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Since the outbreak of the COVID-19 pandemic, worldwide research efforts have focused
on using artificial intelligence (AI) technologies on various medical data of COVID-
19–positive patients in order to identify or classify various aspects of the disease, with
promising reported results. However, concerns have been raised over their generalizability,
given the heterogeneous factors in training datasets. This study aims to examine the
severity of this problem by evaluating deep learning (DL) classification models trained to
identify COVID-19–positive patients on 3D computed tomography (CT) datasets from
different countries. We collected one dataset at UT Southwestern (UTSW) and three
external datasets from different countries: CC-CCII Dataset (China), COVID-CTset (Iran),
and MosMedData (Russia). We divided the data into two classes: COVID-19–positive and
COVID-19–negative patients. We trained nine identical DL-based classification models by
using combinations of datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on a single dataset achieved accuracy/area under the receiver operating
characteristic curve (AUC) values of 0.87/0.826 (UTSW), 0.97/0.988 (CC-CCCI), and 0.86/
0.873 (COVID-CTset) when evaluated on their own dataset. The models trained on multiple
datasets and evaluated on a test set from one of the datasets used for training performed
better. However, the performance dropped close to an AUC of 0.5 (random guess) for all
models when evaluated on a different dataset outside of its training datasets. Including
MosMedData, which only contained positive labels, into the training datasets did not
necessarily help the performance of other datasets. Multiple factors likely contributed to
these results, such as patient demographics and differences in image acquisition or
reconstruction, causing a data shift among different study cohorts.
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INTRODUCTION

Since the outbreak of the 2019 coronavirus disease (COVID-19) in December 2019, the total
worldwide death count due to COVID-19 has exceeded a million (Pérez-Peña, 2020). COVID-19 can
affect multiple organ systems and cause fever, flu-like symptoms, cardiovascular damage, and
pulmonary injury. The most common manifestivation of COVID-19 upon initial presentation is
pneumonia. While some patients are asymptomatic or have mild symptoms, a small percentage of
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patients may develop severe acute respiratory distress syndrome
(ARDS) that requires intubation in the intensive care unit and is
associated with poor prognosis. The mortality rate is over 60%
once they progress to the severe illness stage (Guan et al., 2020).
Since chest CTs are performed for reasons other than pulmonary
symptoms as well, an automated tool that can opportunistically
screen chest CTs for the disease can potentially be used to identify
patients with COVID-19. First, it has been suggested that patients
with COVID-19 when identified in the early stage can be treated
to prevent progression to the later stage of the disease
(McCullough, et al., 2020a; McCullough, et al., 2020b; FLARE,
2020). Second, identification of asymptomatic patients in the
early stage using CT (Ali and Ghonimy, 2020) provides a time
window during which they can isolate themselves to prevent the
spread to others.

Several efforts around the world have been focused on the
identification or categorization of COVID-19–positive patients
according to their various types of medical data. As part of the
effort to understand and control this disease, large COVID-19
datasets of different formats have been curated and publicly
released around the world. One group of studies focuses on
using artificial intelligence (AI) technologies, in particular deep
learning (DL)–based models, to detect COVID-19 through chest
radiography and computed tomography (CT). These studies
found high accuracy rates ranging from 82 to 98% (Wang L.
et al., 2020; Sethy et al., 2020; Narin et al., 2021; Apostolopoulos
andMpesiana, 2020; Hemdan et al., 2020;Wang S. et al., 2020; Xu
et al., 2020; Ozturk et al., 2020; Shibly et al., 2020; Oh et al., 2020;
Jin et al., 2020). The high accuracy rates are promising and
encourage the use of this technology in the clinical setting.

