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Abstract

Cell internalization and intracellular fate of H. pylori products/virulence factors in vivo by human gastric epithelium, the main
target of H. pylori-induced pathologies (i.e., peptic ulcer and cancer), are still largely unknown. Investigating gastric
endoscopic biopsies from dyspeptic patients by means of ultrastructural immunocytochemistry, here we show that, in
human superficial-foveolar epithelium and its metaplastic or dysplastic foci, H. pylori virulence factors accumulated in a
discrete cytoplasmic structure characterized by 13-nm-thick cylindrical particles of regular punctate-linear substructure
resembling the proteasome complex in size and structure. Inside this particle-rich cytoplasmic structure (PaCS) we observed
colocalization of VacA, CagA, urease and outer membrane proteins with NOD1 receptor, ubiquitin-activating enzyme E1,
polyubiquitinated proteins, proteasome components and potentially oncogenic proteins like SHP2 and ERKs in human
gastric epithelium. By means of electron and confocal microscopy, we demonstrate that the in vivo findings were
reproduced in vitro by incubating human epithelial cell lines with H. pylori products/virulence factors. PaCSs differed from
VacA-induced vacuoles, phagosomes, aggresomes or related bodies. Our data suggest that PaCS is a novel, proteasome-
enriched structure arising in ribosome-rich cytoplasm at sites of H. pylori products accumulation. As a site of selective
concentration of bacterial virulence factors, the ubiquitin-proteasome system and interactive proteins, PaCS is likely to
modulate immune-inflammatory and proliferative responses of the gastric epithelium of potential pathologic relevance.
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Introduction

Gastric superficial-foveolar epithelium is the main site of host/

bacterial interaction in H. pylori infection. H. pylori contacts and

adheres to the luminal surface of the epithelium, may enter

intercellular lateral spaces and may even penetrate inside the cell

cytoplasm [1,2]. At this intracellular site, the bacteria are usually

enveloped by a host cell membrane preventing direct contact with

the cell cytoplasm and related organelles [2,3]. Coculture of H.

pylori with epithelial cell lines showed, in addition to bacterial

uptake into the cells, the capacity of H. pylori to deliver toxins and

other products into the cells, either by a type IV secretion system

directly injecting CagA and peptidoglycan into the cytoplasm [4–

6] or by the autotrasporter mechanism, as seen for VacA which

then undergoes internalization through endocytosis [7,8]. Endo-

cytosis may also internalize outer membrane vesicles (OMVs)

carrying several proteins (OMPs), lipopolysaccharides (LPS), and

peptidoglycans (PGs) [9,10]. Urease, a major component of H.

pylori bodies, is known to be internalized by lamina propria cells

[11] as well as luminal and intraepithelial granulocytes [12], while

scarce evidence is available concerning epithelial cells.

Although it seems clear, at least from in vitro studies, that H.

pylori products can enter epithelial cells, at present there is limited

in vivo evidence concerning their internalization and intracellular

fate in human gastric epithelium. In addition, it is not clear

whether intracellular H. pylori may lose their enveloping host

membrane, as it has been shown to occur for other bacteria [13],

thus allowing free intracellular release of their virulence factors

and direct contact with cytosolic components like NODs or the

ubiquitin-proteasome system (UPS), known to be involved in

intracellular bacterial recognition and management [6,14].

Intracellular NOD receptors play an important role in H. pylori

sensing by epithelial cells [6,10] which respond to the bacterium or

its virulence factors by releasing cytokines and chemokines which

recruit and activate immune-inflammatory cells [15] or through

enhanced production of HLA peptides, costimulatory molecules

and cathepsins known to take part in antigen processing and

presentation [16–18]. In addition, increased epithelial cell

proliferation [19], altered apoptosis [20–22], and a variety of

‘‘cytotoxic changes’’ [1,17] have been described, which may play a

role in the genesis of the main pathologic sequelae of chronic H.

pylori gastritis, such as peptic ulcer and cancer. However, several

intracellular processes linking H. pylori virulence factors to the

epithelial response in the infected human mucosa remain to be

clarified, especially concerning type of cells and organelles or

subcellular compartments involved.
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During a recent investigation of human gastric mucosa, both

H. pylori and its virulence factors were found to accumulate

selectively into endosomal vesicles, phagolysosomes and the

cytoplasm of dendritic cells, granulocytes, macrophages and

mast cells, with or without associated cytotoxic changes [12].

Thus, thorough reinvestigation of H. pylori-infected human

gastric epithelium seemed to be warranted so as to gain more

evidence on possible cellular accumulation of bacterial

products, their intracellular fate and pertinent host cell

responses. The following questions were given special consid-

eration: 1) Are bacterial products accumulated inside gastric

epithelium, and in which cellular compartments? 2) Do

‘‘naked’’ (i.e., devoid of host enveloping membrane) H. pylori

occur intracellularly so as to directly contact cytosolic host

components? 3) Are bacterial products like VacA and outer

membrane components, known to be taken up by endosomal

vesicles of infected cells, released to the cytosol where sensors

like NODs or UPS may sense them?

Here we demonstrate the existence of a novel intracellular

structure we named PaCS (for Particle-rich Cytoplasmic Struc-

tures) where H. pylori products concentrate in vivo in colonized

gastric epithelium as well as in vitro in human epithelial cell lines

incubated with H. pylori products. PaCS, characterized by 13-nm-

thick cylindrical particles we identified as proteasome complexes,

is a distinctive cytoplasmic compartment where both NOD1, a

selective H. pylori receptor, and UPS components are co-

concentrated. This structure may have a role in bacterial

recognition and handling, and may modulate the activity of

toxins/virulence factors and induce pertinent immune responses,

especially through immunoproteasome. The presence of PaCSs in

gastric preneoplastic lesions, and their selective colocalization with

putative oncogenic factors like CagA, SHP2 and members of the

MAPK/ERK signaling system, may suggest this structure has a

role in the regulation of cell growth and neoplastic transformation,

also in view of its highly enriched UPS content and the mounting

evidence for a role of UPS in cancer origin or progression.

