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Metastases—the spreading of cancer cells from primary tumors to distant organs,

including bone—is often incurable and is the major cause of morbidity in cancer patients.

Understanding how cancer cells acquire the ability to colonize to bone and become

overt metastases is critical to identify new therapeutic targets and develop new therapies

against bone metastases. Recent reports indicate that the endoplasmic reticulum (ER)

stress and, as its consequence, the unfolded protein response (UPR) is activated

during metastatic dissemination. However, their roles in this process remain largely

unknown. In this review, we discuss the recent progress on evaluating the tumorigenic,

immunoregulatory and metastatic effects of ER stress and the UPR on bone metastases.

We explore new opportunities to translate this knowledge into potential therapeutic

strategies for patients with bone metastases.

Keywords: bone metastases, seed and soil, metastatic niche, ER stress, unfolded protein response,

immunotherapy

INTRODUCTION

Bone is a frequent site of cancer metastases, and skeletal metastasis is much more common than
the primary bone cancers (1). Metastatic spread of primary tumor cells to bone tissues comprises
the following multiple-step cascade: (1) local invasion at the primary site; (2) intravasation; (3)
survival in circulation; (4) arrest at distant organ sites; (5) extravasation to enter the parenchymal
tissues of distant organs; (6) survival in the new microenvironment; and (7) proliferation to form
macroscopic, clinically detectable secondary tumors, which is the step that eventually leads to
morbidity (Figure 1) (2–4). Considerable research efforts have demonstrated that both intrinsic
traits of cancer cells (the seeds) and the unique bone microenvironmental factors (the soil)
contribute to the development of bone metastases (1, 3, 5–7). These efforts have led to approved
treatment on bone metastases, exemplified by the introduction of bisphosphonates and denosumab
(8–10). Meanwhile, several clinical trials are on-going based on the knowledge from these efforts.
Further studies aim to understanding the molecular basis for each step of bone metastasis will be
instrumental to manage the bone metastasis.

Tumor cells endure intrinsic (oncogenic) and extrinsic environmental stresses duringmetastatic
dissemination (11). These stresses can either increase the protein synthesis, overwhelming the
protein folding capacity of the endoplasmic reticulum (ER) or directly disrupt ER protein folding.
This leads to the accumulation of unfolded and misfolded proteins (known as ER stress) (12, 13).
An adaptive mechanism, termed the unfolded protein response (UPR), is consequently initiated
by transmembrane sensors on the ER upon detection of ER stress to restore ER homeostasis (14).
Multiple functions of the UPR in the development of primary tumors have been extensively studied,
and targeting the UPR has been shown to be an effective therapeutic strategy in multiple cancers
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(15–28). However, its role in metastases remain far less
documented. In this review, we will discuss the mechanisms of
the UPR in tumor progression and its potential implications in
bone metastases.

BONE METASTASES

The relative incidence, median survival, and effect on bone
homeostasis (osteolytic, osteoblastic, or mixed) of bone

FIGURE 1 | The multistep process from primary tumor to bone metastasis. During metastatic progression, tumor cells leave their primary site via local invasion into

the surrounding tumor-associated stroma, followed by tumor cell intravasation into the blood and lymph vasculature. Once in the vasculature, tumor cells interact with

neutrophils and NK cells, which regulate their survival in the circulation. These steps above are mostly common in metastasis to different distant organs. The

extravasation of cancer cells from the blood vasculature into the bone marrow can occur very early. After extravasation, colonizing cancer cells must develop survival

mechanisms to adapt to the local microenvironment and various treatment. This includes dormancy, interacting with (pre)metastatic niche cells (e.g., osteoblasts and

osteoclasts), and resistance to immunity. Of those cells that survived, some will be reactivated after years, even decades, to form macrometastasis.

metastases vary greatly among different cancer types (Table 1)
(1, 29, 30). Bone metastases are associated with multiple
skeletal complications, including bone pain, impaired mobility,
pathologic fractures, nerve compression, bone marrow aplasia,
and hypercalcemia (31). The clinical detection of metastases
may be a late event of disease progression; although, the
dissemination to bone may occur early. Disseminated tumor
cells (DTCs) can be detected in the bone marrow of patients and
in mouse models even without the invasive diseases (32–38).
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TABLE 1 | Incidence of bone metastases in cancer (1).