However, the generalizability of these models to other clinical
settings around the world is not clear. The data usually found in
clinical practice are often incomplete and noisy, and they may
have high intra- and inter-study variability among different
environments. This scenario often makes it difficult from a
research perspective to develop algorithms and implement
them in the clinic. Due to various restrictions on sharing
patient data, many algorithms are developed with limited data
that are specific to a clinic or a region. However, differences in
several demographic factors, such as population distribution of
race, ethnicity, and geography, can greatly impact the overall
accuracy and performance of an algorithm in a different clinical
setting (Topol, 2020). In addition, different methods of data
collection by hospitals around the world may also impact an
algorithm’s performance. Because the boom of DL technologies
has happened only within the last several years, the number of
studies testing the robustness and performance of AI algorithms
across various clinical settings is extremely limited (Topol, 2020).
Therefore, there is very little knowledge about how well a model
will perform in a realistic clinical environment over time.

For example, Barish et al. (2021) demonstrated a particular
public model developed by Yan (2020) that predicted mortality
from COVID-19–positive patients—which performed well on an
internal dataset with an accuracy of 0.878—failed to accurately
predict the mortality on an external dataset, with an accuracy of
only around 0.5. Another similar negative study applied Yan
et al.’s model on an external dataset and drew similar conclusions

about the accuracy of its mortality prediction (Quanjel et al.,
2021). A systematic review of 107 studies with 145 prediction
models was conducted, and the studies reported that all models
had a high bias, due to nonrepresentative control datasets and
overly optimistic reported performance (Wynants et al., 2020),
which can additionally lead to unrealistic expectations among
clinicians, policy makers, and patients (Laghi, 2020). Bachtiger
et al. concluded that this boom of DL models for COVID-19
focused far too much on developing novel prediction models
without a comprehensive understanding of its practical
application and biases from the dataset (Bachtiger et al., 2020).
Others have similarly concluded that AI has yet to have any
impact on the prevailing pandemic and that extensive and
comprehensive gathering of diagnostic COVID-19–related data
will be essential to develop useful AI models (Naudé, 2020).

As part of the efforts to collect data, large datasets of 3D
computed tomography (CT) scans with COVID-19–related labels
have been publicly released. This provides an opportunity to
study the generalizability of DL algorithms developed using these
volumetric datasets. In this study, we collected and studied one
internal dataset collected at UT Southwestern (UTSW) and three
large external datasets from around the world: 1) China
Consortium of Chest CT Image Investigation (CC-CCII)
Dataset (China) (Zhang et al., 2020), 2) COVID-CTset (Iran)
(Rahimzadeh et al., 2021), and 3) MosMedData (Russia)
(Morozov et al., 2020). We trained DL-based classification
models on various combinations of datasets and evaluated the
model performance on the held-out test data from each of the
datasets.

METHODS

Data
We collected one internal dataset at UTSW and three large
datasets from around the world that are publicly available—1)
China Consortium of Chest CT Image Investigation (CC-CCII)
Dataset (China), 2) COVID-CTset (Iran), and 3) MosMedDat
(Russia)—which is summarized in Table 1. The UTSW dataset is
composed of three subsets of anonymized imaging data obtained
retrospectively. The study protocol was approved by the
institutional review board and the requirement for informed
consent was waived. The first subset includes patients who
tested positive for severe acute respiratory syndrome
coronavirus 2 on real-time polymerase chain reaction between
March and November 2020 and who had a chest CT scan
performed within the first 7 days of diagnosis. All chest CT
scans were obtained according to the standard clinical
care—common clinical indications were to assess the
worsening respiratory status and to rule out pulmonary
thromboembolism. Chest CT is not obtained as a first-line
modality to diagnose or screen for COVID-19 at UTSW. As
such, the collected dataset had a mixture of contrast-enhanced
CTs and non-contrast CTs. The second and third subsets include
patients who had a chest CT scan obtained as part of the standard
clinical care between March and May 2019, that is, the
pre–COVID-19 pandemic phase. The radiologic reports of
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these studies were screened by a cardiothoracic radiologist with
12 years of clinical experience. The reports were labeled as having
radiologic findings suggestive of infection or not. The
adjudication was based on the presence of radiologic patterns
usually associated with infection, including ground-glass
opacities, consolidation, and nodular pattern, if such findings
were described as fitting a differential diagnosis of infectious
process based on the impression by the primary interpreting
radiologists. These studies were consecutively selected to match
the sex and age distribution of the COVID-19–positive subset and
to represent two control groups with a balanced representation of
chest CT showing findings suggestive of the infection (118) and

