
Chemical
Science

EDGE ARTICLE
Graph-based mo
Centre for Integrative Neuroplasticity, Un

E-mail: jverhell@gmail.com

† Electronic supplementary infor
https://doi.org/10.1039/d2sc00821a

Cite this: Chem. Sci., 2022, 13, 7526

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 8th February 2022
Accepted 2nd June 2022

DOI: 10.1039/d2sc00821a

rsc.li/chemical-science

7526 | Chem. Sci., 2022, 13, 7526–75
lecular Pareto optimisation†

Jonas Verhellen

Computer-assisted design of small molecules has experienced a resurgence in academic and industrial

interest due to the widespread use of data-driven techniques such as deep generative models. While the

ability to generate molecules that fulfil required chemical properties is encouraging, the use of deep

learning models requires significant, if not prohibitive, amounts of data and computational power. At the

same time, open-sourcing of more traditional techniques such as graph-based genetic algorithms for

molecular optimisation [Jensen, Chem. Sci., 2019, 12, 3567–3572] has shown that simple and training-

free algorithms can be efficient and robust alternatives. Further research alleviated the common genetic

algorithm issue of evolutionary stagnation by enforcing molecular diversity during optimisation [Van den

Abeele, Chem. Sci., 2020, 42, 11485–11491]. The crucial lesson distilled from the simultaneous

development of deep generative models and advanced genetic algorithms has been the importance of

chemical space exploration [Aspuru-Guzik, Chem. Sci., 2021, 12, 7079–7090]. For single-objective

optimisation problems, chemical space exploration had to be discovered as a useable resource but in

multi-objective optimisation problems, an exploration of trade-offs between conflicting objectives is

inherently present. In this paper we provide state-of-the-art and open-source implementations of two

generations of graph-based non-dominated sorting genetic algorithms (NSGA-II, NSGA-III) for molecular

multi-objective optimisation. We provide the results of a series of benchmarks for the inverse design of

small molecule drugs for both the NSGA-II and NSGA-III algorithms. In addition, we introduce the

dominated hypervolume and extended fingerprint based internal similarity as novel metrics for these

benchmarks. By design, NSGA-II, and NSGA-III outperform a single optimisation method baseline in

terms of dominated hypervolume, but remarkably our results show they do so without relying on

a greater internal chemical diversity.
1 Introduction

Machine learning has recently assumed a prominent role1 in
chemistry: predicting ADMET properties,2 supporting molec-
ular dynamics simulations,3 and assisting in the design of small
molecules without reverting to explicit rules or expert knowl-
edge.4–12 However, training-free optimisation algorithms that
comprehensively traverse and explore chemical space have been
shown to be more efficient13,14 than their machine learning
counterparts in discovering high-performing de novomolecules.
Sometimes this search in chemical space reduces to an opti-
misation for a single property like melting point15 or protein
binding affinity,16 but oen there are additional requirements
that make it necessary to optimise for additional properties
such as low toxicity,17 high synthesizability18 or off-target
activity. In the case that multi-objective optimisation is neces-
sary, a trade-off between different (and possibly competing)
optimisation objectives has to be dened.
iversity of Oslo, N-0316 Oslo, Norway.

mation (ESI) available. See
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In current molecular generative model benchmarks,13 typi-
cally either the arithmetic mean or the geometric mean of the
objective is chosen as a stand-in aggregate tness function. To
give relative importance to the different objectives, domain
experts can assign weights to them or combine appropriate
modifying functions to obtain a single, ne-tuned objective
function. However, many elds of science and engineering
make use of an alternative approach to multi-objective optimi-
sation by searching for a set of so-called Pareto optimal solu-
tions.19 All solutions in a Pareto optimal set are characterised by
the fact that there are no other individual solutions that have
a higher (or equal) tness in all objective functions. Together,
the set of Pareto optimal solutions form an optimal envelope in
objective space known as the Pareto front, see Fig. 1.

The Pareto front provides a family of solutions, all equivalent
in principle, aiding domain experts to make choices when
trade-offs between objectives are not known beforehand. Over
the past two decades, a set of algorithms known as the non-
dominated sorting genetic algorithms20 (NSGA) has been
developed for nding Pareto fronts. In a complex process, such
as drug design, having access to a technique complementary to
single objective optimisation, can yield deeper insights and
improve efficiency. Therefore, in this paper, we provide the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Visualistion of a Pareto front (dark blue) and dominated solu-
tions (light blue). Example molecules shown at the Pareto front were
generated by NSGA-II for Tanimoto similarities with regard to lysergic
acid diethylamide (objective 1) and psilocybin (objective 2).
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community with state-of-the-art and open-source implementa-
tions of the NSGA-II and NSGA-III algorithms21–23 based on
a popular graph-based genetic algorithm24 (GB-GA) for molec-
ular optimisation.

