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Abstract
Background: Patient-based real-time quality control (PBRTQC) is a valuable tool for 
monitoring the performance of testing processes. We aimed to compare and optimize 
various PBRTQC procedures for serum sodium.
Methods: In a computer simulation, artificial errors were added to 680,000 real pa-
tients’ results. The characteristics of error detection of various algorithms—moving 
average, moving median, moving SD and moving proportion of normal results includ-
ing different control limits (CLs)—were assessed on their ability to detect critical er-
rors early.
Results: The moving average and moving median were sensitive to system error, and 
the moving SD tended to detect random error. P3SD (moving proportion of normal re-
sults, CLs based on mean and SD of proportion of normal results) demonstrated excel-
lent performance for both system error and random error. The increase of block sizes 
(N) leads to the delay of error detection and the decrease of false rejection, except for 
QC procedures with minimum and maximum as CLs. CLs calculation with “0.1% false 
alarm rate” had more effective performance than that set false alarm to zero (mini-
mum and maximum as CLs). The impact of truncation on QC performance depended 
on truncation limits, algorithms and the types of error. The significant improvement in 
QC performance due to truncation was only found in moving SD.
Conclusion: “P3SD,N = 50, without truncation” and “moving SD, N = 25, set 0.1% false 
alarm as CLs and set 1% outliers exclusion as truncation limits” were recommended 
as the optimized procedures for serum sodium to monitor system error and random 
error, respectively.
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moving average, moving median, moving proportion of normal results, moving standard 
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1  |  INTRODUC TION

Patient-based real-time quality control (PBRTQC) is a useful tool for 
monitoring analytic performance in clinical laboratories.1 It is also 
an important application of “big data” in laboratory quality man-
agement.2 Compared with traditional methods of internal quality 
control (QC), PBRTQC has several advantages: e.g., low cost, no 
matrix effect, continuous monitoring and pre-analytical monitor-
ing.1,3,4 The concept of moving average QC was first published by 
Hoffmann and Waid in 1965.5 Since then, benefiting from the de-
velopment of laboratory information systems, improved statistical 
methodology and increased awareness of the limitations of current 
QC,6–8 PBRTQC has attracted substantial attention and developed 
quickly.1,9,10 Recently, novel algorithms have been described, such 
as moving median,11 moving standard deviation (SD),4 moving av-
erage of delta12 and moving sum of outliers.4,13 Various parameters 
and charts9,14 have been developed to quantify their ability to detect 
error.

However, it was still a challenge for the majority of routine clin-
ical laboratories to implement PBRTQC because of the complexity 
of obtaining optimal PBRTQC settings.1,9,15 It was well known that 
the probability for “error” detection of traditional individualized QC 
should not be less than 90%. In fact, the “error” involved here refers 
to “critical error”.16 The critical error represents the minimum error 
that should be detected by a QC procedure,16 or else it will affect 
clinical practice. Similarly, the optimized PBRTQC procedures should 
also have the best ability to detect critical error. Nevertheless, rare 
articles have examined the relationship between critical error and 
the characteristics of error detection. Furthermore, novel algo-
rithms, such as a moving median11 and moving standard deviation,4 
have been shown to be superior for error detection under certain 
conditions. However, most of these algorithms have been studied in-
dependently by different research groups, scarcely any articles have 
compared them using the same database.

In the actual application, it seemed to be more feasible that 
PBRTQC start with several typical tests and then be extended to all 
tests. Serum sodium is probably the most suitable chemistry test for 
PBRTQC because of its small biological variation and high require-
ment for analytical performance.3,17 Therefore, we aimed to inves-
tigate and compare the characteristics of error detection of various 
algorithms, including their different definitions of control limits for 
serum sodium. Both system and random error were examined, and 
the relationships between critical error and characteristics of error 
detection were described in detail to optimize PBRTQC settings.

2  |  MATERIAL S AND METHODS

2.1  |  Patients’ data collection and errors simulation

A total of 680,000 results of serum sodium were anonymized 
and exported from the laboratory information system of the First 
Affiliated Hospital, College of Medicine, Zhejiang University, 

including inpatient, outpatient and physical examination population. 
All results were sorted by detection time and divided into 400 vir-
tual days with 1,700 measurements each. The last 200 days served 
as training dataset and the first 200 days as testing dataset. All op-
timization of the procedures was conducted on the training dataset, 
and all verifications of procedure performance were conducted on 
the testing dataset. The robust normalized spread (RNS)18 was cal-
culated on all unaltered patient measurements: RNS = interquartile 
range/median. RNS represents the dispersion degree of original 
data distribution.