findings not related to infection (118). The CC-CCII dataset was
obtained from six different hospitals: 1) Sun Yat-sen Memorial
Hospital and Third Affiliated Hospital of Sun Yat-sen University,
2) The first Affiliated Hospital of Anhui Medical University, 3)
West China Hospital, 4) Nanjing Renmin Hospital, 5) Yichang
Central People’s Hospital, and 6) Renmin Hospital of Wuhan
University. The COVID-CTset dataset was from the Negin
Medical Center, and the MosMedData dataset was from
municipal hospitals in Moscow, Russia.

For consistency in training and testing the models in our study,
we divided all the data into two classes: 1) COVID-19–positive and
2) COVID-19–negative patients. Note that MosMedData does not

TABLE 1 | Summary of data used in the study. These datasets include full volumetric CT scans of the patients.

Dataset Origin Description Available at:

Details #
Patients

# 3D
scans

Label

UTSW UT Southwestern Medical Center CT vendors: Phillips,
Toshiba, GE Medical
Systems

101 101 COVID-19 positive *See footnote1

Image resolution: 512
× 512

118 118 Infection (negative)

Pixel size range:
0.45 mm to 0.83 mm

118 118 Findings Unrelated to Infection
(negative)

Slice thickness range:
0.9–3 mm
Format: DICOM

China Consortium of
Chest CT Image
Investigation (CC-CCII)
Dataset

Sun Yat-sen Memorial Hospital
and Third Affiliated Hospital of Sun
Yat-sen University, Guangzhou,
China

CT vendor:
unreported

929 1544 COVID-19 positive http://ncov-ai.
big.ac.cn/
download

The First Affiliated Hospital of
Anhui Medical University, Anhui,
China

Image resolution:
mostly 512 × 512 (a
few were 128 × 128)

964 1556 Common Pneumonia
(negative)

West China Hospital, Sichuan,
China

Pixel size range:
unreported

849 1078 Normal Lung (negative)

Nanjing Renmin Hospital, Nanjing,
China

Slice thickness range:
1–5 mm

Yichang Central People’s
Hospital, Hubei, China
Renmin Hospital of Wuhan
University, Wuhan, China

COVID-CTset Negin Medical Center, Sari, Iran CT vendor: Siemens 95 281 COVID-19 positive https://github.
com/mr7495/
COVID-CTset

Image resolution: 512
× 512

282 1068 Normal lung (negative)

Pixel size range:
unreported
Slice thickness range:
unreported

MosMedData Municipal hospitals in Moscow,
Russia

CT vendor: Toshiba 254 254 CT-0—not consistent with
pneumonia (can include both
COVID-19 positive and
negative)

https://
mosmed.ai/

Image resolution: 512
× 512

684 684 CT-1—Mild (COVID-19
positive)

Pixel size range:
unreported Slice
thickness: 1 mm

125 125 CT-2—Moderate (COVID-19
positive)

45 45 CT-3—Severe (COVID-19
positive)

2 2 CT-4—Critical (COVID-19
positive)
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have conclusive negative–label patients, as CT-0 might contain both
positive and negative patients. Accordingly, we omitted the CT-0
category from this study. Most scans in this study had a matrix size
of 512 × 512 × n, where n is the variable number of slices. For the
small number of scans that had a reduced matrix size, the images
were linearly interpolated to match the 512 × 512 × n resolution.