Primary cancer

type

Relative

incidence

Median survival

(months)

Five-year

survival rate

Impact to bone

homeostasis

Breast 65–75% 19–25 20% Mixed

Prostate 65–75% 12–53 25% Osteoblastic

Lung 30–40% 6 < 5% Osteolytic (NSCLC)

Osteoblastic (SCLC)

Thyroid 40–60% 48 40% Mixed

Bladder 40% 6–9 3% NA

Renal 20–25% 6–12 10% Osteolytic

Melanoma 14–45% < 6 < 5% Osteolytic

NSCLC, non-small-cell lung cancer; SCLC, small-cell lung cancer.

However, because many more DTCs than macrometastases are
present in the bone marrow in both patients and mouse models,
it remains unclear whether these early DTCs ultimately cause
metastatic outgrowth or if they are simply bystanders during the
metastatic process (5, 9). Nevertheless, it is clear that the presence
of DTCs in bone marrow is associated with poor prognosis and
predicts eventual metastases to the bone as well as other organs
(39–43). The microenvironment in primary tumors contribute
to the selection of secondary tumors in bone. For example,
cancer-associated fibroblasts select Src-hyperactivated bone
metastatic seeds in triple-negative breast cancers (TNBC) (44).
Meanwhile, premetastatic niches in the bone microenvironment
are actively formed by secreted factors and/or exosomes from the
primary tumor prior to DTC seeding (5, 45, 46). Upon arrival
at the bone, DTCs that survive the hostile environment interact
with the bone resident cells, forming the metastatic niche that
determines the fate of DTCs (dormant, reactivated, or drug
resistant) (5, 7, 9, 47).

ER STRESS AND THE UPR

The ER is the major organelle in eukaryotic cells responsible
for intracellular Ca2+ homeostasis, lipid biosynthesis, and the
folding of membrane and secreted proteins (14, 48–52). Protein
folding in the ER is precisely regulated and highly sensitive to
alterations in the protein load, mutations that affect the folding
process, and the ER folding environment (e.g., redox state,
nutrient status, and Ca2+ levels) (49, 53). The accumulation
of unfolded or misfolded proteins in the ER causes ER stress,
which can be detected and resolved by the UPR (48, 51, 54–
57). There are three major UPR signaling branches named after
their transmembrane sensors: (1) inositol-requiring enzyme 1α
(IRE1α, encoded by ERN1), (2) PKR-like ER kinase (PERK,
encoded by EIF2AK3), and (3) activating transcription factor
6α (ATF6α, encoded by ATF6) (58) (Figure 2). All of these
three sensors are activated upon the dissociation of the binding
immunoglobin protein (BiP, encode by HSPA5) (59) or by the
direct binding of unfolded proteins (60, 61) under ER stress.

IRE1α is the most evolutionarily conserved branch
of the UPR (62, 63). It is a bifunctional transmembrane
kinase/endoribonuclease that dimerizes, and autophosphorylates
upon luminal activation and then specifically cleaves 26
nucleotides from cytoplasmic X-box binding protein 1 (XBP1)

mRNA (Hac1 in yeast) (54, 55, 64–66). This is the first step of
a cytoplasmic splicing event that creates an active form of the
transcription factor XBP1s which, among its various functions
activates multiple ER quality control genes to enhance the
protein folding capacity of the ER to reduce the misfolded
proteins there. Meanwhile, activated IRE1α also degrades
certain ER-localized cytoplasmic mRNAs in a process known as
regulated IRE1-dependent decay (RIDD) to reduce the number
of proteins entering the ER (67, 68). By interacting with different
adaptor and modulator proteins, IER1α can also activate the
JNK, ERK, p38, and NF-kB pathways (69–71).

PERK is a serine/threonine kinase, and its best characterized
substrate is eIF2α (72). PERK-dependent phosphorylation of
eIF2α reduces the protein load into the ER by inhibiting the
5′ cap-dependent translation, while selectively increasing the
translation of ATF4. ATF4 subsequently activates multiple genes
involved in the regulation of autophagy, amino acid metabolism,
and antioxidant responses (73–75).