Westgard JO et al. assessed the average of normal (AON) pa-
tient data algorithms to maximize run lengths for automatic process 
control.19 We used the similar method to simulate errors.19 The CVa 
(analytical CV), which represents analytical inherent precision, was 
defined as 1/3 of the allowable total error (TEa); 1/3TEa is the min-
imum requirement for analytical imprecision. The TEa of sodium, 
which was obtained from the specification in the Analytical Quality 
Specification for Routine Analytics in Clinical Chemistry (WS/T 
403–2012), was defined as 4%.20 The system error (SE) was simu-
lated as multiples of CVa (CVa = 1/3TEa) by changing the mean of 
patients’ data. The SE ranged from 0 to 4.0 CVa (0 ~ 4/3TEa), and 
both positive and negative errors were added. The random error 
(RE) was simulated as multiples of CVa by changing the SD of the 
patients’ data from 1.0 to 5.0 CVa. The artificial error for each day 
was introduced from the 201st result onwards and sustained for the 
remaining results.

2.2  |  Parameters of QC procedures

A whole QC procedure consists of four parts: algorithms, qual-
ity control limits (CLs), truncation limits (TLs) and block size (N). 
Table 1 lists the QC procedures investigated in this article.

For algorithms, the moving average (A),3 moving median (M),11 
moving SD (S)4 and the moving proportion of normal results (P)4,13 
were calculated as the QC data for different error conditions and 
block sizes.

Several defining methods of CLs were also investigated. There 
were two universal methods. The one was the minimum and max-
imum values (mm) observed after running a calculation algorithm 
on the dataset without extra SE or RE. So false alarms were set to 
zero for these procedures. The QC procedures for this method were 
expressed as Amm, Mmm, Smm and Pmm for moving average, moving 
median, moving SD and the moving proportion of normal results, 
respectively. For the other method, the 99.95th percentile of QC data 
without extra error was defined as the upper CLs and 0.05th as the 
lower CLs. So false alarms were set to 0.1%. They were expressed as 
A0.1%, M0.1%, S0.1% and P0.1%.

Another two defining methods of CLs were also investigated 
for the moving average method (A). One was determined by cal-
culating the reference change value (RCV) using the formula 
RCV =

√

2 × Z ×

�

CV2
a
+ CV2

i
 and CLs=mean±RCV, where Z=1.96 

for the 2SD change in a 2-tailed distribution17; CVa (analytical CV) 
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represents analytical inherent precision; CVi (intraindividual CV) 
denoted the biological variation within subjects.4,21 This was ex-
pressed as ARCV. The other one, which was related to block size (N), 
was CLs = mean ± 3.09SDp∕

√

N.19 SDp was the SD of patients’ data. 
This was expressed as A3.09.

The CLs for moving SD (S) were also defined with the following 

formula: CLs = SD ± 3
SD

C4

√

(1 − C2
4
). SD is the mean of the moving SD 

for an in-control period. C4 is an unbiased constant related to block 
size, which can be obtained from the “GAMMA” function in Microsoft 
Excel.4 This was expressed as SC4.

The CLs for the moving proportion of normal results (P) 
was also defined with the following formula: CLs  =  mean-

proportion  ±  3  ×  SDproportion.4 Here, the meanproportion is the average 
proportion of normal results. The SDproportion is the square root of 
the variation for the proportion of normal results. It was expressed 
as P3SD.

To minimize the influence of outlying values in the data, trunca-
tion was usually implemented for PBRTQC protocols. According to 
the conclusion by Bietenbeck et al.,18 we selected “Winsorization” 
method,18 which replaces outlying values with the corresponding 
lower or upper truncation limits that was exceeded. For example, if 
the truncation limits were 134 ~ 148 mmol/L, the results greater than 
148 mmol/L were replaced with 148 mmol/L instead of being elimi-
nated directly. Three types of truncation limits (TLs), T0, T1% and T5%, 
were investigated. T0 meant all the data were included to QC pro-
cedures, and no TLs for serum sodium. The TLs of T1% and T5% were 
based on the mean and SD of patients’ data (SDp). TLs of T1% was 
TLs = mean ± 3 × SDp, and that of T5% was TLs = mean ± 2 × SDp. 
T0, T1% and T5% were set to exclude the outer 0, 1 and 5% of all mea-
surements, respectively.

We investigated QC procedures using batch sizes of 25, 50, 75, 
100, 125 and 150 consecutive test results as the calculation method.

2.3  |  Performance of QC procedures

The number of patient samples necessary for error detection was 
counted after introducing extra error (NPed). Then median number 
of patient results affected before error detection (MNPed) for an 
increased analytical imprecision or bias was calculated. The MNPed 
reflected the median number of patient samples processed from the 
inception of an out-of-control error condition until it was detected. 
In addition, median number of patient samples between QC rejec-
tions when the process was in control (MNPfr) was calculated too. 
The MNPfr was the median number of patient samples between two 
false rejections. An ideal QC procedure was expected to detect error 
quickly and lead to rare false rejections. Thus, MNPed should be as 
small as possible, while MNPfr should be as large as possible. The in-
finite MNPeds (when the error was not detected) and MNPfrs (when 
false alarms were set to zero) were imputed with 1,650 (110% of the 
maximum value).18

2.4  |  Optimization of QC procedures

Power function graphs were generated to compare the QC proce-
dures by plotting errors (SE and RE in the form of multiples of CVa) 
on the x-axis and MNPed on the y-axis.