A newer generation of NSGA algorithm, NSGA-III, which uses
a more complex means of ensuring coverage of the entire Pareto
front, was originally reported to be an improvement over NSGA-
II. However, later analyses25,26 have shown that for a wide range
of computational experiments NSGA-III does not consistently
outperform NSGA-II in every use-case. Therefor we compare the
performance of NSGA-III and NSGA-II on a set of small molecule
multi-objective optimisation benchmarks, making use of the
dominated hypervolume as a novel measure of the effectiveness
in these type of problems. As a baseline, we make use of a state-
of-the-art single-objective optimisation algorithm that employs
the geometric mean as a surrogate aggregate tness function.
Whereas proprietary applications of NSGA-II to molecular
design have been reported,27,28 there is a lack of open-source
implementations of both NSGA-II and NSGA-III for the inverse
design of small molecules. We anticipate that our results and
the availability of the code will encourage the development of
more powerful Pareto optimisation algorithms for chemistry as
well as their widespread adoption in computer-assisted chem-
ical design.
Fig. 2 Examples of mutations (left) and a crossover (right) as gener-
ated by GB-EPI. Note that minor changes to chemical structure can be
used to efficiently achieve optimisation even for challenging
objectives.
2 Algorithmic methodology

NSGA-II and NSGA-III are genetic algorithms tailored to nding
Pareto fronts. In this section, we introduce the fundamentals of
genetic algorithms in the context of small molecule design and
discuss the importance of balancing quality with diversity. We
then describe the general framework of non-dominated sorting
genetic algorithms and elaborate upon the NSGA-II and NSGA-
III algorithms and their differences. In the remainder of the
section, we discuss technical aspects such as structural alert
based chemical lters, memoisation, the construction of
© 2022 The Author(s). Published by the Royal Society of Chemistry
reference directions (only used in NSGA-III), positional
analogue scanning, and parallelism.
2.1 Genetic algorithms

A genetic algorithm is, as the name suggests, a heuristic search
method29 inspired by the process of natural evolution. Genetic
algorithms30,31 can achieve highly effective single-objective
optimisation by consistently and incrementally improving
a selection of trial solutions. The current set of the solutions
used by the algorithm is known as the (evolutionary) pop-
ulation. In each iteration of the algorithm – known as a gener-
ation – novel solutions are generated by stochastically changing
or combining the current solutions. In the genetic algorithm
community, these two operations for generating new solutions
are known as mutations and crossovers, respectively. At the end
of each generation, the population is reduced to its original size
by selecting only the highest performing molecules for survival.
Eventually, the selection pressure in this procedure forces the
population of solutions towards an optimum.

For small molecule optimisation, these ideas can be imple-
mented by representing solutions (i.e.molecules) by either their
molecular graphs, or by text representation such as the
simplied molecular-input line-entry system32 (SMILES) or self-
referencing embedded strings33 (SELFIES). The graph repre-
sentation has been used in the graph-based genetic algorithm
(GB-GA) which was shown to outperform machine learning
approaches.24 In Fig. 2, we show examples of mutations and
crossovers on molecular graphs. To rule out graphs that repre-
sent impossible chemical congurations, only those that can be
correctly translated to and from SMILES are retained. The initial
population of candidate molecules is typically obtained from
public databases like ZINC34 or ChEMBL.35
2.2 Quality-diversity algorithms

Unfortunately, genetic algorithms are known to be vulnerable to
evolutionary stagnation when encountering low-performing
valleys or local optima.36 Enforcing diversity37 in the pop-
ulation of molecules a genetic algorithm uses can alleviate these
Chem. Sci., 2022, 13, 7526–7535 | 7527



Fig. 3 Pseudocode description of a generic non-dominated sorting
genetic algorithm adapted to the setting of molecular optimisation.

Chemical Science Edge Article
issues. Quality-diversity algorithms,38 such as the graph-based
elite patch illumination algorithm39 (GB-EPI), obtain this
diversity by splitting the population into niches based on their
physicochemical properties. In each generation, the best per-
forming molecule in each of the individual niches is retained,
rather than selecting the highest-scoring solutions regardless of
their diversity.

Alternatively, the superfast traversal, optimisation, novelty,
exploration and discovery algorithm40 (STONED) leverages
molecular diversity through the use of SELFIES. In contrast to
the more traditionally used SMILES, SELFIES can be mutated
arbitrarily at any position in the string to produce new strings
that represent valid molecular structures. The STONED algo-
rithm uses this property of SELFIES to preserve diversity in its
population. By varying the position of modication within the
string, the algorithm balances exploration and exploitation to
avoid stagnation in low-performing valleys or local optima.
Fig. 4 Visualisation of the splitting front procedure of non-dominated so
blue, the splitting front is light blue, and the remaining solutions are white.
is assumed that five more solutions need to be picked to complete the
ference. (b) The selection procedure of NSGA-II calculates a distance in
solutions are picked by default, the remaining solutions are chosen ac
procedure of NSGA-III calculates the orthogonal distance to predefined
for each axis. Note that the two objective axes are also used as referenc

7528 | Chem. Sci., 2022, 13, 7526–7535
2.3 Non-dominated sorting genetic algorithms

In contrast to single-objective optimisation problems, in which
diversity had to be discovered as a useable resource, diversity is
inherently present in multi-objective optimisation problems.
The presence of diversity is most obvious when considering
a Pareto front, in which solutions to multi-objective optimisa-
tion problems must involve trade-offs to satisfy the conicting
demands of different objective functions. Several algorithms
with different properties and varying levels of complexity have
been proposed for nding Pareto optimal fronts. Themain class
of algorithms used for this task are the non-dominated sorting
genetic algorithms, NSGA-II and NSGA-III.