Under ER stress, ATF6 is translocated to the Golgi apparatus,
where it is cleaved by site 1 protease (S1P) and S2P, releasing the
cytoplasmic transcription factor fragment (76). ATF6 activates
genes that are involved in protein folding in the ER. Collectively,
the consequences of UPR activation—pro-survival or pro-
apoptotic—depend on the duration and intensity of the stress
stimuli (14, 15, 20, 51, 53, 56).

THE UPR IN PREMETASTATIC NICHE
FORMATION

Survival and outgrowth of tumor cells in distant organs depend
on their interaction with the microenvironment of the distal
site (5–7). Several fundamental discoveries have revealed that
cancer cells can remotely reprogram the microenvironments
in distant organs to facilitate the later colonization, survival,
and growth in a process termed prometastatic niche (PMN)
formation (45, 46, 77). In the context of bone metastases, lysyl
oxidase (LOX) is secreted by estrogen receptor–negative (ER−)
breast tumors and mediates PMN formation in the bone (45).
Hypoxia signature is correlated with increased risk of bone
metastases, particularly in ER− breast tumors. Cox et al. found
LOX is highly expressed in bone-tropic MDA-MB-231 subline
1833-BoT cells and is associated with bone tropism in ER− breast
tumors. LOX secreted by the hypoxic primary tumor leads to
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FIGURE 2 | Overview of the mammalian UPR. The three ER resident sensors (IRE1α, PERK, and ATF6) transduce information about the protein folding status of the

ER to the cytosol and nucleus to restore the protein folding capacity. Under normal conditions, the sensors are inactivated by binding to the chaperone BiP. Under ER

stress conditions, the sensors are activated by BiP dissociation and/or direct misfolded protein binding. Each pathway uses a different mechanism for signal

transduction upon activation. IRE1α dimerizes, autophosphorylates, and triggers its RNase activity. This leads to the splicing of the XBP1 mRNA to produce an active

transcription factor, spliced XBP1 (XBP1s). XBP1s induces the transcription of the genes encoding protein chaperones, ERAD, and phospholipid synthesis. The

RNase activity of IRE1α also degrades certain mRNAs through RIDD. Activated IRE1α can activate the JNK, p38, ERK, and NF-kB pathways, thus playing an

XBP1-independent role to modulate diverse cellular responses. Upon activation, PERK phosphorylates eIF2α, leading to global translational attenuation while

selectively mediating translation of ATF4. In turn, ATF4 induces the expression of genes involved in amino acid metabolism, proapoptotic factor DDIT3/CHOP, and

antioxidant responses (HO1). PERK also phosphorylates and stabilizes NRF2, a transcription factor involved in redox metabolism. ATF6 is transported to the Golgi

apparatus under ER stress, where it is processed by S1P and S2P, releasing its cytosolic domain fragment as a transcription factor. ATF6 activates genes encoding

protein chaperones, ERAD components, and XBP1. Abbreviations: ATF, activating transcription factor; BiP, binding immunoglobulin protein; DDIT3, DNA damage

inducible transcript 3; eIF2α, eukaryotic translation initiation factor 2 subunit 1; ER, endoplasmic reticulum; ERAD, ER-associated protein degradation; HO1, heme

oxygenase 1; IRE1α, inositol-requiring enzyme 1α; JNK, c-Jun N-terminal kinase; NF-kB, nuclear factor kappa light-chain enhancer of activated B cells; NRF2,

NF-E2-related factor 2; PERK, PKR-like ER kinase; RIDD, regulated IRE1α dependent decay of mRNA; S1P and S2P, site 1 and site 2 proteases; UPR, unfolded

protein response.

the formation of premetastatic osteolytic lesions and promotes
bone metastatic burden in a 4T1-BALB/c mouse model. The
expression of LOX is induced by hypoxia inducible factor (HIF)
under hypoxic conditions (45). Meanwhile, the UPR is known
to be induced by hypoxia (15). Further study demonstrated
that XBP1s interacts with HIF1α and is required for the
upregulation of HIF1α-mediated hypoxia response pathway
genes in TNBC tumors (18). This study implies that XBP1s
may directly regulate the expression of LOX under hypoxic
conditions. Indeed, XBP1 activates LOX expression in lung
adenocarcinoma cells to promote the cell growth (78). Thus,
the increased secretion of LOX in hypoxic tumors may be

due to the activation of the UPR. It is compelling to note
that blocking the IRE1a-XBP1 pathway may simultaneously
inhibit the growth of both the primary TNBC tumors and
bone metastases. Additional work will be required to test the
universality of UPR involvement in the PMN formation during
bone metastasis.