Results

Identification of a discrete particle-rich cytoplasmic
structure

Conventional paraffin sections of human gastric mucosa showed

19 patients with gastritis, among the 26 cases investigated, 15 of

whom with H. pylori on the luminal side of their superficial-foveolar

epithelium. Toluidine blu-stained semithin resin sections from the

same cases allowed epithelial degenerative-cytotoxic changes to be

identified more easily and revealed small pink-stained cytoplasmic

areas inside the blue-stained infra/perinuclear cytoplasm of the

foveolar cells (Figure 1A, B and C). Transmission electron

microscopy (TEM) of consecutive sections identified such areas

with well-defined, discrete cytoplasmic structures, situated in

rough endoplasmic reticulum (RER)-rich cytoplasm and charac-

terized by the accumulation of moderately osmiophilic barrel-like

particles of about the same size as ribosomes. However, unlike

ribosomes, the particles showed a distinctive punctate substructure

due to minute spots forming parallel lines oriented orthogonally to

the particle main axis (Figure 1B1, b2, b3, D, and E). Unlike

ribosomes and other phosphonucleoprotein-containing structures,

such particles showed no phosphorus signal when analyzed by

electron spectroscopy imaging (ESI) (Figure 2A and A1, B and B1).

From now on, we will refer to the Particle-rich Cytoplasmic

Structures as PaCSs. Common cytoplasmic organelles like

mitochondria, Golgi, lysosomes, endosomes, centrosomes or

microtubules were generally excluded from PaCSs or pushed to

their borders.

H. pylori and their products inside PaCS
Sparse intraepithelial, intercellular or intracellular, bacterial

bodies or their H. pylori-immunoreactive remnants were detected

by TEM in most biopses examined, including specimens from 7 of

11 cases lacking bacteria on the luminal side and diagnosed as H.

pylori-negative at light microscopy investigation of paraffin sections.

Sometimes, H. pylori bodies or remnants were found inside PaCSs

(Figure 2C and D), usually in cells also showing H. pylori outside

PaCS, in membrane-enclosed vacuoles of the supranuclear

cytoplasm (Figure 2E). Inside PaCS the bacteria, although

frequently surrounded by a clear empty space, were devoid of

host membrane envelopment, thus being allowed to interact with

PaCS components (Figure 2c and d). The H. pylori nature of such

bacterial bodies was confirmed by their immunogold reactivity for

urease, VacA, and H. pylori OMPs (Figure 2c). In addition, PaCS

itself, either with (Figure 2c) or without (Figures 2F and 3A, B and

C) inner bacteria, also reacted selectively for bacterial products like

VacA, CagA, urease or OMPs. Median immunogold particles

counts inside at least 100 mm2 PaCS sections ranged from 3.41

(OMPs) to 3.68 (VacA), to 4.33 (urease) per mm2, with a ratio

between PaCS and surrounding cytoplasm ranging from 8.5

(OMPs) or 8.6 (VacA) up to 27.1 (urease). CagA immunoreactivity

of PaCS changed prominently in different biopsies, some of which

being unreactive while others showing selective, though variable

reactivity (from 1.05 up to 9.90 particles/mm2, and a PaCS/

cytoplasm ratio ranging from 4.0 up to 12.8, partly depending on

different antisera employed).

PaCSs apparently arise in the cytoplasm interposed between

RER cisternae by focal, progressive concentration of their

distinctive particles at sites where bacterial products accumulate

(Figure 2F and f), with subsequent dislocation of surrounding

cytoplasm and its organelles. Indeed, thin cytoplasmic remnants

were sometimes found inside a PaCS, suggesting it originated from

expansion and fusion of smaller foci (Figure 3A, a1, D, d1).

PaCSs differ from VacA-induced vacuoles
In the majority of cases, H. pylori products stored in PaCS are

likely to take origin, as well as from the relatively few intracellular

bacteria, from more abundant extracellular bacteria colonizing

gastric epithelial cells on their luminal side (Figure 3A and D).

Indeed, many membrane invaginations (Figure 4A, a1 and a2),

often carrying VacA labelling, were found at sites of bacterial

adhesion. They most likely correspond to the ‘‘early VacA

carriers’’ seen in vitro to enter cell cytoplasm of VacA-incubated

HeLa cells and form tubular early endosomes [8]. Indeed, many

tubular vesicles, sometimes VacA-storing, were seen in the apical

cytoplasm of colonized superficial-foveolar cells, together with

distended round vesicles probably corresponding to late endo-

somes (Figure 4A and B). We also observed reciprocal fusion of the

latter to form larger VacA-storing vacuoles, still showing remnants

of the original endosome membrane inside, especially in

endoluminally bulging cells bordered by intercellular luminal

clefts (Figure 4B). In addition, autophagic vacuoles storing various

cytoplasmic remnants and dense bodies, as well as VacA

immunoreactivity were frequently found in the supranuclear

cytoplasm (Figure 4C and c).