Non-dominated sorting genetic algorithms20 are, in essence,
genetic algorithms that evaluate and select on the Pareto
dominating status of each solution in the evolutionary pop-
ulation as shown in Fig. 3. Instead of selecting molecules based
on a tness function, these algorithms sort all solutions into
a series of fronts, see Fig. 4(a), each front dominated by the
previous fronts. The rst front (dark blue) is the set of
completely non-dominated individuals in the current pop-
ulation, the second front (light blue) is the set of individuals
dominated only by the individuals in the rst front, and so on
for all other fronts formed by the remaining individuals in the
population (white). The algorithm accepts the fronts, with all of
its individuals, into the evolutionary population in ascending
order, until the maximum size of the evolutionary population
has been reached.

The nal front accepted by a non-dominated sorting genetic
algorithm might, and oen will, contain more individuals than
can be added to the surviving evolutionary population without
exceeding its size limit. This set of individuals is known in the
multi-objective optimisation community as the splitting front.20

Because there is no difference between the individuals in the
splitting front in terms of Pareto dominance, further criteria are
used to select which individuals are retained and which are
discarded. In the splitting front selection procedure for non-
rting genetic algorithms: (a) the Pareto dominant front is shown in dark
For this example, the second front is chosen as the splitting front, and it
population. These solutions will be indicated with a dark blue circum-
objective space to the nearest neighbours in the front. The outermost
cording to the furthest distance from neighbours. (c) The selection
reference directions in objective space and selects the closest solution
e directions so that the outermost solutions are picked by default.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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dominated sorting genetic algorithms, this criteria is typically
a measure of diversity. The NSGA-II and NSGA-III algorithms
both rely on a diversity criteria, but differ signicantly in how
they enforce this diversity, see Fig. 4(b) and (c).

2.4 NSGA-II

NSGA-II21 makes use of a crowding distance to differentiate
within the splitting front. The crowding distance is calculated
for each individual, and indicates how closely the individual is
surrounded by the other members of the splitting front. For
NSGA-II, the crowding distance used is the Manhattan
distance41 in objective space. A larger crowding distance indi-
cates a less crowded individual. Within a splitting front, NSGA-
II orders all individuals by their crowding distances, and
subsequently accepts the molecules with the largest crowding
distance into the evolutionary population until the maximum
size is reached. The outer solutions in the splitting front are
assigned an innite crowding distance to ensure that they are
retained in each generation.

2.5 NSGA-III

In contrast to NSGA-II, the NSGA-III algorithm,22,23 uses refer-
ence directions42,43 instead of a crowding distance to enforce
diversity in the selection of solutions within the splitting front.
Reference directions are determined by a predened set of
points on the unit simplex in tness space. Each reference
direction is dened as a ray originating from the origin and
passing through exactly one of these points. NSGA-III assigns
a reference direction to each solution in the population based
on the nearest perpendicular distance (in normalised tness
space) to the corresponding direction. In the splitting front
selection procedure, the NSGA-III algorithm prioritises refer-
ence directions that are underrepresented in the current
surviving evolutionary population.

If a reference direction does not have any solution assigned
to it aer reaching the splitting front, then the molecule in the
splitting front with the smallest perpendicular distance to this
direction is selected for survival. If all underrepresented refer-
ence directions have been assigned one surviving solution, and
the maximum size of the surviving population has not been
reached, the remaining solutions are selected by a stochastic
procedure. Note that NSGA-III selects the solutions in the fronts
before the splitting front in its entirety, like in NSGA-II.
However, contrary to NSGA-II's crowding distance which is
calculated within the splitting front, the reference directions
used in NSGA-III take into account the diversity of the entire
surviving population.

2.6 Reference directions

The reference directions determine the diversity in the selection
of solutions from the splitting front, so these directions are
typically chosen to be well distributed over the unit simplex.
Traditionally the reference direction generation method of Das
and Dennis has been used for NSGA-III. Unfortunately, due to
the highly structured (combinatorial) nature of the Das–Dennis
reference direction generating procedure,42 the method cannot
© 2022 The Author(s). Published by the Royal Society of Chemistry
produce an arbitrary number of directions. In addition, it has
been shown that most of the reference directions generated by
the Das–Dennis method cross through the boundaries of the
unit simplex rather than the interior,44 inducing a bias in the
selection of solutions from the splitting front.