To optimize the QC procedure, those procedures with MNPfr 
<1,500, which would lead to a high false rejection rate and increase 
QC cost, were excluded. As a false rejection is considered as a de-
fective incident, the defective incidents per million was about 667, 
corresponding to a 4.75 Sigma for MNPfr = 1,500.22

The ability of a QC procedure to detect critical SE and RE got 
particular attention. The critical system error (SEc) was calcu-
lated as follows: SEc =  (TEa-bias)/CVa-1.65. In this formula, 1.65 is 
a z-value that sets the maximum defect rate at 5% (i.e., when the 
mean of patient test results has shifted by an amount that causes 
5% of individual patient test results to have errors exceeding the 
total error requirement, the run will be considered unstable).19 The 
critical random error (REc) was calculated as follows: REc =  (TE a–
bias)/1.65CVa. As all the results were exported from a stable system, 
bias was deemed to be zero.

An accumulative MNPed (∑MNPed) which was the sum of MNPeds 
for error greater than or equal to critical error was calculated to evalu-
ate the overall performance of QC procedure. The QC procedure (one 
with a minimum ∑MNPed) was selected as the optimal strategy.

All the data simulations and statistics were performed with 
Microsoft®Office Excel 2019 and its extended functions. The gen-
eral flowchart for data simulation and QC procedure optimization is 
shown in Figure 1.

This study was approved by the Ethics Committee of the First 
Affiliated Hospital, College of Medicine, Zhejiang University.

3  |  RESULTS

3.1  |  Data distribution

As listed in Table 2, serum sodium was nearly normally distributed 
with low skewness (−0.84 for training set and −0.65 for testing set) 
and had low RNSs (0.021 for training and 0.014 for testing set). The 
change of mean from training to testing set, which was the differ-
ence of means between training and testing set in relation to the 
mean of the training set, was −0.26%.

3.2  |  Performance of QC procedures

A3.09 and SC4 were excluded because their false rejection rate was 
too high (MNPfr <1,500). Besides them, P3SD,N = 25,T0 and 1% (both 
MNPfr = 1137) were also ruled out for the same reason. Then the re-
maining rules were further assessed. The ability to detect SE and RE, 
which was quantified with MNPed for QC procedures under various 
block sizes and truncations, is shown in Table S1 and S2, respectively.
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The moving average and moving median were sensitive to SE, 
and the moving SD tended to detect RE. Unexpectedly, P3SD demon-
strated excellent performance for both SE and RE. Figure 2 shows 

the ability to detect SE, which was quantified with MNPed for QC 
procedures under the same block size and optimized TLs. It was 
demonstrated that the procedures were more capable of detecting 

F I G U R E  1 Flowchart for data 
simulation and QC procedure 
optimization. Serum sodium results 
of patients were exported from the 
laboratory information system and 
sorted by time. All the results were 
divided into 400 virtual days with 
1,700 measurements each. The last 
200 days served as training dataset to 
optimize QC procedures and the first 
200 days as testing dataset to verify 
conclusions. Systematic error was 
simulated by changing mean of patients’ 
data, and random error was simulated 
by changing SD. Various QC procedures 
which consist of algorithms, truncation 
limits, control limits and block size were 
assessed with two basic parameters 
(MNPfr and MNPed) and one advanced 
parameter (∑MNPed). The ability 
of a QC procedure to detect critical 
errors got particular attention. The QC 
procedure with minimum ∑MNPed and 
MNPfr≥1,500 was the optimized QC 
procedure

TA B L E  2 Statistical properties for serum sodium in the training and testing datasets

Datasets Mean SD Median Max Min Skew Kurtosis IQR RNS

Training 141.29 2.27 141 178 110 −0.84 6.36 3 0.021

Testing 140.92 2.25 141 185 108 −0.65 6.36 2 0.014

All 141.10 2.27 141 185 108 −0.74 6.24 3 0.021

Note: Unit: mmol/L.
Abbreviations: IQR, interquartile range; RNS, robust normalized spread; SD, standard deviation.
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negative SE than positive SE. This was due to a low negative skew-
ness in original sodium distribution. P3SD was clearly superior to the 
others in SE detection. As a whole, the A0.1%, M0.1% and P0.1% were 
more competent to detect SE than Amm, Mmm and Pmm, but the dif-
ference in QC performance among these three procedures (A0.1%, 
M0.1% and P0.1%) was unobvious and variable. Figure  3  shows the 
ability to detect RE with the same block size and optimized TLs. On 

the whole, the ability to detect the RE of P3SD, S0.1%, Smm, P0.1% and 
Pmm decreased in the sequence.