In vitro experiments on HeLa cells incubated for 24 h with H.

pylori broth culture filtrate (BCF), besides confirming previous

observations on VacA (and OMPs) uptake into endosomal vesicles

and vacuoles [7,9], clearly identified typical PaCSs showing VacA

immunoreactivity (Figure 4D and d), thus proving their indepen-

H. pylori and PaCS
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Figure 1. Identification of PaCS in H. pylori-colonized human gastric epithelium in vivo. (A, 1,000x) and (B, 1,000x) H. pylori (arrows)
colonized superficial gastric epithelium stained with toluidine blue shows metachromatic pink areas (arrowheads), mainly infranuclear, surrounded by
blue stained (ribosome-rich) cytoplasm. Note in A a dendritic cell (DC; see [ref. 12]) approaching luminal bacteria. Aldehyde-osmium fixed, 0.5-mm-
thick resin sections. (B1, 1,000x) TEM of the same epithelium in a consecutive section to B shows identity of the pink structures with PaCSs. A PaCS is
enlarged in b2 (6,300x) and further in b3 (31,500x) to show the characteristic particles (left side in b3), to be compared with ribosomes of
surrounding RER (right side in b3). Note in b3 direct contiguity of the PaCS with ribosomes and, in the lower right corner, with two RER cisternae
(arrows), apparently without admixture of respective contents. (C, 500x) Toluidine blue stained resin section showing on the right a highly colonized,
severely damaged epithelium with deeply irregular luminal border (due to cell bulging, desquamation and microerosion), vacuolation and loss of
mucin granules in the apical-supranuclear cytoplasm, disappearance of ribosome-related basophilia in the basal cytoplasm and loss of cell polarity, to
be compared with a relatively preserved epithelium in the lower left corner and a moderately damaged epithelium upper left. Note several
metachromatic areas in lower left (arrowheads), a single fainty stained area upper left and no metachromatic areas in the severely damaged
epithelium on the right. (D, 120,000x) High-resolution TEM of barrel-like, randomly oriented PaCS particles, 13 nm thick and 15 to 43 nm long, to
show their regular punctate substructure. Compare with more dense, frequently angular ribosomes aligned along RER cisternae in E (120,000x). cs,
cisterna; ics, intercellular space; L, gastric lumen; Lp, lamina propria; n, nucleous; sg, secretory granules.
doi:10.1371/journal.pone.0009716.g001

H. pylori and PaCS
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dence from VacA-storing vacuoles at ultrastructural level, despite

sharing VacA content. It should be noted that, at variance with in

vitro non-polarized cells, where PaCSs and VacA-storing vacuoles

were usually admixed in the same cytoplasmic areas (Figure 4D),

in superficial-foveolar cells of gastric biopsies they were topo-

graphically separated, with PaCSs mainly located in the deep

infra/perinuclear, ribosome-rich cytoplasm and VacA-storing

endosomes, vacuoles or phagosomes in the ribosome-poor,

apical/supranuclear cytoplasm.

Concerning CagA, small, discrete immunogold deposits were

found in the foveolar cell cytoplasm immediately below some

adhering bacteria (Figure 4E and F), a finding which may be

compatible with a non-endocytotic way of entry.

NOD1 receptor in PaCS
As NOD1 has been identified as a major intracellular H. pylori

sensor of epithelial cells [6], we tested NOD1 antibodies on H.

pylori-colonized human superficial-foveolar cells of gastric biopsies.

Figure 2. Characterization of PaCS in H. pylori-colonized human gastric epithelium in vivo. (A) and (A1) (both 4,000x) In two foveolar cells
(A) three PaCSs (asterisks), one of which enlarged in the inset (upper left corner, 50,000x) to show their particles, lack phosphorus signal (red colour)
when viewed under ESI analysis (A1). Note the intense signal of nucleoproteins in the nucleous, cytoplasmic ribosomes surrounding PaCSs and, in B
and B1 (both 8,000x), a luminal H. pylori adhering to epithelial cell microvilli. (C, 6,300x) and (D, 6,300x) H. pylori bodies inside PaCSs, two of which
fairly-well preserved (C; enlarged in c, 16,000x), the other (D; enlarged in d, 16,000x) heavily degenerated. Note a peribacterial clear space, the
immunogold reactivity of both bacteria and PaCS for H. pylori OMPs (5 nm gold) and VacA (10 nm gold) in c and its inset (44,000x), while the PaCS
only, but not bacterial remnants, reacts for human 20S-b5i subunit of the immunoproteasome (d). (E, 25,000x) OMP-reactive intracellular H. pylori
enclosed in a supranuclear vacuole of a foveolar cell. (F, 6,300x) Several small, thin PaCSs are sparse inside the RER at the base of an epithelial cell,
enlarged in f (32,000x) to show their particles clearly less dense than ribosomes, as well as their selective immunogold reactivity for CagA. g, Golgi
area; Lp, lamina propria; n, nucleous; sg, secretory granule.
doi:10.1371/journal.pone.0009716.g002

H. pylori and PaCS
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As shown in Figure 5A, NOD1 immunoreactivity was found to be

selectively concentrated in PaCSs. Interestingly, the toluidine blue

metachromatic basophilia found in PaCS (Figure 1A and B) is a

known property of anionic glycoconjugates [23], to which

proteoglycans, the specific ligands of NOD1 [24], belong. As to

the nature of the compounds accounting for PaCS metachromatic

basophilia, we found that, when the pH of the toluidine blue

solution was progressively lowered from 8.0 (i.e., the usual value of

the standard borax solution used for staining semithin resin

sections) down to 3.0, metachromatic basophilia persisted down to

pH 4.2, weakened at pH 3.9 and completely disappeared at

pH 3.6. This behavior should rule out strong anions like sulphates

or phosphates (the latter also being ruled out by ESI analysis

(Figure 2A1)) while favouring the involvement of relatively weak

anions such as carboxylated glycoconjugates like bacterial

proteoglycans [24].