To alleviate the issues of the Das–Dennis method, an energy-
based approach has recently been proposed43 in the multi-
objective optimisation literature. Inspired by methods in
physics, a generalisation of the potential energy called the Riesz
s-energy45 is calculated for a given number of reference points on
the unit simplex. The Riesz s-energy Us is dened between two
points p1, p2 in s-dimensional Euclidean space as,

Usðp1; p2Þ ¼ 1

kp1 � p2ks : (1)

The location of the points along of the unit simplex are then
optimised to minimise the combined Riesz s-energy of all the
reference points. This allows for the construction of an arbitrary
number of well-spaced reference directions. The results in this
paper were obtained using the Riesz s-energy method to
generate the reference directions for NSGA-III, with s equal to
the square root of the number of objective functions as sug-
gested in the original paper.43
2.7 Shared technical properties

We follow the example of GB-EPI39 and include a series of minor
but important technical features to our NSGA-II and NSGA-III
implementations, focused on improved chemical optimisation
or higher relevance and better quality of the generated mole-
cules. For instance, our NSGA-II and NSGA-III implementations
make use of decoupled crossovers and mutations. As shown in
GB-EPI, early on in an evolutionary algorithm, crossovers
support the efficient exploration of chemical space, while later
on local mutations are benecial in improving the nearly-
converged solutions. Therefore it is benecial to apply both
operators separately rather than in sequence.

Similarly, we follow the example of GB-EPI to apply the
computational equivalent of in vitro positional analogue scan-
ning46 by repurposing the mutation operator to systematically
return not just a single mutation of a molecule, but all of its
positional analogues. To offset the computational overhead
introduced by positional analogue scanning and to improve
efficiency in general, we store a record of obtained tness
calculations. This approach is known as memoisation47 and
ensures that an algorithm does not unnecessarily repeat
calculations. To further reduce clock time, we also implemented
concurrency for the objective function evaluations and remove
undesirable compounds based on structural ADMET lters48–50

before they enter the evaluation step of the algorithm.
3 Benchmarks

To the test the potency of our open-source implementations of
NSGA-II and NSGA-III for multi-objective optimisation in drug
design, we extend the use of tasks devised in the GuacaMol
Chem. Sci., 2022, 13, 7526–7535 | 7529



Table 1 Overview of the multi-objective optimisation benchmarks used in this paper, the first five benchmarks are adapted from the Guacamol
suite while the latter two benchmarks were constructed to emulate the demands of poly-pharmacology projects. The upper row of each task
represents the values calculated for each objective. The lower rows show the modifiers applied to each of these values. The fingerprints used to
calculate the similarities are denoted as arguments of the Tanimoto function, the parameters used for the modifiers are displayed as arguments
of the corresponding functions. For the poly-pharmacology benchmarks, the genes targeted for activity are indicated. The CNS function
calculates the central nervous system desirability score (high blood–brain-barrier permeability and low toxicity potential) as proposed by Pfizer51

Task\objective I II III IV V

Cobimetinib
Tanimoto(FCFP4) Tanimoto(ECFP6) Rotatable bonds Aromatic rings CNS(0.5)
Clipped(0.7) MinGaussian(0.75, 0.1) MinGaussian(3, 1) MaxGaussian(3, 1) —

Fexofenadine
Tanimoto(AP) TPSA log(P) — —
Clipped(0.8) MaxGaussian(90, 10) MinGaussian(4, 1) — —

Osimertinib
Tanimoto(FCFP4) Tanimoto(ECFP6) TPSA log(P) —
Clipped(0.8) MinGaussian(0.85, 0.1) MaxGaussian(95, 20) MinGaussian(1, 1) —

Pioglitazone
Tanimoto(ECFP4) Molecular weight Rotatable bonds — —
Gaussian(0, 0.1) Gaussian(356, 10) Gaussian(2, 0.5) — —

Ranolazine
Tanimoto(AP) log(P) TPSA Fluorine count —
Clipped(0.7) MaxGaussian(7, 1) MaxGaussian(95, 20) Gaussian(1, 1) —

DAP kinases
hERG SCN2A DAPk1 DRP1 ZIPk
Gaussian(0, 0.1) Gaussian(0, 0.1) Clipped(0.8) Clipped(0.8) Clipped(0.8)

Antipsychotics
hERG 5-HT2A 5-HT2B DRD2 CNS(0.5)
Gaussian(0, 1.0) Clipped(0.8) Clipped(0.8) Clipped(0.8) —
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benchmarking suite13 by the bioinformatics company Benev-
olentAI. From the suite we selected multi-parameter optimisa-
tion (MPO) tasks with three or more objectives that aim to ne-
tune the structural or physicochemical properties of ve FDA-
approved drugs: cobimetinib (a mitogen-activated kinase
inhibitor), fexofenadine (a second-generation antihistamine),
osimertinib (a tyrosine kinase inhibitor), perindopril (a long
acting ACE inhibitor), and ranolazine (an anti-anginal drug).
We search for a set of molecules that span the entirety of the
Pareto front instead of trying to optimise a single value like the
geometric mean.