The influence of block size on QC performance was somewhat 
complex (Figure 4). The main trend was that both MNPed and MNPfr 
decreased with smaller block sizes. A reduction in block size led to 
quicker error detection, but it also led to a higher rate of false re-
jection. The typical cases were A0.1%, ARCV, P0.1% and P3SD for SE, 

F I G U R E  2 Median number of patients affected until error was detected (MNPed) as a function of induced systematic error magnitude. 
The MNPed of quality control procedures for systematic error (SE) are shown in Figure 2A–F. The first capital letter is the quality control 
algorithm and the subscripts denote quality control limits (CLs). A0.1% is the moving average with 0.1% false rejection rate as CLs. Amm is the 
moving average with CLs based on minimum and maximum control data without extra error. ARCV is the moving average with CLs based on 
reference change values. M0.1% is the moving median with 0.1% false rejection rate as CLs. Mmm is the moving median with CLs based on 
minimum and maximum control data without extra error. P0.1% is the moving proportion of normal results with 0.1% false rejection rate as 
CLs. Pmm is the moving proportion of normal results with CLs based on minimum and maximum control data without extra error. P3SD is the 
moving proportion of normal results with CLs = meanproportion ± 3 × SDproportion. T0, T1% and T5% were the truncation limits which were set to 
exclude the outer 0, 1 and 5% of all results, respectively. The procedures had the same performance for different truncations were marked 
with dotted lines. MNPed: the median number of patient samples processed from the start of an out-of-control error condition until it was 
detected. CVa (the analytical CV) represents analytical inherent precision. SE: system error. The critical SE was 1.35 CVa. The MNPed for 
critical SE was marked with red arrows (↑). Figure 2 shows that the procedures were more capable of detecting negative SE than positive SE. 
P3SD was clearly superior to the others in SE detection. As a whole, the A0.1%, M0.1% and P0.1% were more competent to detect SE than Amm, 
Mmm and Pmm, but the difference among themselves was unobvious and variable
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and S0.1% and P3SD for RE. As a result, the performance curves of 
A0.1% for SE and S0.1% for RE descended with the decrease of block 
size in Figure 4. However, there were exceptions for procedures with 
minimum and maximum as CLs. Some QC procedures with a small 
block size, such as Amm(N = 25), Pmm(N = 25) were not sensitive to 
error<2.0 CVa. Nevertheless, their performance improved rapidly as 
the error increased. Compared with QC procedures with block sizes 
(N ≥ 50), procedures with N = 25 detected a small error (<2.0 CVa) 
more slowly, but detected a large error (≥2.0 CVa) more quickly. That 

is why the performance curves of Amm,N = 25 for SE and Smm,N = 25 
for RE intersected with that of N = 75 and 125 in Figure 4.

The impact of truncation on QC performance depended on TLs, 
QC algorithms and the types of error (Figure 5). Truncation didn't 
improve the QC performance of moving average and moving median 
which were sensitive to SE, but resulted in a slight increase of MNPed. 
Figure 2 which lists the optimized truncation limits for various pro-
cedures shows that T0 was the optimal TLs for most procedures of 
these two algorithms. In contrast, the proper TLs can significantly 

F I G U R E  3 Median number of patients affected until error was detected (MNPed) as a function of induced random error 
magnitude. The MNPed of quality control procedures for random error (RE) are shown in Figure 3A–F. The first capital letter is the 
quality control algorithm and the subscripts denote quality control limits (CLs). P3SD is the moving proportion of normal results with 
CLs = meanproportion ± 3 × SDproportion. P0.1% is the moving proportion of normal results with 0.1% false rejection rate as CLs. Pmm is the 
moving proportion of normal results with CLs based on minimum and maximum control data without extra error. S0.1% is the moving SD with 
0.1% false rejection rate as CLs. Smm is the moving SD with CLs based on minimum and maximum control data without extra error. T0, T1% 
and T5% were the truncation limits which were set to exclude the outer 0, 1 and 5% of all results, respectively. The procedures had the same 
performance for different truncations were marked with dotted lines. MNPed: the median number of patient samples processed from the 
start of an out-of-control error condition until it was detected. CVa (the analytical CV) represents analytical inherent precision. RE: random 
error. The critical RE was 1.82 CVa. The MNPed for critical RE was marked with red arrows (↑). Figure 3 shows that the ability to detect the 
RE of P3SD, S0.1%, Smm, P0.1% and Pmm decreased in the sequence
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improve the QC performance of moving SD. Smm and S0.1% with 
T1% and T5% had much better performance than that without trunca-
tion (Figure 5). T1% was slight superior to T5%. Figure 3 which lists the 
optimized TLs for each procedure also shows that T1% was the op-
timal TLs for most moving SD procedures. The effect of truncation 
on the moving proportion of normal results depended on the TLs. 
If the TLs were wider than reference range, it had no impact on QC 
performance. If the TLs were within the reference range, its impact 
was fatal. For example, the TLs of T1% was 134.49 ~ 148.07 mmol/L, 
and the reference range was 137 ~ 147 mmol/L. There was no dif-
ference in MNPeds between moving proportion of normal results 

with T0 and T1% (Figures 2 and 3). Conversely, the upper truncation 
limit of T5% was 145.72 mmol/L which was lower than upper limit 
of reference range (147 mmol/L). Compared with no truncation, the 
ability of Pmm, P0.1% and P3SD with T5% to detect RE and positive SE 
decreased sharply or even lost, such as P3SD,N = 25,T5% in Figure 2A.