Most of the data were available in Hounsfield units (HU) or
CT number (e.g. 0–4095). Some of the data in the CC-CCII
dataset were provided in relative intensity values (e.g., 0–255).
Because the data formatting varied across datasets, we performed
clipping and normalization operations. First, if the data were
displayed in HU, we clipped the minimum number to be −1,000
HU. For evaluation, the data were normalized from 0 to 1 prior to
evaluation by the DL model. For training, multiple normalization
methods were used as part of a data augmentation technique. The
complete data augmentation is further described in the section
Training and Data Augmentation. Figure 1 shows example CTs
of COVID-19–positive patients from each dataset.

For training, validating, and testing the model, the positive
labels of the UTSW dataset were randomly split into 73 train, 8
validation, and 20 test patients and scans (one 3D scan per patient).
The positive labels of the CC-CCII dataset were randomly split into
669 train, 74 validation, and 186 test patients, or 1,110 train, 122
validation, 312 test scans. The positive labels of the COVID-CTset
were randomly split into 68 train, 8 validation, and 19 test patients,
or 201 train, 23 validation, and 57 test scans. The positive labels of
MosMedData were randomly split into 616 train, 69 validation,
and 171 test patients and scans (one 3D scan per patient; CT-0
category was omitted).

For the negative labels, the UTSW dataset was randomly split
into 170 training, 18 validation, and 48 testing patients and scans
(one 3D scan per patient). The CC-CCII dataset was randomly
split into 1,305 train, 145 validation, and 363 test patients, or
1,891 train, 203 validation, and 540 test scans. The COVID-CTset
was randomly split into 259 train, 29 validation, and 72 test
patients, or 770 train, 84 validation, and 214 test scans.

Model Architecture
The model used in this study was a classification style
convolutional neural network (CNN) model (LeCun et al., 1989;

LeCun and Bengio, 1995; LeCun et al., 1998; LeCun et al., 1999),
with specifics shown in Figure 2. The input shape was set to 512 ×
512 × 128. There are five resolution levels of convolutions and four
downsampling operations prior to the flattening operation. The
downsampling size also varied each time and was set as (4,4,4),
(4,4,2), (4,4,2), and (2,2,2), respectively. This converts the data
shape from 512 × 512 × 128 to 4 × 4 × 4. At each resolution level, a
series of operations consisting of convolution, Rectified Linear Unit
activation (ReLU), Group Normalization (Wu and He, 2018), and
DropBlock (Ghiasi et al., 2018) is applied twice, consecutively. The
convolution kernel size varied at each resolution level: (3,3,3),
(5,5,5), (5,5,3), (5,5,3), and (3,3,3). The number of filters, indicated
by red numbers in Figure 2, at each convolution started at eight
and doubled after each downsampling operation. After these
operations, the feature data are flattened into a single vector of
length 8,192. Then, a series of operations consisting of fully
connected calculations, ReLU, Group Normalization, and
Dropout (Srivastava et al., 2014) follows. This is performed a
total of four times, calculating 1,024 features each time. Then, one
more full connection is applied to reduce the data into two outputs,
and a softmax operation is applied.

Training and Data Augmentation
In total, nine models were trained in this study using the training
and validation data outlined in Data and were split into two
categories: 1) single dataset training and 2) multiple dataset
training. We trained three models on a single dataset, one
each on the UTSW, CC-CCII, and the COVID-CTset datasets.
Nomodel was trained onMosMedData by itself, since this dataset
does not have any negative labels. For multiple dataset training,
we trained six models with different combinations of datasets: 1)
UTSW + CC-CCII, 2) UTSW + COVID-CTset, 3) CC-CCII +
COVID-CTset, 4) UTSW + CC-CCII + COVID-CTset, 5) CC-
CCII + COVID-CTset +MosMedData, and 6) UTSW+ CC-CCII
+ COVID-CTset + MosMedData.