ROLE OF THE UPR ON THE SURVIVAL OF
CIRCULATING TUMOR CELLS

In the vasculature, circulating tumor cells (CTCs) encounter
various stresses, including the loss of extracellular matrix (ECM)
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detachment, oxidative stress, innate immune response, and
physical shear force (3, 79, 80). Normally, cells undergo apoptosis
when they lose contact with their ECM or neighboring cells. This
specific type of apoptosis, termed anoikis, prevents adherent-
independent cell growth, attachment to an inappropriate matrix,
and thus colonization of distant organs (79, 80). Multiple studies
suggest that the PERK-eIF2α branch of the UPR inhibits anoikis
and is required for tumors to invade and metastasize (81–83).
The PERK-eIF2α pathway was shown to activate in suspension-
cultured MCF10A cells and sustains MCF10A cell survival (81).
Cells that undergo epithelial-to-mesenchymal transition (EMT)
are highly secretory, and the PERK axis of the UPR was found to
be selectively activated (82). In addition, the inhibition of PERK
compromised the ability of EMT cells to form tumorspheres
and migrate in transwell assays (82). Human melanoma cells
experience higher levels of oxidative stress in the circulation and
distant tissues than in primary tumors (84). To manage such
oxidative stress, metastasizing melanomas undergo reversible
metabolic adaptations, including the synthesis of antioxidants,
to survive and eventually metastasize to distant sites. A previous
study (83) showed that the PERK downstream transcription
factor ATF4 and NRF2, which is stabilized by PERK (85),
activate the expression of major antioxidant enzyme heme
oxygenase 1 (HO-1), and therefore protect the detached cells
from oxidative stress.

CTCs are also vulnerable to immune attacks by innate
immune cells, notably NK cells (86, 87). In contrast to NK
cells, neutrophils seem to protect CTCs and favor the metastatic
spreading (4, 88). The functions of the IRE1α-XBP1 branch
during the CTC stage are complicated (89–92). On the one hand,
XBP1s promotes NK cell proliferation and positively regulates
cytolytic activity of NK cells (89, 91, 92). On the other hand,
XBP1 stimulates the expression of lectin-type oxidized LDL
receptor 1 (LOX-1) in human neutrophils and transforms them
into immunosuppressive cells, possibly promoting CTC survival
(90). Overall, the PERK pathway could promote CTC survival by
inhibiting anoikis and oxidative stress. Further in vivo studies are
necessary to evaluate the overall effect of the IRE1α-XBP1 branch
on the survival of CTCs in vivo.

ROLE OF THE UPR ON COLONIZATION
AND DORMANCY

CTCs surviving in the circulation arrive at the bone marrow
vasculatures and extravasate into bone marrow parenchyma. It
is still unclear whether this process is completed by passive
entry due to the discontinuous endothelium of bone marrow
sinusoids or if any other pathway actively involved (6, 7, 93).
Compared with other organs, the bone is unique for its mineral
content, enriched vasculatures, low oxygen level, high local Ca2+

concentration, and acidosis (94). As a result, the newly arrived
tumor cells are challenged in many aspects (5, 6). Meanwhile,
DTCs in bone remain dormant state in a variable period,
which is critical for their survival, adaptation, escaping systemic
treatments, and final outgrowth (6, 9, 94).

The hostile microenvironment (e.g., hypoxia) in the bone may
disrupt ER protein folding; therefore, UPR pathways are expected
to be upregulated in these DTCs. Indeed, UPR target genes are
upregulated in dormant cancer cells from patients and mouse
models (95–99). In the bone marrow of breast cancer patients,
both GRP78/BiP and GRP94 are selectively highly expressed
by bone marrow (BM) DTCs (98). Interestingly, UPR target
genes are also overexpressed in cells derived from bone marrow
DTCs compared with those from primary tumors (98, 100).
These studies suggest that UPR upregulation is a stable trait for
BM DTCs.