UPS components in PaCS
In addition to bacterial products and NOD1, PaCSs were

found to show consistent and selective immunogold reactivity for

polyubiquitinated proteins (Figure 3D, d1 and d2), ubiquitin-

activating ligases E1A/B (Figure 5B) and proteasomal compo-

nents like 19S, 20S and 20S-b5i subunits, usually in close

topographic connection with PaCS inner particles (Figures 2D,

and 5C, D, E and G). Therefore, we reconsidered the high-

resolution ultrastructure of these particles in comparison with that

reported by in vitro X-ray analysis of the proteasome complex

[25–27]. In thin, appropriately oriented and sufficiently contrast-

ed sections from both gastric biopsies and epithelial cell lines,

PaCS particles showed a barrel-like form measuring around

13 nm in thickness and from 15 to 43 nm in length (Figures 1D,

5G, H and I, and 6a2). These measures fit in well with those

reported in vitro, for the 20S proteasome complex or the 26S

Figure 3. CagA, urease, VacA, and polyubiquitinated proteins accumulate in PaCS. Foveolar-superficial cells with luminal H. pylori
localization, in the apparent absence of intracellular bacteria (A, 8,000x), show several PaCSs with selective immunoreactivity for: CagA (enlarged in
a1, 12,000x, and in a2, 84,000x); urease (B, 8,000x), with PaCSs on both sides of the nucleous, one of which enlarged in b (84,000x); VacA (C, 4,500x;
one enlarged in c, 60,000x); and polyubiquitinated proteins (D, 9,500x; enlarged in d1, 12,000x, and further in d2, 84,000x). Note in A and D
remnants of cytoplasm inside PaCSs, suggesting their origin from enlargement and fusion of smaller structures like those in Figure 2F. L, gastric
lumen; Lp, lamina propria; n, nucleous.
doi:10.1371/journal.pone.0009716.g003

H. pylori and PaCS
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Figure 4. PaCSs differ from VacA-containing vacuoles and phagosomes. (A, 12,000x, 10 nm gold), (a1, 20,000x), and (a2, 20,000x) H. pylori
organisms closely adhering to the luminal surface of colonized cells in superficial gastric epithelium. Note VacA immunoreactivity in bacterial
periplasm, cellular early carriers under formation immediately below bacterial adhesion (arrows) and some apical endocytic-endosomal vesicles. (B,
7,000x) Endoluminal bleb of a colonized superficial cell showing immunoreactive VacA in adhering bacteria and some endosomal vesicles fusing each
other to form VacA-storing larger vacuoles with inner remnants of original endosomal membranes. (C, 10,000x) Colonized cell showing a large
supranuclear phagosome with abundant cytoplasmic remnants and debris and VacA immunoreactivity, enlarged in c (40,000x). (D, 7,000x) HeLa cells
incubated for 24 h with H. pylori BCF. Note inside the cell VacA immunoreactivity of some endosomal vesicles, a large vacuole as well as two PaCSs
(asterisks) with distinctive particles (d, 60,000x). (E) and (F) (both 55,000x) Small CagA deposits in the subluminal cytoplasm just below two adhering
H. pylori. L, gastric lumen; foveolar cell type; e, endosomal vesicle; lc, luminal cleft; n, nucleous; sg, secretory granules; v, vacuole.
doi:10.1371/journal.pone.0009716.g004

H. pylori and PaCS
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‘‘capped’’ proteasome, respectively, where the 20S core particle is

extended at one or both extremities by the addition of the 19S or

the PA28 ‘‘cap’’ [25–27]. The four-ring substructure of the 20S

core proteasome was also recognized in some side views of the

PaCS particle, with (Figure 5H and its inset) or without addition

of cap structures at its extremities. In addition, ‘‘top’’ views of

favorably oriented particles, so as to provide a cross section of the

barrel (Figure 5I and its inset), also showed the characteristic

seven-star structural pattern reported for isolated proteasome

complex [25].

Control immunogold tests with rabbit or mouse immunoglob-

ulins gave negative results in PaCSs (Figure 5F), as did antibodies

directed against ribosomal proteins, cathepsin D, S-100 protein or

insulin and glucagon hormones. Selective PaCS reactivity was also

found for some cytosolic proteins known to interact with CagA, as

SHP2 tyrosine phosphatase (Figure 6B) which forms complexes in

Figure 5. Proteasome is the particle component of PaCS which also contains NOD1. Selective PaCS reactivity for NOD1 (A, 12,500x; boxed
part enlarged in its inset, 60,000x); ubiquitin-activating enzyme E1 (B, 10,000x; enlarged in its inset, 32,000x); 20S proteasome (C, 12,500x; enlarged in
its inset, 60,000x); 20S-b5i subunit of immunoproteasome (D, 12,500x; enlarged in its inset, 60,000x); and 19S proteasome (E, 12,500x; enlarged in its
inset, 60,000x). Note in F (10,000x) and its inset (32,000x) lack of immunogold particles in a PaCS and surrounding cytoplasm of a control section from
the same resin block (as in A, B, and C) incubated with gold-labelled non-immune globulins. In G (125,000x), H (340,000x) and I (340,000x) high-
resolution TEM of the 13-nm-thick PaCS particles, selectively immunoreactive for 19S proteasome (G), shows their inner punctate substructure with
minute electrondense spots aligned perpendicularly to particle long axis. On a side view like that further enlarged in the inset of H (600,000x), some
particles closely resemble the four parallel rings of a proteasome 20S core capped at both estremities, while on a top view like that in the inset of I
(600,000x) they may reproduce the proteasome seven-fold star-like symmetry. n, nucleous.
doi:10.1371/journal.pone.0009716.g005