3.3  |  Optimized QC procedures

The critical system error (SEc) was 1.35 CVa for serum sodium. 
P3SD,N=50,T0&1% detected SEc the fastest (MNPed  =  258 tests 

F I G U R E  4 Influence of block sizes on QC performance. A0.1% is the moving average with 0.1% false rejection rate as CLs. Amm is the 
moving average with CLs based on minimum and maximum control data without extra error. S0.1% is the moving SD with 0.1% false rejection 
rate as CLs. Smm is the moving SD with CLs based on minimum and maximum control data without extra error. MNPed: the median number 
of patient samples processed from the start of an out-of-control error condition until it was detected. CVa (the analytical CV) represents 
analytical inherent precision. A0.1% and S0.1% were marked with dotted lines. Amm and Smm were marked with solid lines. (A) shows the 
performance of A0.1% and Amm (without truncation) for system error (SE). (B) shows the performance of S0.1% and Smm (set 5% outliers’ 
exclusion as truncation limits) for random error (RE). The main trend was that both MNPed and MNPfr decreased with smaller block sizes. As 
a result, the performance curves of A0.1% and S0.1% descended with the decrease of block size in Figure 4. However, there were exceptions 
for procedures with minimum and maximum as CLs. Compared with N = 75 and 125, procedures with N = 25 detected a small error 
(<2.0CVa) more slowly, but detected a large error (≥2.0CVa) more quickly. That is why the performance curves of Amm,N = 25 and Smm,N = 25 
intersected with that of N = 75 and 125 in Figure 4
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for positive SEc and 33.5 tests for negative SEc). As T0 and T1% of 
P3SD,N = 50 had the same performance, T0 which was more conveni-
ent was selected. The selection of T0, T1% and T5% for the other pro-
cedures followed the same way. The best 10 QC procedures for SE 
based on ∑MNPed were as follows: P3SD,N = 50,T0,∑MNPed = 716; 
P3SD,N = 75,T0,∑MNPed = 924; P3SD,N = 100,T0, ∑MNPed = 1,315.5; 
P3SD,N = 125,T0,∑MNPed = 1,519; P3SD,N = 150,T0,∑MNPed = 1,586; 
A0.1%,N=25,T0,∑MNPed = 2,412; A0.1%,N = 25,T1%,∑MNPed = 2,46
0 .5; M0.1%,N=50,T0, ∑MNPed = 2,707.5; A0.1%,N = 25,T5%,∑MNPed 
= 2,767; A0.1%,N = 50,T0,∑MNPed = 3,861.

Similarly, the critical random error (REc) was 1.82CVa. 
S0.1%,N  =  25,T1% detected REc the fastest (MNPed  =  24 tests). 
The best 10 QC procedures for RE were as follows: S0.1%,N 
=  25,T1%,∑MNPed  =  107.5; P3SD,N  =  50,T0,∑MNPed  =  114.5; 

S0.1%,N = 25,T5%, ∑MNPed = 116.5; P3SD,N = 25,T5%,∑MNPed = 132; 
P3SD,N = 75,T0,∑MNPed = 152.5; Smm,N = 25,T1%,∑MNPed = 169; 
S0.1%,N = 50,T1%,∑MNPed = 171; S0.1%,N=50,T5%, ∑MNPed = 191; 
P3SD,N = 100,T0,∑MNPed = 191; P3SD,N = 50,T5%,∑MNPed = 194.5; 
P3SD, N = 125,T0,∑MNPed = 229.5.

In all, P3SD,N = 50,T0 and S0.1%,N = 25,T1% were the optimized 
QC procedures for serum sodium, and their detailed parameters and 
performance are listed in Table 3.

3.4  |  The stability of the QC performance

To evaluate the stability of the PBRTQC performance over time, 
MNPeds from the training and the test datasets with the same 

F I G U R E  5 Influence of truncation limits on QC performance. S0.1% is the moving SD with 0.1% false rejection rate as CLs. Smm is the 
moving SD with CLs based on minimum and maximum control data without extra error. MNPed: the median number of patient samples 
processed from the start of an out-of-control error condition until it was detected. CVa (the analytical CV) represents analytical inherent 
precision. T0, T1% and T5% were set to exclude the outer 0, 1 and 5% of all results, respectively. The procedures without truncation (T0) 
were marked with solid lines, and those with truncations (T1% and T5%) were marked with dotted lines. The proper truncation limits can 
significantly improve the QC performance of moving SD. Smm and S0.1% with T1% and T5% had much better performance than that without 
truncation (See Figure 5). T1% was slight superior to T5%