Some additional operations were applied to format and
augment the CT data for model training. For CT data with
less than 128 slices, slices of zeros were padded onto the CT
slices until the total data volume had 128 slices. The number of
slices superior and inferior to the CT data was uniformly and

FIGURE 1 | Slice view of example CTs from each dataset. Red arrows show patchy ground-glass opacities with round morphology, which are typical findings in
COVID-19 pneumonia.
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randomly decided at each iteration. For data with more than 128
slices, a random continuous volume of 128 slices was selected.
The data were then normalized in one of two ways: 1) from 0 to 1,

or 2) from 0 to
max data( )

2n , where n is the smallest integer
possible while keeping 2n larger than the maximum value in the
CT volume. The normalization method was randomly chosen
with a 50% chance during each training iteration. An additional
step was applied to decide, at a 50% chance, whether this data
would be fed into the model for training or if additional data
augmentation would be applied. If yes to additional data
augmentation, then the function randomly flipped, transposed,
rotated, or scaled the data. For the flip augmentation, there was a
50% chance that it would individually apply a flip to each axis
(row, column, and slice). For the transpose augmentation, there
was a 50% chance that it would transpose the row and column of
the data (no transpose operation was ever applied using the slice
dimension). For the rotate augmentation, a random integer,
{0,1,2,3}, was generated and multiplied against 90° to
determine the rotation angle, then applied only on the row
and column dimensions. For the scale augmentation, there
was a 50% chance that a scaling factor was applied, and the
scale was a uniform random number from 0 to 1.

Each model was trained for a total of 2,50,000
iterations—which is about 1,029, 83, 544, and 406 epochs for
the UTSW, CC-CCII, COVID-CTSet, and MosMedData,
respectively—using the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 1 × 10−5. To prevent overfitting
on the training data, the accuracy was evaluated on the validation
data for every 500 iterations, and the instance of the model with
the highest validation accuracy was saved as the final model for
evaluation. The models were trained using NVIDIA V100 GPUs
with 24 GB of memory.

Evaluation
All nine of the trained models were evaluated on the test data of
each dataset. For volumes with less than 128 slices, zero padding
on the slices was evenly applied in the superior and inferior
directions, to keep the data centered. For volumes greater than
128 slices, a sliding window technique was applied across the

volume, and the model made multiple predictions. The number
of slices in a patch was 128, and the stride size was 32 slices. The
prediction with the highest COVID-19 probability was taken as
the model’s final prediction.

A threshold was selected based on maximizing the prediction
accuracy on the validation data and applied to the testing set. In
the cases where the “optimal” threshold was a trivial value (e.g.,
threshold � 0 for MosMedData, which only has positive
labels), we took the argmax of the output as the prediction
instead. The true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) were counted,
and a normalized confusion matrix was generated for each
dataset. Averaged confusion matrices were calculated with
and without MosMedData. An evenly weighted average was
chosen.

Receiver operating characteristic (ROC) curves were
calculated on the test data by varying the positive predictive
threshold from 0 to 1, at 0.01 intervals. The area under the curve
(AUC) was calculated to determine the overall performance of
each model on each dataset. We additionally used the Bayesian
approximate technique called Monte Carlo dropout (Gal and
Ghahramani, 2016) to additionally estimate the uncertainty on
the AUC. MosMedData was excluded from the ROC and AUC
analyses, since it was missing negative labels.

RESULTS

Each model took about 5 days on average to train on a GPU. For
nine models, this is equivalent to 45 GPU-days of training. Each
model prediction takes an average of 0.53 s, which makes it very
useful for near real-time applications.

The single dataset models’ predictive accuracy TP+TN
TP+TN+FP+FN( )

on the test dataset is displayed in Figure 3. Overall, eachmodel
performed best on the dataset that it was trained on, with an
accuracy as high as 0.97 for the CC-CCII model evaluated on the
CC-CCII data. The model that performed the worst on its own
dataset was COVID-CTset, with an accuracy of 0.86. The UTSW
model had an accuracy of 0.87 on its own dataset. Since the test
data were held out of the training and validation phase, it is a
strong indicator that the model did not overfit to its specific

FIGURE 2 | Schematic of deep learning architecture used in the study. Black numbers represent the feature shape of each layer prior to the flattening operation.
Red numbers represent the number of features at each layer.
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training data. However, the models performed much more poorly
when evaluated on a dataset they had not seen before, which
signifies that the model did not generalize well to the new dataset
type. The worst performance was the COVID-CTset model
evaluated on the UTSW dataset, which had an accuracy of
0.38. All three models had poor performance on the
MosMedData dataset.