H. pylori and PaCS
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Figure 6. Colocalization in PaCS of bacterial products, UPS and oncogenic/signaling molecules in vivo and in vitro. (A, 20,000x;
enlarged in a1, 95,000x, and a2, 120,000x) Colocalization in PaCSs of CagA (15 nm gold particles) with polyubiquitinated proteins (10 nm gold
particles) and 20S-b5i subunit of immunoproteasome (5 nm gold particles). Note in a1 and a2 close reciprocal contacts of some 20-nm gold particles
with 10- or 15-nm ones; also note in a2 the linear-punctate substructure of PaCS particles. (B, 80,000x) In another section through the same PaCS as
of A, colocalization of CagA (15 nm gold) and SHP2 protein (10 nm gold) is obtained. (C, 5,000x; enlarged in c, 35,000x) Another PaCS showing
selective ERK reactivity. (D, 10,000x; enlarged in d, 45,000x) In addition to a typical particulate PaCS (left part of d) immunoreactive for FK1 antibodies
(recognizing polyubiquitinated proteins), another, FK1-unreactive non-particulate cytoplasmic structure (upper right of D and d) with a filamentous-
honeycomb meshwork. (E, 6,300x) Dysplastic cell with prominent nucleolus showing several PaCSs (one labelled with asterisk) in its basal cytoplasm.
A PaCS containing bacterial remnants is enlarged in e (20,000x) to show H. pylori (OMPs) immunoreactivity of both bacterial body and PaCS itself. n,
nucleous; nl, nucleolus. (F) Confocal microscopy of HeLa cells (nuclei in blue) incubated for 24 h with H. pylori BCF shows the presence in the
cytoplasm of yellow spots (arrows; see also enlargement in f) representing the colocalization of ubiquitinated proteins (FK2; green) with VacA (red).
Note that vacuole-associated VacA (arrowheads) does not colocalize with FK2. Colocalization charts (graphs 1 and 2) show the intensity profile for
each fluorescence taken along the dotted lines. Pictures are from one single confocal section. Bar: 25 mm.
doi:10.1371/journal.pone.0009716.g006

H. pylori and PaCS
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vitro and in vivo with CagA, or ERK kinases (Figure 6C) involved in

a MAP kinase signaling pathway activated by CagA [28]. Tests on

consecutive ultramicrotomic sections through the same PaCS or

on the same section using multiple antibodies linked to gold

particles of different size confirmed colocalization of each bacterial

protein with NOD1, polyubiquitinated proteins and proteasomal

components, sometimes with gold particles tightly adherent to

each other so as to suggest possible interaction of respectively

linked molecules (Figure 6A, a1 and a2).

Non-particulate, UPS-negative structures
In addition to PaCS, other types of cytoplasmic structures were

observed by TEM, less commonly in gastric epithelium and more

frequently in epithelial cell lines. They showed a loose filamentous

meshwork often forming an irregular honeycomb-like scaffold, or

with foci of more compact fibrillar structure, in the absence of 13-

nm-thick particles (Figure 6D and d). These particle-free, fibrillar

to honeycomb-like structures were sometimes found to coexist with

PaCS, adjacent to each other inside the same cytoplasmic area,

occasionally with patterns suggesting that they may originate from

PaCS by dissolution of the 13-nm particles with retention of the

interparticle scaffold.

PaCS distribution
Both PaCS under TEM and metachromatic areas of toluidine

blue-stained resin sections under light microscopy were mainly

found in superficial-foveolar cells of H. pylori-infected gastric

mucosa, with progressively increasing number and size from the

renewal zone to the surface epithelium. Less numerous or smaller

PaCSs were seen in superficial-foveolar cells devoid of luminal

bacteria, though showing sparse intracellular H. pylori and

moderate mononuclear cell inflammation in the underlying lamina

propria.

PaCSs were not observed in acidopeptic, pyloric or cardial

gland cells, nor in complete, small intestine-type (type I)

metaplastic epithelium or lamina propria cells of inflamed gastric

mucosa. In three cases, we found areas of colonic-type (type III)

intestinal metaplasia whose sparcely granulated goblet cells

showed intracellular H. pylori, especially in the supranuclear

cytoplasm [2], as well as typical PaCSs in the infranuclear

cytoplasm. PaCSs were also found in dysplastic foci observed in

two such cases (Figure 6E and e).

In H. pylori-positive mucosa, PaCSs were significantly less

represented in epithelial cells showing cytotoxic changes like

increased cell desquamation with minute erosions, severe irregu-

larity of the luminal surface alternating cell bulging with

intercellular luminal clefts, altered cell polarity, focal micropapil-

lary hyperplasia of mucin-poor elongated cells, cytoplasmic

vacuoles and autophagosomes (Figures 1C and 4A, B and C),

compared with well-polarized cells lacking signs of severe epithelial

damage (Figures 1A, B, B1 and 3A) and often coexisting in the

same case or even in the same mucosal specimen (Figure 1C).

Confocal microscopy of BCF-treated epithelial cells in
culture

Parallel confocal microscopy tests on BCF-treated HeLa or

AGS cells confirmed ultrastructural findings by showing VacA in

PaCSs, characterized by their concentration of ubiquitinated (i.e.,

FK2-reactive) proteins (Figure 6F). Indeed, in agreement with

previous findings [7,22], a large amount of VacA was associated to

cytoplasmic vacuoles which, on the contrary, lacked ubiquitinated

proteins (Figure 6F). PaCS identification at confocal microscopy

level was further confirmed by additional colocalization of

proteasome (Figure 7A), which, like VacA colocalization, was

essentially due to BCF treatment (Figure 7B). Interestingly, after

24 h incubation with H. pylori BCF, HeLa cells still showed a

proteasome-negative 45% fraction of FK2-reactive spots

(Figure 7B). This fact, which is paralleled by a similar behavior

of VacA/FK2 colocalization, may be explained by the time-

dependence development of both FK2- (Figure 7C) and protea-

some-reactive (not shown) spots. It seems likely that the whole

process of PaCS formation is time-dependent, with final

recruitment of the proteasome to the aggregate of bacterial

products and ubiquitinated proteins. The role of H. pylori and its

products in PaCS formation is further stressed by the enhanced

colocalization between ubiquitinated proteins and proteasome in

BCF-treated cells compared to untreated control cells (Figure 7B)

and by the observation that colocalization between ubiquitinated

proteins and NOD1 receptor was present only in BCF-treated cells

(Figure 7D).