TA B L E  3 Parameters of the optimized procedures for serum sodium

Procedures P3SD,N = 50,T0 S0.1%,N = 25,T1%

Main function Monitor system error Monitor random error

Truncation limits None 134.49 ~ 148.07 mmol/L

Algorithms Moving proportion of normal results Moving standard deviation

Block size 50 tests 25 tests

Control limits 88.92% ~ 100% 0.9601 ~ 3.4546 mmol/L

MNPfr 1,650 tests 1,650 tests

MNPed for critical error 33.5 tests for negative Sec
258 tests for positive SEc

24 tests for REc

∑MNPed 716 tests 107.5 tests

Note: MNPfr: the median number of patient samples between two false rejections. MNPed: the median number of patient samples processed from 
the start of an out-of-control error condition until it was detected. ∑MNPed: the sum of MNPeds for error greater than or equal to critical error. SEc: 
critical system error. REc: critical random error.
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method and error were compared. Table 4 shows the SE detection 
performance of QC procedures in the training and test dataset. 
MNPeds were basically close, except for MNPeds for SE = 1.35CVa. 
Table 5 shows that these candidate QC procedures had highly con-
sistent RE detection performance in the training and test dataset.

4  |  DISCUSSION

The characteristics of the error detection of various algorithms were 
analyzed and compared. The moving average and moving median 
were sensitive to SE, and the moving SD tended to detect RE. P3SD 
demonstrated excellent performance for both SE and RE. Overall, 
the A0.1%, M0.1% and P0.1% were more competent to detect SE than 
Amm, Mmm and Pmm, but the difference among themselves was unob-
vious and variable. In general, CLs calculation with “0.1% false alarm 
rate” had more effective performance than that set false alarm to 
zero (minimum and maximum as CLs). The ability to detect the RE of 
P3SD, S0.1%, Smm, P0.1% and Pmm decreased in the sequence. For serum 
sodium, P3SD,N = 50,T0 and S0.1%,N = 25,T1% were the optimized QC 
procedures for SE and RE, respectively.

A3.09 and SC4 were excluded for high false rejection in our re-
search. In the previous reports,4,19 they showed acceptable, even 
satisfactory performance. That is because they assessed QC 

performance with simulated patients’ data, instead of real patients’ 
data. The simulated patients’ data usually have a perfect Gaussian 
distribution, while the real measurements probably do not follow it.

Both MNPed and MNPfr increased with the enlargement of 
block sizes, except for procedures with minimum and maximum as 
CLs. It was understandable. For example, there was a sample with 
110 mmol/L sodium, and it was incorporated to calculate QC data. 
Owing to this outlier, the average of 25 tests would obviously de-
crease while the average of 150 tests would just change slightly. Only 
after incorporating more such outliers did the QC data for N = 150 
begin to apparently decrease. Thus, the main trend was that both 
MNPed and MNPfr increased with larger block sizes. Additionally, 
the smaller the block size, the larger the fluctuations in the QC data 
were. For procedures with small block sizes (such as N  =  25), the 
CLs derived from minimum and maximum values were wide and not 
sensitive to small errors.

The impact of truncation on QC performance depended on TLs, 
QC algorithms and the types of error. The significant improvement in 
QC performance due to truncation was only found in moving SD. So 
only moving SD was recommended to set proper truncation limits.

There are well-known significant differences between tradi-
tional QC and patient-based QC, and the limitations of traditional 
commercial QC have been increasingly recognized. The 4th edition of 
the Clinical and Laboratory Standards Institute (CLSI) C24 document 

TA B L E  4 Difference of system error detection between the training and testing datasets