The objectives in these benchmarks, as shown in Table 1, are
either similarity metrics that measure the distance to the cor-
responding drug molecule, or specic properties such as the
amount of rotatable bonds in a molecule, the topological polar
surface area52 (TPSA) or the lipophilicity partition coefficient53

(log(P)). The similarity metrics are calculated using the Tani-
moto similarity,54,55 of the ngerprints of the target and the
generated candidate molecule. The ngerprints used here are
either extended-connectivity ngerprints56,57 (ECFP/FCFP)
which encode molecular structures in terms of concentric
atomic neighbourhoods, or atom-pair ngerprints58 (AP) which
encode molecules based on their atom pairs and their bond
distance. The main advantage of ngerprint-based similarities
7530 | Chem. Sci., 2022, 13, 7526–7535
compared to more involved similarity measures is that they can
be rapidly calculated and inherently represent the presence or
absence of molecular substructures or atom pairs.

The raw scores obtained from similarity or property
measurements are post-processed by modier functions that
map the scores to the [0, 1] interval and allow the objective to be
ne-tuned. The modier functions used in this paper are Clip-
ped(value), Gaussian(mean, variance), MinGaussian(mean, vari-
ance), andMaxGaussian(mean, variance). The Clippedmodier is
a thresholded modier in which values above a given threshold
are mapped to one, while values below threshold decrease
linearly to zero. The Gaussian modiers target a specic value,
returning high scores when the underlying value is near the
target. TheMin andMax versions of this modier map the input
value to one if it is lower or higher than the target value,
respectively. For example, in the fexofenadine benchmark
a molecule with a Tanimoto similarity higher than 0.8, a TPSA
above 90.0 and a log(P) below 4.0 would score perfectly on each
objective. More information on the modiers can be found in
the ESI† accompanying the Guacamol paper.13

Precise evaluation of generative models in terms of their
value to pharmaceutical drug design programs can be chal-
lenging. To increase relevance, with respect to real-life drug
design projects, while maintaining the efficient benchmark
© 2022 The Author(s). Published by the Royal Society of Chemistry



Table 2 The dominated hypervolume, maximum geometric mean, internal similarity, and cumulative fitness calls after 150 generations, for
seven multi-objective optimisation tasks averaged over 20 runs of the GB-EPI, NSGA-II, and NSGA-III algorithms. Details of the experimental
setup for these results, including hyperparameters, construction of the initial population, and chemical filters are discussed in Subsection 4. Mean
average values for each of the measures are given with standard deviations

Algorithm Task Dominated hypervolume Geometric mean Internal similarity Fitness calls (cumulative)

GB-EPI
Cobimetinib 0.77 � 0.05 0.93 � 0.01 0.50 � 0.00 13 577 � 1224
Fexofenadine 0.67 � 0.07 0.87 � 0.03 0.50 � 0.00 17 985 � 1398
Osimertinib 0.54 � 0.04 0.85 � 0.01 0.50 � 0.00 12 982 � 1351
Pioglitazone 0.98 � 0.04 0.99 � 0.01 0.50 � 0.00 13 160 � 3104
Ranolazine 0.46 � 0.04 0.81 � 0.02 0.50 � 0.00 16 859 � 1537
DAP kinases 0.03 � 0.05 0.46 � 0.06 0.51 � 0.00 23 545 � 3150
Antipsychotics 0.09 � 0.02 0.57 � 0.06 0.51 � 0.00 21 905 � 3073

NSGA-II
Cobimetinib 0.94 � 0.02 0.94 � 0.01 0.51 � 0.00 17 784 � 1753
Fexofenadine 0.78 � 0.10 0.92 � 0.04 0.52 � 0.00 20 268 � 2909
Osimertinib 0.66 � 0.03 0.89 � 0.01 0.52 � 0.00 16 848 � 2655
Pioglitazone 1.00 � 0.00 1.00 � 0.00 0.51 � 0.00 19 944 � 4765
Ranolazine 0.68 � 0.06 0.87 � 0.02 0.51 � 0.00 21 259 � 2181
DAP kinases 0.05 � 0.03 0.50 � 0.07 0.52 � 0.00 24 350 � 3826
Antipsychotics 0.08 � 0.03 0.50 � 0.05 0.51 � 0.00 21 246 � 1909

NSGA-III
Cobimetinib 0.92 � 0.03 0.93 � 0.02 0.51 � 0.00 14 224 � 1807
Fexofenadine 0.79 � 0.00 0.91 � 0.03 0.52 � 0.01 12 950 � 2326
Osimertinib 0.66 � 0.03 0.89 � 0.01 0.52 � 0.00 11 052 � 2337
Pioglitazone 1.00 � 0.00 1.00 � 0.00 0.51 � 0.01 10 639 � 2736
Ranolazine 0.63 � 0.06 0.85 � 0.02 0.51 � 0.00 17 949 � 2732
DAP kinases 0.04 � 0.02 0.48 � 0.07 0.51 � 0.01 22 454 � 3440
Antipsychotics 0.05 � 0.03 0.49 � 0.04 0.52 � 0.01 32 991 � 3473
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evaluations necessary for iterative design and statistical anal-
ysis, we integrate an existing data-driven surrogate model for
target activity into the Guacamol benchmarking suite.13 We
make use of a previously proposed surrogate model,59 minding
the separation of concerns,60 that has been used to study failure
modes in molecule generation. This model ranks molecules
based on the ratio of trees in a random forest classier, trained
on ChEMBL activity data,35 predicting that the molecule is
active. In the model, binary ECFP ngerprints57 of size 1024 and
radius 2 are used as features.