Discussion

In this study a novel cytoplasmic structure is described in H. pylori-

colonized human gastric epithelium which is essentially character-

ized by accumulation of regularly spaced, 13-nm-thick, elongated

particles inside a relatively clear, amorphous to filamentous

background, to form a distinct cytoplasmic area surrounded by

RER. Such a particle-rich cytoplasmic structure (PaCS) showed

selective reactivity for a) bacterial products like CagA, VacA, urease

and OMPs, sometimes coupled with H. pylori bodies or remnants, b)

NOD1 receptor for bacterial peptidoglycans, c) E1 ubiquitin-

activating enzyme and polyubiquitinated proteins, and d) several

proteasome components, including the 20S core subunits, 19S-S2

subunit, and 20S-b5i subunit (also known as LMP7, characterizing

the INFc-stimulated immunoproteasome). PaCSs apparently arise

in the juxtaribosomal cytoplasm interposed between RER cisternae,

at sites of bacterial products accumulation, and progressively grow

by accumulation of newly formed particles, while pushing aside

cytoplasmic organelles.

In thin sections analysed at high resolution, some of the PaCS

particles showed ultrastructural resemblance to the structure

reported in vitro by X-ray analysis of the proteasome complex

[25–27], with which they are likely to be identified, as also

suggested by their direct immunoreactivity for proteasomal

components. Previous immunogold studies documenting a close

topographic correlation between proteasome immunoreactivity

and RER [29] may also support this conclusion, given present

separation of phosphorous-positive, proteasome-negative, RER-

associated ribosomes from the phosphorous-negative, proteasome-

immunoreactive 13-nm particles collected inside PaCS.

PaCSs were more prominent in the basal cytoplasm of

superficial-foveolar cells showing H. pylori colonization on their

luminal side. Vesicular endosomes, often storing VacA, were seen

to accumulate in the apical cytoplasm of colonized epithelium and

to fuse each other to form VacA-storing vacuoles, as already

shown in vitro [7,30] and in vivo [9,17]. Both electron and confocal

microscopy of human gastric biopsies or cultured epithelial cells

clearly separated PaCS from VacA-storing vacuoles and phago-

somes, despite their common toxin content. In addition, minute,

free CagA deposits were seen in the cytoplasm just underlying H.

pylori adhesion sites. How both cytosolic (CagA) and endocytosed

(VacA and OMPs) bacterial products reach deeply situated PaCS

(an essentially cytosolic compartment) after entering the apical part

of the cell, remains to be clarified.

PaCSs were also observed in biopses from cases showing no H.

pylori at routine light microscopy investigation of paraffin sections.

H. pylori and PaCS
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Figure 7. H. pylori products/virulence factors induce PaCS formation in vitro. (A) Confocal microscopy of HeLa cells incubated for 24 h with
Cy5-labeled purified VacA for the simultaneous detection of proteasome (green), ubiquitinated proteins (FK2; red), and VacA (blue). The
enlargements show in a1 colocalization (purple) between ubiquitinated proteins and VacA, and in a2 colocalization (light blue/white) of proteasome,
ubiquitinated proteins, and VacA. The graphs on the right represent the respective colocalization charts showing the intensity profile for each of the
three fluorescences taken along the dotted lines. Pictures are from one single confocal section. Bar: 10 mm. (B) Confocal microscopy of HeLa cells
(nuclei in blue) incubated for 24 h without (control) or with H. pylori BCF shows the presence in the cytoplasm of BCF-treated cells of spots with the
yellow component representing the colocalization of ubiquitinated proteins (FK2; red) with proteasome (green) (top line) or of ubiquitinated proteins
(red) with VacA (green) (bottom line), respectively. These cytoplasmic colocalizations in either control or treated cells are quantitatively analyzed in
the histograms (right) showing the percentage of FK2-positive spots colocalizing with proteasome or VacA, respectively. Pictures are from one single
confocal section. Bar: 10 mm. (C) Time-course of HeLa cells (nuclei in blue) incubated with H. pylori BCF shows a time-dependent increase in the
cytoplasmic spots of ubiquitinated proteins (FK2; red). The histogram (right) shows the number (means 6 SEM) of FK2-positive cytoplasmic spots per
cell. Bar: 10 mm. (D) Confocal microscopy of HeLa cells (nuclei in blue) incubated for 24 h without (control) or with H. pylori BCF shows the presence in
the cytoplasm of BCF-treated cells of yellow spots representing the colocalization of ubiquitinated proteins (FK2; red) with NOD1 (green). Each
individual labeling is shown in the enlarged areas of the boxed regions. Pictures are from one single confocal section. Bar: 10 mm.
doi:10.1371/journal.pone.0009716.g007
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However, in many such cases TEM detected intracellular H. pylori

bodies or their remnants, more frequently in the supranuclear

cytoplasm and enveloped by a host membrane. Occasionally, they

were also found in RER-rich basal cytoplasm, usually devoid of

host enveloping membrane while directly contacting UPS-reactive

13-nm particles to form a PaCS. Such a pattern supports the

involvement of H. pylori and/or its products in the genesis of at

least a part of the PaCSs in vivo, while fitting with PaCS neogenesis

and expansion in cultured cell lines incubated with H. pylori BCF.

The colocalization of H. pylori products with NOD1 inside the

PaCS is especially interesting in view of the demonstration that this

receptor has a crucial role in sensing H. pylori PG to elicit NF-kB

activation and chemokine-dependent proinflammatory response

[6]. We also colocalized with NOD1 in PaCS both OMPs, known

to be linked to PGs and LPS inside H. pylori outer membrane and

related vesicles [9,10], and a moderately acidic polyanion

conferring selective metachromatic basophilia of the type

displayed by carboxylated glycoconjugates like PGs [23,24].