Figure 4 shows the confusion matrices of the performance of
models trained on multiple datasets against the test data. The
multiple dataset model that had the best accuracy when evaluated
on the UTSW test set was the UTSW+CC-CCII model, with 0.93
accuracy. When evaluating the CC-CCII test set, the model with
the best accuracy of 0.96 was the UTSW+CC-CCII model. When
evaluating the COVID-CTset, the UTSW + COVID-CTset
performed best, with an accuracy of 0.94. The best multiple
dataset models outperformed their single dataset counterparts
with regards to accuracy. However, these models still had poor
accuracy when evaluated on a test dataset they have not seen
before. For example, the model trained with the UTSW and
COVID-CTset together had improved accuracies to 0.90 and 0.94
when evaluated on the test sets of the UTSW and COVID-CTset
datasets, respectively. However, when evaluated on the CC-CCII
dataset, the accuracy was 0.53. Including MosMedData in the
model training improved the total average performance but did
not improve the performance when evaluating models on the
individual UTSW, CC-CCII, and COVID-CTset datasets.

Figure 5 shows the ROC curves of the single dataset models.
The models, when evaluated on the same dataset that they were
trained on, showed good AUCs (mean ± standard deviation) of
0.826 ± 0.024 (UTSW), 0.988 ± 0.002 (CC-CCII), and 0.873 ±
0.012 (COVID-CTset). The models performed considerably
worse when evaluated on different datasets, with AUCs
ranging from 0.405 to 0.570, which is close to just random

guessing (i.e., AUC � 0.5). The ROC curves of the multiple
dataset models are shown in Figure 6. For each dataset—UTSW,
CC-CCII, and COVID-CTset—the best performing models were
the UTSW + COVID-CTset (AUC � 0.937 ± 0.018), the UTSW +
CC-CCII + COVID-CTset (AUC � 0.989 ± 0.002), and the
UTSW + COVID-CTset (AUC � 0.926 ± 0.010) models,
respectively. Since the test data were held entirely separate
from the model development process, and used only for
evaluation, this shows once again that the models did not
overfit their own training data. Similar to the single dataset
models, the multiple dataset models also performed poorly
when predicting on datasets they had never seen before, with
AUCs ranging from 0.380 to 0.540.

DISCUSSION

In this study, we demonstrate that our DL models can correctly
identify patients that are COVID-19–positive with high accuracy,
but only when the model was trained on the same datasets that it
was tested on. Otherwise, the performance is poor—close to
random guessing—which indicates that the model cannot
easily generalize to an entirely new dataset distribution that it
has never seen before for COVID-19 classification. Several data
augmentation techniques were applied during training to prevent
overfitting on the test set. In addition, the weights of the model
that performed the best on the validation data with regards to
accuracy were used as the final model. Dropout and DropBlock
regularization were added to further prevent the model from
overfitting.

We additionally observed that certain combined dataset
models performed best for particular datasets in detecting
patients who are positive for COVID-19. For example, we

FIGURE 3 |Confusionmatrices on the test data for each of the models trained on a single dataset. Each row represents the datasets that themodel was trained on,
and each column represents the datasets that the model was evaluated on. Note that MosMedData does not have any negative label data. The labeling threshold used
for eachmodel is indicated on the lower left of each confusionmatrix (t � #). The “Average” confusionmatrix is an equally weighted average among each dataset, while the
“Combined” confusion matrix is calculated from all samples from the datasets.
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found that the highest performing model in the dataset from the
UTSW dataset was obtained when the training step combined
UTSW and CC-CCII datasets. This may have occurred due to the
relatively low sample count in the UTSW dataset (73 positive, 170
negative patients for training); therefore, adding data samples
from COVID-CTset improved with DL-model’s AUC from 0.826
to 0.937 on the UTSW dataset. Overall, the best-performing
model for a particular dataset tended to be a multiple dataset
model that included that same dataset in the training. When used
properly, training on multiple datasets allows for having more
training examples for the model to improve its overall feature
extraction capabilities. There are many similarities between
images, such as the texture and edges, which the model can
learn from all the images. For example, it has been shown that
models that pretrain on ImageNet (millions of images) can
perform better on other classification tasks (Xie and
Richmond, 2018). However, adding more data from different
distributions into the training did not always monotonically
improve the model’s performance. For example, adding the
CC-CCII data for training did not improve the model