In this paper, we provide two novel benchmarks for Pareto
optimisation making use of this model. Inspired by the
demands of a multi-target drug discovery project,61 we have
constructed a multi-kinase inhibitor task and a multi-
neuroreceptor binding antipsychotics task. In the kinase
inhibitor task, we aim for molecules that inhibit three DAP
kinases62 (DAPk1, DRP1, and ZIPk) oen implicated in cancer
while trying to avoid activity against common off-target ion
channels63,64 (hERG, and SCN2A). In the ongoing search for
novel anti-psychotic medication, focus has shied65 to
combined binders of serotonergic receptors (5-HT2A, and 5-
HT2B) and a more classical target: the dopaminergic DRD2
receptor. In the multi-receptor antipsychotica task, we target
these three receptors, and aim to avoid an off-target ion channel
(hERG) while fullling the Pzer central nervous system desir-
ability requirements.
© 2022 The Author(s). Published by the Royal Society of Chemistry
3.1 Dominated hypervolume

In multi-objective problems, tracking the evolution of an algo-
rithm or measuring the quality of a Pareto front with respect to
a single parameter can be challenging. In previous bench-
marking efforts for optimisation algorithms of small molecules,
the geometric mean of the objectives has traditionally been
used as both an aggregate objective and as a metric. From
a technical point of view, the geometric mean is the exponential
of the arithmetic mean of the log-transformed set of objective
scores. As a consequence, the geometric mean for strictly
positive values is sensitive to severe underperformance in any
single objective, making it a relevant measure for many multi-
objective optimisation problems. However, other indicators of
the quality of Pareto fronts have been developed by the multi-
objective optimisation community. One such metric is the
dominated hypervolume,66 which we introduce to the domain of
chemical optimisation as an alternative measure for multi-
objective optimisation benchmarks.

The dominated hypervolume (also known as Lebesgue
measure67 or S-metric68) maps a set of points in objective space to
the size of the region Pareto dominated by that set. The hyper-
volume has to be bounded from below by a reference point,
which for the purposes of this paper will systematically be chosen
to be the origin of objective space. The dominated hypervolume
simultaneously takes into account the proximity of the points to
the ideal Pareto front and their spread over the objective space.
Chem. Sci., 2022, 13, 7526–7535 | 7531
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For problems with less than ve objectives, the dominated
hypervolume can be calculated exactly. However, for higher-
dimensional multi-objective optimisation problems, calculating
the dominated hypervolume precisely can be computationally
expensive and hence a smorgasbord of efficient approximation
methods69,70 for the dominated hypervolume has been developed.
3.2 Internal similarity

In comparing the performance of the different algorithms dis-
cussed in this paper, it is useful to differentiate whether algo-
rithms encourage a signicantly different amount of chemical
diversity in their evolutionary populations. In cheminformatics,
similarity between two molecules is usually quantied based on
metrics applied to binary ngerprints that featurise chemical
substructures. To calculate the diversity of molecules, the
pairwise similarity of each combination of molecules in a set
has been traditionally calculated using a binary similarity index,
like the Tanimoto similarity,54,55 and summarised in an aggre-
gate metric. However, the recent development of extended
similarity metrics71,72 enables the simultaneous and straight-
forward comparison of an arbitrary number of bitvectors such
as molecular ngerprints.

In this paper we make use of extended similarity indices to
calculate and track the internal similarity of evolutionary pop-
ulations. Extended similarity metrics, which compare a stack of
bitvectors, have the advantage71 that they do not require the full
similarity matrix of the compound pool or aggregate metric. In
addition to being more efficient, extended similarity metrics
reduce to the traditional binary similarity metrics if applied to
a set of two molecules. According to computational experi-
ments, two newly proposed extended similarity metrics72 are
highly advantageous compared to the extended Tanimoto
similarity: the extended Baroni–Urbani–Buser similarity index
and the extended faith similarity index. Throughout this paper
will make use of the extended faith similarity index.
4 Results

To increase the real-life relevance of the benchmarks used here,
we run each algorithm 20 times for 150 generations per
benchmark. We also reject molecules that either trigger the
structural alerts from GSK,73 or those that contain ring allenes,
macrocycles, an abundance of hologenicity (#F > 6, #Br > 3, #Cl >
3), rotatable bonds (>10) or hydrogen acceptors/donors (>10). In
addition, the initial populations used in this paper consist of
a hundred molecules randomly sampled from the Guacamol13

subset of ChEMBL.35 All these molecules are neutral, do not
contain salts and have Tanimoto similarities below 0.323 to any
of ten FDA approved drugs (celecoxib, aripiprazole, cobimeti-
nib, osimertinib, troglitazone, ranolazine, thiothixene, albu-
terol, fexofenadine, mestranol).