This trait may arise from the selection of pre-existing UPR
positive subpopulation by the hostile microenvironment (and
treatment, see discussion below) from the heterogenous cancer
cell population, adaptation of the survived cancer cells to the
microenvironment, or both. Nevertheless, these UPR genes are
thought to confer a survival advantage to DTCs within the bone
microenvironment because cell lines derived from BM DTCs are
more resistant to glucose and oxygen deprivation in vitro. Studies
in the head and neck cancer cell line HEp3 indicated that p38
plays a critical role in the induction and maintenance of tumor
dormancy (95–97, 101). Interestingly, p38 activates all three
branches of UPR in the dormant HEp3 cells, which contributes
to the survival of cancer cells under glucose deprivation or
chemotherapeutic treatments. Meanwhile, the PERK pathway
inhibits the translation of cyclin D1/D3 and CDK4 in these
cells, thereby arresting the cells in the G0-G1 phase. These
studies support a causal role for the UPR in the establishment
of dormancy (95–97). The upregulation of UPR genes are also
found in dormant pancreatic ductal adenocarcinoma DTCs from
lives of patient samples andmouse model (99). Collectively, these
data indicate that UPR activation may be a common strategy
utilized by cancer cells to enter dormancy and promote their
survival. Further studies would be worthwhile to follow up on
these impressive results and answer the following questions: (1)
what triggers and/or maintains UPR signaling in dormant cancer
cells in which overall protein synthesis is attenuated (101); (2) can
UPR activation contribute to the dormant state of bone marrow
DTCs in vivo, and if so, how; (3) what determines the pro-survival
or pro-apoptotic effects of UPR activation in these cells; and (4)
can the inhibition of the UPR promote DTCs death or sensitize
them to therapies targeting proliferating cells.

ROLE OF THE UPR ON THE
REACTIVATION AND OUTGROWTH OF
DTCs

Our current knowledge about the reactivation process of
dormant DTCs, particularly in bone, is limited (4–6, 102).
The autonomous traits of tumor cells alone cannot explain
the asynchronized relapse of metastases after a long latency.
Alternatively, local stimulation of the microenvironments may
awaken dormant tumor cells. In bone, osteoclasts are key players
in the microenvironmental support of osteolytic breast cancer
cell growth and bone destruction. The upregulation of vascular
cell adhesion molecule 1 (VCAM-1) in tumor cells promotes the
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transition from indolent micrometastasis to overt metastasis in
breast cancer (103). DTCs with high VCAM-1 recruit integrin
α4β+ osteoclast progenitors and induce local osteoclast activity.
Therapeutically targeting the VCAM-1–integrin a4 interaction
effectively inhibits the progression of bone metastasis and
preserves bone structure in mouse models (103). Osteoblasts are
another cell type found in the remodeling bone environment.
It has been suggested that cancer cells interact with osteogenic
cells through E-cadherin/N-cadherin and gap junctions and
such interaction promotes early-stage bone colonization and
outgrowth (104, 105). In multiple myeloma, XBP1 is required
for the expression of VCAM-1, IL6, and RANKL and promotes
osteolytic outgrowth (106). Given that XBP1 is one of the top
transcription factors enriched in bone metastases compared with
primary tumors and metastases in other organs (105), additional
research is necessary to determine whether XBP1 regulates
VCAM-1 in bone metastasis and promotes outgrowth.

Similarly to metastases in other organs, the immune system is
absolutely critical in regulating the outgrowth of bone metastasis
(94). In clinical practice, donor-derived cancer develops on rare
occasions in immune-suppressed recipients who have received
organs from cancer survivors (disease free for more than 10
years) or donors without diagnosable cancer at the time of
transplantation (107–109). These observations suggest that the
competent immune system may hold disseminated tumor cells
in an asymptomatic state. Indeed, a higher ratio of CD56+