performance, with the AUC of 0.920 for the UTSW dataset.
Adding MosMedData into the training lowered the performance
of the model on the other three datasets. This is likely because the
original intent of MosMedData was to train a model to categorize
the severity of COVID-19 into five classes and, therefore, lacked
negative labels. Without definitive negative labels, our models
likely learned simply to identify the data source as MosMedData
and compromised some of their learning capacity and
performance to use the relevant imaging features for the
predictions. This does serve as an important lesson in data
collection: datasets from a particular healthcare center or
region should be fully representative of the task at hand to be
used in training. Simply collecting COVID-19–positive patients
from one source and negative patients from a different source is
likely to introduce an uncorrectable bias during training that led
to a poor model performance.

We did include some state-of-the-art modules in our model,
such as Group Normalization (Wu and He, 2018) and DropBlock
(Ghiasi et al., 2018), that allowed for a high performance similar
to other COVID-19 classification studies (Wang Z. et al., 2020;

FIGURE 4 | Confusion matrices on the test data for each of the models trained on multiple datasets. Each row represents the datasets that the model was trained
on, and each column represents the datasets that themodel was evaluated on. The labeling threshold used for eachmodel is indicated on the lower left of each confusion
matrix (t � #). The “Average” confusion matrix is an equally weighted average among each dataset, while the “Combined” confusion matrix is calculated from all samples
from the datasets.
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Ali et al., 2021; Song, 2021). Zech et al. investigated model
generalizability in CT scans and found a similar conclusion,
but a better one than a random guess on the unseen dataset
(Zech et al., 2018). The major difference between this study and
our study, where we only found a performance of around a
random guess on an unseen test dataset, is that we investigated
the generalizability of datasets across different countries around
the world. The other study by Zech investigated datasets only
from the United States, so it is likely that the differences in
protocol, standards, and demographics between the datasets are
much smaller than the dataset that we used. We intend to further
investigate these differences and their impact across both
intranation and internation datasets in a future study.

A potential source of bias may come from the discretization of
data. While CT is typically stored in a 12-bit format, having 4,096
levels of discretization, some of the data in the CC-CCII dataset
were stored in relative intensity values from 0 to 255. While we
were careful with our normalization and data augmentation
techniques, the more inherent coarseness in some of the data

may have affected the model’s generalizability between datasets.
When sharing or collecting datasets, it is of utmost importance to
disclose the data’s exact format, as these can add more variability
outside of the scanning protocol, quality, and demographics of a
particular institution or region.

Between the UTSW dataset, CC-CCII dataset, and the
COVID-CTset dataset, the CC-CCII dataset consistently
yielded models that had the highest accuracy and AUC when
evaluated on its own dataset. The exact reason for this is
unknown, but it may be possible that there was an implicit
bias within the dataset. For example, if one of the
participating hospitals had a very different distribution of
image quality, but also were a large provider of the data, then
the model may have learned to simply distinguish that hospital
specifically instead of the disease. However, the exact breakdown
of where each individual scan originated from is not available. We
will continue to investigate such cases and determine whether
there was some sort of bias that allowed the CC-CCII dataset to
yield models that gave high-accuracy values.