Of major interest is also the colocalization of bacterial products

with ubiquitin-activating enzyme E1, polyubiquitinated proteins

and proteasome components since interactions between bacterial

toxins/virulence factors and the UPS of infected cells are well-

known to occur [14,31,32] resulting in a modulated host cell

response to bacteria. As shown for Salmonella typhimurium, when

intracellular bacteria escape from their membrane-enclosed

invasion vacuole to directly contact host cell cytosol, the ubiquitin

system may also have a role in recognizing and degrading them

through selective proteasome recruitment into peribacterial cytosol

[13]. These findings are reminiscent of the H. pylori bodies showing

various degenerative changes that we found lying free inside some

PaCSs of human gastric mucosa, in direct contact with UPS

components. Direct interaction of H. pylori or its products and UPS

may underscore an attempt by colonized epithelial cells to dispose

(or modulate activity) of bacteria and their toxins/virulence

factors. Bacterial products/UPS colocalization was also observed

inside minute collections of proteasome-like particles first appear-

ing in the cytoplasm adjacent to RER-bound or free polyribo-

somes, a likely site of origin of PaCSs. This finding may suggest

that UPS and the PaCS particles are newly synthesized at a

ribosomal level (or preferentially redistributed there) in response to

bacterial products accumulation. Indeed, immunoproteasome has

been shown to increase substantially at a RER/ribosomal level

after microbial incubation [33,34], resulting in proteasome-

mediated bacterial antigen release associated with stimulation of

class I MHC peptide neosynthesis and activation of specific

immune responses [35].

In bioptic specimens, we found UPS-positive PaCSs a) in

superficial-foveolar gastric epithelium, especially when showing

heavy luminal H. pylori colonization in the absence of cytotoxic

changes, b) in mucin-poor goblet cells of colonic-type (type III)

intestinal metaplasia, with or without dysplastic changes, showing

intraepithelial (but not luminal) H. pylori, and c) albeit less

frequently, in superficial-foveolar cells lacking luminal bacteria

while showing sparse intracytoplasmic H. pylori. In control cultured

cells, UPS-positive PaCSs were observed only occasionally and in

the absence of any H. pylori product-related reactivity. Incubation

of the same cell lines with H. pylori BCF induced formation,

enlargement and quantitative enhancement of structures positive

for H. pylori toxins/virulence factors, NOD1, ubiquitinated

proteins and proteasome, which closely reproduced cytochemical

and ultrastructural patterns of corresponding in vivo structures, thus

confirming a significant role of H. pylori in their development.

Other structures, unreactive for proteasome components,

bacterial products or NOD1 and essentially formed by a

meshwork of filamentous proteins resembling that reported by

Simonsen et al. [36] and Kaganovitch et al. [37] in autophagy-

related structures, were found occasionally in gastric foveolar

epithelium and, more frequently, in cultured cell lines. A variety of

discrete cytoplasmic structures potentially related to PaCS or

filamentous structures has indeed been reported in epithelial and

non-epithelial, cell lines, especially under conditions (including

bacterial LPS treatment) altering the quality control of endogenous

or exogenous, natural or mutated, misfolded proteins [38–42].

Among such previously described structures, only the ALIS

(aggresome-like induced structure) caused by intracellular Legionella

pneumophila in macrophages and dendritic cells [42] was induced by

incubation with a bacterium. In that case, ALIS showed

colocalization of ubiquitinated proteins and proteasome, thus

resembling immunocytochemically the H. pylori-induced PaCSs,

although no information on its high-resolution ultrastructure was

given. The RER-associated DALIS (dendritic cell aggresome-like

induced structure) [38] or ALIS [40,41] induced in vitro by

bacterial LPS in dendritic cells, macrophages and epithelial cells,

though rich in ubiquitinated proteins, lacked proteasome reactiv-

ity. It remains to be ascertained, through further ultrastructural

studies, whether PaCSs are akin to cytochemically similar

structures arising in conditions of increased misfolded proteins

production such as the UPS-positive JUNQ (juxtanuclear quality

control compartment) [37], as infection may cause neosynthesis of

misfolded proteins [43,44].

Much work remains to be done, especially at molecular level, to

understand the biologic and pathologic role of PaCS. Although H.

pylori infection appears to induce or enhance its formation, PaCS is

not part of the severe cytotoxic changes arising in the epithelium at

sites of more heavy colonization by tightly adhering bacteria.

These more ‘‘acute’’ inflammatory and cytopathic effects affecting

epithelium integrity and barrier function seem likely to have a

direct role in the genesis of ulcerative disease [17,45]. On the other

hand, epidemiologic, histopathologic and molecular studies

suggest a relevant role of chronic H. pylori infection, with special

reference to CagA-positive strains, in gastric carcinogenesis [2,46–

50] through a long-standing sequence of inflammatory, atrophic,

metaplastic and dysplastic changes leading to intestinal-type

cancer [48,51]. Recent molecular studies have clarified in part

the role of CagA in this process by showing complex formation

with the oncogenic protein SHP2 and activation of the ERK

kinases pathway so as to elicit proliferative, morphogenetic and

antiapoptotic effects of potential neoplastic relevance [19,21,28].

Our finding of selective colocalization of CagA, SHP2 and ERK

kinases inside some PaCS may suggest this structure has a role in

the regulation of cell growth and neoplastic transformation, also in

view of its highly enriched UPS content and the mounting

evidence for a role of UPS in cancer origin or progression [52].

PaCS detection, together with bacteria and their virulence factors,

inside gastric precancerous lesions is in keeping with this

suggestion and, more in general, with the hypothesis of a H.

pylori/CagA-mediated carcinogenesis.

In conclusion, it seems clear that PaCS, the novel intracellular

structure where H. pylori products concentrate in vivo in colonized

gastric epithelium as well as in vitro in human epithelial cell lines

incubated with H. pylori products/virulence factors, is a distinctive

cytoplasmic compartment where both NOD1, a selective H. pylori

receptor, and UPS components are co-concentrated. This

structure may have a role in bacterial recognition and handling,

and may modulate the activity of toxins/virulence factors and

induce pertinent immune responses, especially through immuno-

proteasome. The presence of PaCSs in gastric preneoplastic

lesions, and their selective colocalization with putative oncogenic

H. pylori and PaCS
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factors like CagA, SHP2 and members of the MAPK/ERK

signaling system, add special interest to the investigation of the

biologic role and pathologic potential of PaCS.