Based on previous work comparing single objective optimi-
sation methods, we choose GB-EPI (with geometric mean as
surrogate tness function) as a representative baseline to
compare against NSGA-II and NSGA-III. For GB-EPI, we choose
four medicinally relevant features of interest to span the
7532 | Chem. Sci., 2022, 13, 7526–7535
archive: molecular weight (ranged from 140 to 555), log(P) (0.0
to 7.0), TPSA (0 to 140), and molar refractivity (40 to 130). For
fair comparison, molecules exceeding these ranges are excluded
from the evolutionary populations of NSGA-II and NSGA-III
during the benchmarks. Based on previous experience with
GB-EPI, the archive size for was set to 150 and the batch size to
20. The archive size in quality-diversity algorithms, such as GB-
EPI, is the counterpart of the population size in traditional
genetic algorithms. In general, the batch size refers to the
amount of molecules submitted to mutation and crossover per
generation. For NSGA-II, we used a population size of 100
(corresponding to the initial population) and a batch size of 20.
For NSGA-III, we used the same batch size but experimentation
guided us towards a smaller total evolutionary population: we
settled on the use 25 reference directions, and a population size
of 35 molecules. These hyperparameters were chosen to support
global performance of each individual algorithm without dis-
rupting splitting procedures, as a consequence the amount of
tness calls varies across algorithms and generations.

In Fig. 5 the evolution of the dominated hypervolume,
maximumgeometricmean and internal similarity of the NSGA-II,
NSGA-III, and GB-EPI algorithms is shown for two representative
benchmarks (cobimentib and fexofenadine). Throughout the
computational experiments GB-EPI, which optimises directly for
the geometric mean, is used as a baseline comparison method.
As expected, NSGA-II and NSGA-III successfully out-compete the
GB-EPI baseline in terms of dominated hypervolume for both
benchmarks. In contrast to GB-EPI, the NSGA algorithms are
designed specically to optimise the Pareto front, the quality of
which is measured by the dominated hypervolume. The
geometric mean follows trends similar to the dominated hyper-
volume in the benchmarks. However, the values of the maximal
geometric mean lie close to each other and the 95% condence
interval of GB-EPI overlaps with NSGA-II and NSGA-III during the
latter stages of the cobimentib task.

An overview of the results for the multi-objective bench-
marks is shown in Table 2 in terms of averages and standard
deviations. NSGA-II and NSGA-III perform better than the
baseline on each of the benchmarks for both dominated
hypervolume andmaximum geometric mean with the exception
of the antipsychotics task. In that task, similarity between the
three receptor targets disadvantages NSGA-III due to its rigid
reference directions. For the fexofenadine and pioglitazone
benchmarks, GB-EPI lies within one standard deviation of
either NSGA-II or NSGA-III for both metrics. Note that to obtain
the global maximum geometric mean of these benchmarks or
the global optimum of one of the objectives, direct optimisation
should be used. In principle, Pareto optimisation algorithms
should reach these types of global optima, but signicantly less
efficiently as the evolutionary population is spread out over
objective space. Conversely, when using a single aggregation
function, the solutions tend to lie close to each other in objec-
tive space, and don't cover the entirety of the Pareto front.

To study the comparative efficiency of each algorithm, we
track the cumulative number of function calls over the full 150
generations for the twenty individual runs of each algorithm.
This has the advantage that it does not interrupt the splitting
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 Timeseries plots with variance bands of the dominated hypervolume, the maximum geometric mean, and internal similarity for the
cobimetinib (a–c) and fexofenadine (d–f) tasks as a function of generations of the evolutionary populations. The mean value (solid line) and the
95% confidence interval (variance bands) over twenty runs of NSGA-II (orange), NSGA-III (blue), and GB-EPI (green, optimising the geometric
mean) are shown. Details of the experimental setup for these results, including hyperparameters, initial population and chemical filters are
discussed in Subsection 4.
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front procedure, as might be the case when working with a xed
and limited function call budget. An overview of the mean and
standard deviation of the cumulative tness calls of each algo-
rithm is shown in Table 2. NSGA-III consistently outperforms
NSGA-II in terms of efficiency, and is more efficient than GB-EPI
in all benchmarks where they have similar performance for
dominated hypervolume and geometric mean. In contrast to
single objective optimisation problems, where a lower internal
similarity has been regarded as benecial, for multi-objective
optimisation the algorithms which encourage greater internal
similarity are better performing.
5 Conclusion and outlook

This paper introduces two novel open-source and graph-based
implementations of non-dominated sorting genetic algorithms,
NSGA-II and NSGA-III, for small molecule multi-objective opti-
misation. The performance of these algorithms is compared to
a single objective quality-diversity algorithm (GB-EPI) on four
metrics: dominated hypervolume, maximal geometric mean,
internal similarity and efficiency. Previous benchmarks for
generative models of small molecules focused on the maximal
geometric mean as a sole aggregate indicator of success in multi-
objective optimisation. However, the Pareto front – the collection
of optimal points in objective space – is not solely characterised by
the geometric mean of a single molecule. In this paper we show
that the size of the hypervolume dominated in objective space
(with respect to the origin) is a useful, oen more discriminative,
alternative metric in generative model benchmarks.