Procedures −4 −3.5 −3 −2.5 −2 −1.35 1.35 2 2.5 3 3.5 4

P3SD,N = 50 6 6 7 9 15 34 258 46 20 11 7 6

5 6 6 8 13.5 27 598 64 22 11 7 6

P3SD,N = 75 7 7 9 12 20 42 334 64 24 14 9 8

7 7 8 11 17 34 791 77 30 15 10 8

P3SD,N = 100 9 9 11 15 24 54 496 80 30 17 11 10

8 9 10 13 20 43 975 96 37 18 11 9

P3SD,N = 125 10 11 13 18 29 64 566 96 37 21 14 12

10 11 12 16 25 51 1189 114 42 22 14 11

P3SD,N = 150 12 13 15 21 34 72 571 112 42 25 16 13

11 12 14 18 30 59 1650 136 49 25 17 13

A0.1%,N = 50 26 29 34 41 50 731 527 54 41 35 30 26

25 28 32 39 48 369 1650 84 44 36 31 27

M0.1%,N = 50 24 25 27 32 43 436 749 71 36 29 27 26

24 24 26 30 41 149 1650 121 39 31 28 26

Amm,N = 50 31 35 41 48 436 1650 1650 273 48 40 34 30

30 34 39 46 234 1650 1650 640 50 42 35 31

Mmm,N = 50 26 27 32 44 436 1650 1650 762 74 37 30 28

26 27 31 41 151 1650 1650 1650 121 39 31 28

Note: A0.1% is the moving average with 0.1% false rejection rate as CLs. Amm is the moving average with CLs based on minimum and maximum control 
data without extra error. M0.1% is the moving median with 0.1% false rejection rate as CLs. Mmm is the moving median with CLs based on minimum 
and maximum control data without extra error. P3SD is the moving proportion of normal results with CLs = meanproportion ± 3 × SDproportion. All the 
procedures in the table had no truncation and had the same MNPfrs (1,650 tests). The MNPeds for various system errors (from 1.35CVa to 4.0CVa) 
are listed in the table. The rows marked gray were results from training dataset, and the others were from testing set. MNPeds were basically close, 
except for MNPeds for SE = 1.35CVa.
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recommends laboratories introduce additional QC performance 
metrics that are more directly related to patient risk.23 In other 
words, the traditional performance metrics (probabilities for error 
detection and false rejection) are not suitable for risk management. 
Even more important, the C24 document has proposed that the fre-
quency of QC events and their relationship to patient risk should 
be the focus of QC practices.23 PBRTQC may be an effective way 
to solve these problems, due to its ability for real-time monitoring 
and focus directly on patients’ results. Additionally, the TEa based 
on desirable biological variation is usually demanding for serum cal-
cium, chloride, sodium and albumin.3,24 The biological variation of 
these tests is smaller, so their TEa is stricter. As a result, the sigma 
metrics are so low that even multiple rules cannot achieve satis-
factory performance. In contrast, the smaller the biological varia-
tion is, the more powerful the error detection ability of PBRTQC is. 
So, the tests with smaller biological variation are more suitable for 
PBRTQC, and they just need PBRTQC to make up for the inability of 
traditional QC to detect error. That is also why we selected sodium 
for our research. Nevertheless, PBRTQC is certainly complex and 

unpredictable compared with traditional QC. In all, these different 
characteristics between traditional and PBRTQC offer an opportu-
nity to strengthen QC plans by combining them, rather than using 
one method in place of another.

To be specific, Figure 6  shows the proposed flowchart for the 
serum sodium of PBRTQC in routine clinical chemistry. Laboratory 
should set parameters of QC procedures firstly. The traditional in-
dividualized QC was designed based on sigma metrics of analytical 
performance.16 When setting parameters of PBRTQC, enough pa-
tient outcomes should be collected from a stable analytical system, 
one month at least. Then exclude outliers according to TLs, if it was 
needed. After that, define suitable CLs according to the optimized 
procedures. After proper parameters setting, the whole protocols 
will be performed in routine work. Traditional QC, which was usually 
performed at the initial phase of analysis, was applied as a confirma-
tory tool. If the traditional QC was in control, the analytical system 
started to measure patients’ samples. As measurement results were 
produced, PBRTQC was initiated. PBRTQC was considered as an 
alarm tool for monitoring performance in real time. In part, PBRTQC 

TA B L E  5 Difference of random error detection between the training and testing datasets