Materials and Methods

Biopsy samples, retrieved from our archival histology collection,

were taken in the period 1981–95 from the gastric antrum and

corpus of 26 subjects (15 males and 11 females, aged between 26 and

79 years) undergoing routine endoscopic and histologic examination

for dyspepsia as requested by the physician in charge of the patient

and with the written consent of the patient. One of the specimens

from both the antrum and the corpus was processed for TEM and

the pertinent semithin resin section used for diagnostic purposes

together with those of routine histologic material. No specimen

specifically and/or exclusively devoted to the present study was

taken. The study has been approved by the Ethics Committee of

Fondazione IRCCS Policlinico San Matteo (Pavia, Italy) as a

reinvestigation of archival material along the same line (i.e., diagnosis

of H. pylori-dependent gastritis) as for the original consensus.

The samples were fixed in 4% formaldehyde and embedded in

paraffin for histologic investigation, or fixed for 4 hours with 2%

formaldehyde and 2.5% glutaraldehyde in 0.1 M phosphate buffer

(pH 7.3), followed by 1% osmium tetroxide for 1 hour, embedded

in Epon-Araldite resin and processed for TEM. Paraffin sections

were stained with hematoxylin-eosin, Giemsa or H. pylori immuno-

peroxidase [2,17]. Semithin (0.5 mm) resin sections were stained

with toluidine blue, while ultrathin sections were stained with

uranyl-lead or the immunogold procedure [2,9], using antibodies

against: a) H. pylori OMPs, urease, CagA and VacA, b) NOD1

receptor, c) E1A/B ligases, polyubiquitinated or mono/polyubiqui-

tinated proteins, 20S proteasome core subunits, 19S proteasome S2

subunit, and 20S proteasome b5i subunit, d) SHP2 tyrosine

phosphatase, ERK 1/2 kinases, ribosomal protein S16 and other

proteins (detailed in Table S1). Anti-rabbit or anti-mouse IgG

labeled with 5, 10, 15 or 20 nm gold particles (British Bio Cell,

Cardiff, UK) were then used. Tests to evaluate the specificity of

immunogold labeling were carried out using antibodies absorbed

with excess antigen and omitting or substituting the specific

antibodies in the first layer of the immunogold procedure. Positive

and negative controls were obtained by parallel investigation of H.

pylori cultures, epithelial cell cultures, and gastric mucosa specimens

as in previous studies [2,9].

ESI analyses were performed by using a LEO 912AB electron

microscope as described by Pezzati et al. [53]. Briefly, the net

phosphorus distribution was obtained by computer processing of

images collected at different energy loss values according to the

three-window method. The final phosphorus map (coded in

pseudocolors) was then superimposed on the ultrastructural

organization of the same field obtained at 250 eV (i.e., at an

energy loss where most of the elements contribute to the image).

H. pylori BCF was produced as previously described [7] using the

well-characterized urease+/CagA+/VacA+ wild-type H. pylori

strain 60190 (ATCC 49503). Briefly, bacteria were grown in

Brucella broth (BD Diagnostics, Sparks, MD) supplemented with

1% Vitox (Oxoid, Basingstoke, UK) and 5% fetal bovine serum

(FBS; Gibco, Grand Island, NY) for 24–36 h at 37uC under

microaerobic conditions and continuous shaking. Bacteria were

then removed by centrifugation and the supernatant sterilized by

passage through a 0.22 mm cellulose acetate filter. Cultured cells

were incubated with H. pylori BCF diluted 1:3 in culture medium.

VacA (with a s1a/m1 vacA genotype) was purified from BCF of

H. pylori 60190 strain, grown in Brucella broth containing 0.2% b-

cyclodextrins (Sigma, St Louis, MO) instead of FBS, by

ammonium sulphate precipitation and gel filtration chromatogra-

phy in accordance with Cover et al. [54]. Purified VacA was then

labeled with Cy5 dye, stored in melting ice and, immediately

before use, alkali activated by drop-wise addition of 0.4 N NaOH

[8]. Cultured cells were incubated with 2 mg/ml activated Cy5-

VacA.

Human epithelial cell lines HeLa (ATCC CCL-2; from cervix

adenocarcinoma) and AGS (ATCC CRL-1739; from gastric

adenocarcinoma) were grown in DMEM supplemented with

10% FBS and 200 mM glutamine at 37uC in a humidified

atmosphere of 5% CO2 in air. After washing, subconfluent cell

monolayers were incubated at 37uC for 24 h under the different

experimental conditions. Cells were then either fixed and

processed for TEM as described above or fixed with 4%

paraformaldehyde, permeabilized with 0.1% saponin, and pro-

cessed for immunofluorescence as previously described [8,22]

using Alexa 488-labeled anti-mouse IgG (Molecular Probes,

Eugene, OR) or Texas Red- or Cy5-labeled anti-rabbit IgG

(Jackson Immunoresearch, West Grove, PE) as secondary

antibodies. Nuclear counterstaining was made with Hoechst

33258. TCS SP2 confocal laser scanning microscope (Leica,

Heidelberg, Germany) equipped with 63x oil-immersion objective

was used. Ubiquitinated protein-positive (i.e., FK2-reactive)

cytoplasmic spots per cell and their colocalization with VacA or

proteasome were quantified using the ImageJ software (NIH,

Bethesda, MD).

Supporting Information

Table S1 Characteristics of antibodies used for TEM and

confocal microscopy.

Found at: doi:10.1371/journal.pone.0009716.s001 (0.02 MB

PDF)
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