FIGURE 5 | ROC curves on the test data for the models trained on single datasets. Each row represents the datasets that the model was trained on, and each
column represents the datasets that the model was evaluated on. The error band and the error value in the reported AUC represent 1 standard deviation.
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FIGURE 6 | ROC curves on the test data for the models that trained on multiple datasets. Each row represents the datasets that the model was trained on, and
each column represents the datasets that the model was evaluated on. The error band and the error value in the reported AUC represent 1 standard deviation.
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In contrast, the COVID-CTset dataset consistently yielded
models that had the poorest performance. One potential reason is
possibly its lack of variability of data to train on. For example, the
UTSW dataset had COVID-19–negative scans that also included
infected patients and the CC-CCII dataset had COVID-
19–negative scans with common pneumonia. This may have
helped the model further distinguish the nuances between
COVID-19–positive and COVID-19–negative patients but with
other presenting diseases. We plan to further identify and
investigate these sources of biases in detail as part of a
future study.

Although this study did not fully explore the possible
techniques to improve robustness and prevent overfitting, it
may serve as a baseline for future model generalization studies
that use medical data for the clinical implementation of COVID-
19–related classification models. We will continue to explore the
limits of model generalization with respect to improving the
algorithm and to the intra- and inter-source data variability,
regarding the identification of COVID-19–positive patients by
their medical data. As a whole, the deep learning models achieved
a high performance on the unseen test set from the same
distribution that they were trained on, which indicates that we
did not have a typical overfitting problem with the training data.
The low performance on datasets that the models had never seen
before may actually be an indicator that the problem is not in the
approach to the initial algorithm development—the problemmay
be the transfer and deployment of the algorithm to a new clinical
setting. Creating a globally generalizable algorithm is a tall order,
when people around the world have vastly different
demographics and data collection protocols. With limited data
and learning time, these AI algorithms are bound to fail when
they encounter a unique data distribution they have never seen
before. These results underscore the limited versatility of AI
algorithms which may hamper the widespread adoption of AI
algorithms for automated diagnosis of radiology images. This is in
contrast to radiologists who in general can easily adapt to new
clinical practices quickly. Perhaps we need to recalibrate our
mindset with regard to the expectation for these AI
algorithms—we should expect that these AI algorithms will
always need to be fine-tuned to the local distribution when
implemented and deployed in a specific clinical setting, then
need to be retuned over time as distributions inevitably shift,
either through demographic shifts or through the advancement of
new treatment technologies. Transfer learning and continuous
learning techniques (Torrey and Shavlik, 2010) are active fields of
research and may become critical components to rapidly transfer,
deploy, and maintain an AI model into the clinic.

AI tools designed for automatic identification of diseases on
CT datasets, such as COVID-19, will only succeed if they can
prove their robustness against a wide array of patient populations,
scan protocols, and image quality. Notwithstanding, they hold the
promise of becoming a powerful resource for identifying diseases,
where time to detection is a critical variable. In the case of
COVID-19, it is well known that many cases are
asymptomatic, of which up to 54% will present abnormalities
on chest CT (Inui et al., 2020). Thus, COVID-19 can be
incidentally found on routine imaging. Timely identification of

incidental cases of COVID-19 on chest CT by AI tools could lead
to adequate prioritization of scans for reporting, resulting in
prompt initiation of disease tracking and control measures.
Moreover, the model architecture developed in this work can
also serve as a template for similar tools tailored for detecting
other clinical conditions.

The deep learning models were capable of identifying
COVID-19–positive patients when the testing data was in the
same dataset as the training data, whether the model was trained
on a single dataset or on multiple datasets. However, we found a
poor performance, close to random guessing, when models were
evaluated on datasets that they had never seen. This is likely due
to different factors, such as patient demographics, image
acquisition methods/protocols, or diagnostic methods,
causing a data shift between different countries’ data. This
lack of generalization for the identification of COVID-
19–positive patients may not necessarily mean that the
models were trained poorly, but rather the distribution of the
training data may be too different from the evaluation data.
Transfer learning and continuous learning may become
imperative tools for tuning and deploying a model in a new
clinical setting.
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