Procedures MNPfr 1.82 2 2.5 3 3.5 4 4.5 5

S0.1%,N = 25,T5% 1650 22 19 16 14 12 12 11 11

1650 22 19 17 14 13 12 11 11

S0.1%,N = 25,T1% 1650 24 20 15 12 10 10 9 8

1650 25 21 16 12 11 9 9 8

P3SD,N = 50,T1% 1650 27 23 16 12 10 10 9 8

1650 27 22 16 13 10 9 9 8

P3SD,N = 50,T0 1650 27 23 16 12 10 10 9 8

1650 27 22 16 13 10 9 9 8

P3SD,N = 75,T0 1650 36 31 21 17 14 13 11 10

1650 36 29 21 16 13 12 11 10

S0.1%,N = 50,T1% 1650 38 33 24 19 16 15 14 13

1650 39 33 24 19 16 15 14 13

P3SD,N = 100,T0 1650 46 39 26 21 17 16 14 13

1650 46 37 25 20 16 15 14 12

P3SD,N = 125,T0 1650 56 47 32 25 20 18 16 16

1650 52 45 30 23 19 18 16 15

Smm,N = 25,T1% 1650 50 32 21 17 13 13 12 11

1650 53 33 21 17 14 13 12 11

Smm,N = 50,T1% 1650 55 44 32 25 22 19 18 17

1650 55 43 33 25 22 20 18 17

P3SD,N = 150,T0 1650 64 55 36 28 24 21 19 18

1650 61 53 36 27 23 21 19 18

Smm,N = 25,T5% 1650 140 76 29 23 20 19 18 17

1650 133 69 30 23 21 19 18 17

Note: P3SD is the moving proportion of normal results with CLs = meanproportion ± 3 × SDproportion. S0.1% is the moving SD with 0.1% false rejection 
rate as CLs. Smm is the moving SD with CLs based on minimum and maximum control data without extra error. T0, T1% and T5% were set to exclude 
the outer 0, 1 and 5% of all results, respectively. All the procedures in the table had the same MNPfrs (1650 tests). The MNPeds for various random 
errors (from 1.82 CVa to 5.0 CVa) are listed in the table. The rows marked gray were results from training dataset, and the others were from testing 
set. These candidate QC procedures had highly consistent random error detection performance in the training and test dataset.
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also decided when to perform traditional QC again. The combination 
of P3SD,N = 50,T0 and S0.1%,N = 25,T1% were recommended as the op-
timized PBRTQC for serum sodium. The detailed parameters of them 
are listed in Table 3. In practice, a new patient's result corresponds 
to a new QC data. The large block size wouldn't delay the startup of 
PBRTQC. Take N = 150 as an example, the first result of today can 
be combined with 149 last results of yesterday to calculate a new QC 
data. If PBRTQC was out of control, further measures were needed 
to confirm the analytical status, such as additional commercial QC or 
retesting retained samples.

We investigated and compared the characteristics of the error 
detection of various algorithms (i.e., moving average, moving 

median, moving SD and moving proportion of normal results), in-
cluding a variety of definition methods of CLs, simultaneously. For 
routine laboratories, the QC procedures investigated in this paper 
is common and easy to implement. In addition, both SE and RE were 
investigated in this study. Second, the optimized QC procedure 
was based on the critical error instead of percentage of TEa. The 
critical error, which was decided by the TEa and analytical perfor-
mance, was closely related to Sigma metrics of analytical system 
(SEc = Sigma metrics −1.65). The critical error was initially applied in 
the designation of traditional QC procedures.16 Similarly, it should 
be of concern in PBRTQC too. Thus, it is scientifically reasonable 
to optimize QC procedures according to their capacity to detect 

F I G U R E  6 Proposed flowchart for the serum sodium of patient-based real-time quality control (PBRTQC) charts. P3SD,N = 50,T0 is the 
moving proportion of normal results with CLs = meanproportion ± 3 × SDproportion, without truncation. S0.1%,N = 25,T1% is the moving SD with 
0.1% false rejection rate as CLs and 1% outliers exclusion as truncation limits. SE: system error. RE: random error. CLs: control limits. The 
traditional individualized QC was designed based on sigma metrics of analytical performance. Enough patient outcomes were collected from 
a stable analytical system to set PBRTQC parameters. Then outliers were excluded according to truncation limits, if it was needed. After 
that, proper CLs were defined according to the optimized procedures. At last, the combination of traditional QC and PBRTQC would be 
performed in the laboratory. Traditional QC, which was performed at the initial phase of analysis, was applied as a confirmatory tool. If the 
traditional QC was in control, the analytical system started to measure patients’ samples. As measurement results were produced, PBRTQC 
was initiated. PBRTQC was considered as an alarm tool for monitoring performance in real time. If PBRTQC was out of control, further 
measures were needed to confirm the analytical status, such as additional commercial QC or retesting retained samples
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the critical error. Third, ∑MNPed was the advanced parameter to 
evaluate overall QC performance and decided the optimized QC 
procedures in this article. MNPed replaced ANPed as the basic pa-
rameter of QC performance. ANPed uses the average number of 
patient results affected before error detection, whereas MNPed 
uses the median number. As the numbers of results necessary for 
error detection is not normally distributed, MNPed is more suitable. 
The ability of a QC procedure to detect critical error should be re-
ceived with concern. But ideally, any error greater than the critical 
error should be detected too. As a result, MNPeds for errors greater 
than the critical error should be valued too. So ∑MNPed was more 
powerful than MNPed.

This study has several specific limitations. First, only serum 
sodium was investigated in our study, and more analytic tests 
with significantly different characteristics should be investigated 
in the future. Nevertheless, both our research and previous re-
search3,17  have demonstrated that serum sodium is probably the 
most suitable chemistry test for PBRTQC because of its small bio-
logical variation. PBRTQC is not suitable for every test, particularly, 
tests with low production numbers (e.g., iron), tests with an extreme 
variation in results (e.g., C-reactive protein and urea)17 or a combi-
nation of both (i.e., lipase and amylase).3 In practice, it seemed to 
be more feasible that PBRTQC start with several typical tests, and 
then be extended to most tests. Second, the series of errors were 
introduced using a step-shift strategy, not a gradual degradation in 
data simulation. In fact, a gradual degradation error may be closer to 
reality and be more difficult to detect.

In conclusion, the combination of P3SD,N  =  50,T0 and 
S0.1%,N  =  25,T1%, which were the quickest to detect any type of 
critical error, are recommended as the optimized QC procedure for 
serum sodium.
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