CD8+ T cells and memory CD4+ T cells were found in DTC-
present bone marrow samples than in DTC-free samples in
breast cancer patients (110). In a mouse model of spontaneous
bone metastasis, the restoration of interferon regulatory factor 7
(Irf7) suppresses bone metastases through interferon signaling,
whereas the deficiency of T and NK cell responses accelerates
breast cancer bone metastases (111). A possible interpretation
of these results is that cancer cell proliferation is balanced by
immune-mediated cancer cell death (4, 112). The bone marrow
is occupied by diverse immune cells including neutrophils
(113–115). With age, hematopoietic stem cells gradually lose
their self-renewal and regeneration capacity and are biased to
differentiate into myeloid lineage including monocytes (giving
rise to macrophages and dendritic cells), granulocytes (giving rise
to basophils, neutrophils, and eosinophils), and megakaryocytes
(116–118). This leads to an aged-related decline of the immune
response (referred to as immunosenescence) and chronic, sterile,
low-grade inflammation (named “inflamm-aging”) in older
adults (119, 120). Inflammation is linked to the relapse of
breast cancer (121). Sustained experimental inflammation and
the accompanying formation of neutrophil extracellular traps
in the lungs was found to convert dormant breast cancer
cells to aggressive lung metastases in mice. Mechanistically,
the neutrophil extracellular traps associated protease neutrophil
elastase and matrix metalloproteinase 9 sequentially cleaves the
ECM component laminin, leading to laminin remodeling. The
remodeled laminin activates α3β1-FAK signaling in dormant
cancer cells to induce their reactivation (122). As discussed
above, XBP1 promotes neutrophils into immunosuppressive
cells. In addition, the inhibition of the IRE1α RNase activity
downregulates the expression and secretion of CXCL1 inmultiple

breast cancer cell lines (23), indicating the possibility that
IRE1α promotes neutrophil recruitment by activating CXCL1.
Furthermore, the IRE1a-XBP1 pathway is required for neutrophil
extracellular trap formation during infection (123) Overall,
the IRE1a-XBP1 pathway is known to promote neutrophil
recruitment and function. Nevertheless, additional investigation
is necessary to test whether neutrophils contribute to DTC
reactivation in bone and whether/how the IRE1α-XBP1 pathway
is involved in this process.

Dendritic cells (DCs) are responsible for the presentation of
tumor antigens to T cells and initiation of the antitumor response
(124). Activated T cells, especially cytotoxic CD8+ T cells and
CD4+ T helper 1 cells, attack and destroy the target tumor cells
(125). However, these processes are often inhibited by tumor
cells via multiple strategies including at least by silencing the
antigen presentation (hiding major histocompatibility complex
I (MHCI) or making dendritic cells (DCs) dysfunctional), T-
cell dysfunction, and the establishment of an immunosuppressive
tumor microenvironment by myeloid-derived suppressor cells
(MDSCs) (124–126). In contrast to the essential role of the
IRE1α-XBP1 pathway in the physiology of antigen presentation
cells under homeostatic conditions (127, 128), a study by the
Laurie Glimcher’s laboratory uncovered XBP1s as a critical driver
of tumor-associated dendritic cell (tDC) dysfunction in the
ovarian cancer microenvironment (129). IRE1α activation of
XBP1s, stimulated by lipid peroxidation byproducts in tDCs,
leads to abnormal lipid accumulation and subsequent inhibition
of the antigen-presenting capacity of tDCs. Accordingly, DC-
specific XBP1 inhibition restores their immunostimulatory
capacity and extends survival in tumor-bearing mice. In
addition, targeting the IRE1α-XBP1 pathway benefits T-cell
function directly in the ovarian cancer microenvironment
by increasing mitochondrial respiration activity (130) and
attenuating cholesterol-induced CD8+ T-cell exhaustion (131).
The PERK downstream target Chop (encode by Ddit3) is highly
expressed in tumor-associated MDSCs, and the depletion of
Chop compromises the function of MDSCs and delays tumor
growth (132). Therefore, inhibition of the IRE1α and PERK
pathways could boost the immune response in multiple tumors.

Taken together, these recent findings suggest that ER stress is
induced in tumor cells and infiltrated immune cells in the tumor
microenvironment. Thus, it would be interesting to test whether
the abovementioned functions of the UPR are specific to the
tumor microenvironment studied or can be generalized to other
cancer types and different metastatic organs including bone.