The performance of NSGA-II and NSGA-III for graph-based
optimisation of molecules is encouraging. Both algorithms
specialise in nding the optimal Pareto front and our
© 2022 The Author(s). Published by the Royal Society of Chemistry
benchmarks show that this approach is superior compared to
GB-EPI (which optimises the geometric mean directly). In line
with analyses of purely numerical benchmarks found in the
literature, NSGA-III does not always outperform NSGA-II in our
chemical benchmarks, indicating that the two algorithm
produce similar results according to this metric. Throughout all
the benchmarks presented in this paper however, NSGA-III
seems to be the most efficient in its use of function calls.
Notably, and in contrast to single objective optimisation, the
higher performing algorithms NSGA-II and NSGA-III have
a higher and faster increasing internal similarity in their
evolutionary populations than the baseline.

The above discussed efficiency, performance, and exibility
of the graph-based implementations of NSGA-II and NSGA-III
for small molecule multi-objective optimisation as provided
with this paper, allows the community to use these algorithms
for practical use. In addition, these implementations can be
used as future baselines and as starting points for future
developments in this eld. One such possible development
would be to further reduce the amount of function calls through
the use of contextual multi-armed bandits,74 or Gaussian
processes75 to prune the amount of molecules presented to the
evaluation step of the algorithms. Finally, the algorithms pre-
sented here can be integrated into the workow for multi-
objective tasks given to self-driving laboratories76 or other set-
ups making use of active learning.77
Data availability

Full code for the implementations of NSGA-II and NAGA-III is
available at: https://github.com/Jonas-Verhellen/
MolecularGraphPareto.
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8 R. Gómez-Bombarelli, et al., ACS Cent. Sci., 2018, 4, 268–276.
9 M. J. Kusner et al., International Conference on Machine
Learning, 2017.

10 E. Smalley, Nat. Biotechnol., 2017, 35, 604–605.
11 A. Manglik, et al., Nature, 2016, 537, 185–190.
12 J.-L. Reymond, Acc. Chem. Res., 2015, 48, 722–730.
13 N. Brown, et al., J. Chem. Inf. Model., 2019, 59, 1096–1108.
14 E. S. Henault, M. H. Rasmussen and J. H. Jensen, PeerJ Phys.

Chem., 2020, 2, e11.
15 M. Popova et al., arXiv e-prints, 2019, arXiv:1905.13372.
16 D. C. Elton, et al., Mol. Syst. Des. Eng., 2019, 4, 828–849.
17 D. A. Smith, A. Harrison and P. Morgan, Chem. Res. Toxicol.,

2011, 24, 463–474.
18 W. Gao and C. W. Coley, The Synthesizability of Molecules

Proposed by Generative Models, 2020.
19 D. A. Van Veldhuizen and G. B. Lamont et al., Late Breaking

Papers at the Genetic Programming 1998 Conference, 1998,
pp. 221–228.

20 T. P. Bagchi, in The Nondominated Sorting Genetic Algorithm:
NSGA, Springer US, Boston, MA, 1999, pp. 171–202.

21 K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, IEEE Trans.
Evol. Comput., 2002, 6, 182–197.

22 K. Deb and H. Jain, IEEE Trans. Evol. Comput., 2014, 18, 577–
601.

23 H. Jain and K. Deb, IEEE Trans. Evol. Comput., 2014, 18, 602–
622.

24 J. H. Jensen, Chem. Sci., 2019, 10, 3567–3572.
7534 | Chem. Sci., 2022, 13, 7526–7535
25 H. Ishibuchi, R. Imada, Y. Setoguchi and Y. Nojima, 2016
IEEE Congress on Evolutionary Computation (CEC), 2016, pp.
3045–3052.

26 G. Campos Ciro, F. Dugardin, F. Yalaoui and R. Kelly, IFAC-
PapersOnLine, 2016, 49, 1272–1277.

27 R. Pophale, F. Daeyaert and M. W. Deem, J. Mater. Chem. A,
2013, 1, 6750–6760.

28 J. Besnard, G. F. Ruda, V. Setola, K. Abecassis,
R. M. Rodriguiz, X.-P. Huang, S. Norval, M. F. Sassano,
A. I. Shin, L. A. Webster, F. R. C. Simeons, L. Stojanovski,
A. Prat, N. G. Seidah, D. B. Constam, G. R. Bickerton,
K. D. Read, W. C. Wetsel, I. H. Gilbert, B. L. Roth and
A. L. Hopkins, Nature, 2012, 492, 215–220.

29 H. Maier, et al., Environ. Model. Soware, 2019, 114, 195–213.
30 J. Holland, Adaptation in Natural and Articial Systems: An

Introductory Analysis with Applications to Biology, Control,
and Articial Intelligence, 2019.

31 D. E. Goldberg and J. H. Holland, Mach. Learn., 1988, 3, 95–
99.

32 E. Anderson et al., SMILES, a Line Notation and Computerized
Interpreter for Chemical Structures, US Environmental
Protection Agency, Environmental Research Laboratory,
1987.
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