We excluded
instruments associated with any potential confounders of the gut
microbiota–BE associations and any known pleiotropic effects to
reduce the risk of violating the independence and
exclusion–restriction assumptions. We also conducted
Cochran’s Q statistic test to detect the potential heterogeneity
of the causal estimates and MR-Egger regression to examine the
possible pleiotropic effects. No heterogeneity and pleiotropy were

noted, as shown in Figures 1–3 and Additional file 1:
Supplementary Table S4.

Second, the effects of genetic instruments on gut microbiota
composition and abundance vary considerably across GWAS
studies, and seldom do replications across these studies be available
(Kurilshikov et al., 2017). As such, population-specific microbiota
compositions may exist, which may result in a broad uncertainty
and a lack of reproduction of our findings. However, the use of the
largest publicly available GWAS of MiBioGen and extensive sensitivity
analyses may reduce the risk of such issues. Furthermore, genetic
instruments typically explain a small variation in a specific genus of gut
microbiota, inducing underpowered MR estimates. However, our
power analysis shows adequate power (i.e., 80%) to detect a
positive association at theα=0.05 level, given the true association exists.

Third, we limited MR analyses to participants of mainly
European ancestry to reduce the risk of population
stratification. Thus, our findings may not extend to other
populations, although causations are always consistent across
populations (Lopez et al., 2019). In addition, summary statistics
obtained from GWAS on genera of gut microbiota had partially
overlapping sets of participants from UK Biobank, which may
bias our estimates with uncertain magnitudes and directions
(Burgess et al., 2016). However, such an impact seemed small
as MR-RAPS robust to the overlapping sample issue yielded
similar results (Zhao et al., 2020).

Fourth, canalization buffering genetic factors may also exist.
However, its impact on our estimates remains unknown. Fifth,
our causal estimates reflected the natural genetic variation in
lifelong exposure of genera of gut microbiota on BE, which might
be different from the effects of short-term interventions with
antibiotics.

Public Health Implications
Nevertheless, our findings provide genetic evidence for the
associations of several genera of human gut microbiota with
the risk of developing BE. Replication using different populations
when the large-scale GWAS becomes available remains valuable
to cross-validate our findings. Furthermore, manipulation of the
abundance of Actinomyces and Ruminiclostridiummay be helpful
in preventing BE. However, Actinomyces are opportunistic
pathogens in humans and may cause the infection of
actinomycosis (Kononen and Wade, 2015), which should be
considered. In addition, future research involving the
associations of gut microbiota and BE might prioritize these
four genera of gut microbiota (i.e., Alistipes, Eubacterium,
Veillonella, and Faecalibacterium).

CONCLUSION

Our MR study showed that higher Actinomyces and higher
Ruminiclostridium might have roles in preventing BE. Our
study also suggested the potential benefit of higher Alistipes,
Eubacterium, and Veillonella, and lower Faecalibacterium in
preventing BE. However, a better understanding of their
etiological roles in BE could provide additional insights and be
valuable to reduce the burden of BE and EAC worldwide.
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