THERAPEUTIC RESISTANCE AND
METASTATIC-RELATED MORBIDITY

Metastatic cancer often represents a terminal illness and is
the main cause of cancer death (133). Current treatments
for metastatic lesions are essentially similar to those for
the corresponding primary tumors, including chemotherapy,
targeted therapy, hormone therapy, radiation therapy, and
immunotherapy (4, 134). Unfortunately, therapeutic resistance
often occurs (4) due to many mechanisms, including tumor
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FIGURE 3 | Potential connections between the UPR and bone metastasis. Schematic representation of the proposed effects of the UPR in bone metastasis by

regulating indicated processes.

dormancy, stem-like properties, EMT, and immune suppression
as discussed above. In a mouse model of spontaneous
lung metastases from mammary tumors, IRE1α expression
was induced upon cyclophosphamide-mediated chemotherapy
(135). This result is further supported by a study that
reported that IRE1α RNase activity is induced upon paclitaxel
treatment in TNBC cells (23). Importantly, the inhibition
of IRE1α RNase activity increases paclitaxel-mediated tumor
suppression and delays tumor relapse posttherapy (23). This is
consistent with our recent finding that the inhibition of IRE1α
RNase activity substantially enhances the efficacy of docetaxel-
based chemotherapy in treating MYC-overexpressing primary
tumors and lung metastases (26). In summary, hijacking and
upregulation of the IRE1α-XBP1 pathway is one strategy tumor
cells use to develop chemoresistance, yet further investigation is
required on the detailed mechanisms about how this pathway is
activated and how it leads to resistance.

Bone pain is one of the most frequent symptoms of bone
metastases, impairing both life quality and expectancy (136).
One of the extensively studied molecules that leads to bone
pain is cyclooxygenase-2 (COX-2), which is the key enzyme
in prostaglandin biosynthesis (136, 137). Prostaglandins bind
to prostanoid receptors on sensory terminals, resulting in
bone pain (136). Inhibition of COX-2 attenuates bone pain,
tumor growth, and bone destruction in a mouse model (138).
The two latter phenotypes can be explained by the fact that
prostaglandins can also directly promote cancer cell proliferation

and induce immunosuppression (137). Recently, the IRE1α-
XBP1 pathway was identified as an important regulator in
prostaglandin biosynthesis and pain management (139). In
myeloid cells (including macrophages and monocytes), XBP1
directly activates the expression of COX-2 and mPGES-1.
Genetically or pharmacologically inhibition of the IRE1α-XBP1
pathway diminished pain-related behaviors in mouse models.
Given the established functions of COX2/PGES-1 in pain and
immunosuppression, this finding not only revealed a new
therapeutic approach for attenuating pain behavior but also
indicated an alternative explanation how the IRE1α-XBP1 arm
promotes immunosuppression.

CONCLUSIONS AND FUTURE
DIRECTIONS

In the past decade, great strides have been made in bone
metastasis research to enhance our understanding of this disease
in both patients and experimental models. However, some
key questions still remain unanswered. What triggers DTC
dormancy and reawakening? How do DTCs evade immune
cell surveillance? And ultimately, can we cure bone metastases?
To address these questions, both conceptual and technological
advances must be made. Improved models need to be developed
that faithfully mimic the natural history of bone metastases in
patients. The advancement in single-cell RNA sequencing has
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broadened our knowledge about the heterogeneity of cancer and
bone marrow niche cells (114, 115, 140). This technique alone
or together with the metastatic-niche labeling strategy (141) will
shed new light on the biology of bone metastases and may
identify new therapeutic targets.

The activation of the UPR has been demonstrated to endow
cancer cells with tumorigenic, metastatic, and drug-resistant
capacities and provide tumors with an immunosuppressive
microenvironment. Given the convincing underlying
mechanisms discovered and the exciting therapeutic results
so far, it would be very promising to translate our current
knowledge on the functions of the UPR in primary tumors to the
study of bone metastases (Figure 3). Further studies are required
to characterize the functions of the UPR in different steps of bone
metastasis and in different cancer models. What are the driver
events that induce/inhibit the UPR during bone metastasis? How
does the UPR interplay with other signaling during this process?
Can these stress responses in cancer cells be transmitted to niche
cells to promote bone metastasis (142, 143)? Importantly, due to
the immunosuppressive function of the UPR and the availability

of multitarget drugs, it is conceivable to combine these inhibitors
to various forms of cancer immunotherapy strategies to control
bone metastases.
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